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ABSTRACT
Given a set of points P ⊆ R2, a conflict-free coloring of P w.r.t.
rectangle ranges is an assignment of colors to points of P, such
that each non-empty axis-parallel rectangle T in the plane con-
tains a point whose color is distinct from all other points in P ∩ T .
This notion has been the subject of recent interest, and is moti-
vated by frequency assignment in wireless cellular networks: one
naturally would like to minimize the number of frequencies (col-
ors) assigned to bases stations (points), such that within any range
(for instance, rectangle), there is no interference. We show that any
set of n points in R2 can be conflict-free colored with Õ(nβ+ε ) col-
ors in expected polynomial time, for any arbitrarily small ε > 0
and β = 3−

√
5

2 < 0.382. This improves upon the previously known
bound of O(

√

n log log n/ log n).

Categories and Subject Descriptors
G.2 [Combinatorics]: Combinatorial algorithms

General Terms
Algorithms, Theory

Keywords
Frequency assignment in wireless networks, conflict-free coloring,
axis-parallel rectangles, dominating sets, monotone sequences

1. INTRODUCTION
The study of conflict-free coloring is motivated by the frequency

assignment problem in wireless networks. A wireless network is a
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heterogeneous network consisting of base stations and agents. The
base stations have a fixed location, and are interlinked via a fixed
backbone network, while the agents are typically mobile and can
connect to the base stations via radio links. The base stations are
assigned fixed frequencies to enable links to agents. The agents
can connect to any base station, provided that the radio link to that
particular station has good reception. Good reception is only pos-
sible if i) the base station is located within range, and ii) no other
base station within range of the agent has the same frequency as-
signment (to avoid interference). Thus the fundamental problem of
frequency-assignment in cellular networks is to assign frequencies
to base stations, such that an agent can always find a base station
with unique frequency among the base stations in its range. Natu-
rally, due to cost, flexibility and other restrictions, one would like
to minimize the total number of assigned frequencies.

The study of the above problem was initiated in [8], and contin-
ued in a series of recent papers [2, 3, 4, 5, 7, 9, 10, 12, 13]. It can
be formally described as follows. Let P ⊆ R2 be a set of points and
R be a set of ranges (e.g. the set of all discs or rectangles in the
plane). A conflict-free coloring (CF-coloring in short) of P w.r.t.
the range R is an assignment of a color to each point p ∈ P such
that for any range T ∈ R with T ∩ P , 0, the set T ∩ P contains
a point of unique color. Naturally, the goal is to assign a conflict-
free coloring to the points of P with the smallest number of colors
possible.

The work in [8] presented a general framework for computing
a conflict-free coloring for several types of ranges. In particular,
for the case where the ranges are discs in the plane, they present
a polynomial time coloring algorithm that uses O(log n) colors for
conflict-free coloring and this bound is shown to be tight. This re-
sult was then extended in [10] by considering the case where the
ranges are axis-parallel rectangles in the plane. This seems much
harder than the disc case, and the work in [10] presented a sim-
ple algorithm that uses O(

√
n) colors. As mentioned in [10], this

can be further improved to O(
√

n log log n/ log n) using the sparse
neighborhood property of the conflict-free graph, as independently
observed by Noga Alon, Timothy Chan, and János Pach and Geza
Tóth [1, 12]. Currently, this is the best known upper bound for
CF-coloring axis-parallel rectangles. A lower bound of Ω(log n)
trivially follows from the lower bound for intervals. Very recently,



Chen et al. [6] showed that there exists a set of n points for which
the maximum size of an independent set in the conflict-free graph is
O(n log2 log n/ log n), suggesting that the number of colors in any
conflict-free coloring is likely to be at least superlinear in log n.

Recent works have shown that one can obtain better upper
bounds for special cases of this problem. In [10], it was shown
that for the case of random points in a unit square, O(log4 n) col-
ors suffice, and for points lying in an exact uniform

√
n ×
√

n grid,
O(log n) colors are sufficient. Chen [4] showed that polylogarith-
mic number of colors suffice for the case of nearly equal rectangle
ranges. Elbassioni and Mustafa [7] asked the following question:
Given a set of points P in the plane, can we insert new points Q
such that the conflict free coloring of P ∪ Q requires fewer colors?
They showed that by inserting O(n1−ε) points, P∪Q can be conflict
free colored using Õ(n3(1+ε)/8) colors.

While the CF-coloring problem is closed for disc ranges, the up-
per bounds are very far from the currently known lower bounds for
axis-parallel rectangular ranges. It remains very interesting to re-
duce this gap between upper and lower bounds, and this is, in fact,
the main open problem posed in [10]. In this paper, we improve the
upper bound significantly.

THEOREM 1.1. Any set of n points in R2 can be conflict-free
colored with respect to rectangle ranges using Õ(nβ+ε ) colors, in
expected polynomial time, for any arbitrarily small ε > 0 and β =
3−
√

5
2 < 0.382.

Our main tool for proving this theorem is a probabilistic color-
ing technique, introduced in [7], that can be used to get a coloring
with weaker properties, which we call quasi-conflict-free coloring.
This will be combined with dominating sets, monotone sequences,
and careful griding of the point set, in a recursive way, to obtain the
claimed result. We start with some definitions and preliminaries in
Section 2. To illustrate our ideas, we sketch a simple Õ(n6/13) con-
flict free coloring algorithm in Section 3. The main algorithm will
be given in Section 4. We describe the quasi-conflict-free coloring
technique in a slightly more general form in Section 5. Section 6
contains the analysis of the main algorithm.

2. PRELIMINARIES
By R ⊆ 2R

2
, we denote the set of all axis-parallel rectangles. Let

P be a set of points in R2.

DEFINITION 2.1. (Conflict-free coloring) A coloring of P is a
function χ : P 7→ N from P to some finite set N . A rectangle
T ∈ R is said to be conflict-free with respect to a coloring χ if
either T ∩ P = ∅, or there exists a point p ∈ P ∩ T such that
χ(p) , χ(p′) for all p , p′ ∈ P ∩ T. A coloring χ is said to be
conflict-free (w.r.t. R) if every rectangle T ∈ R is conflict-free w.r.t.
χ.

DEFINITION 2.2. (Dominating sets) For a point p = (px, py) ∈
R

2, define W1(p) = {q ∈ R2|qx ≥ px, qy ≥ py} to be the upper right
quadrant defined by p. Similarly, let W2(p),W3(p) and W4(p) be the
upper left, lower right and lower left quadrants respectively. Define
the dominating set of type i for P, denoted by Di(P), 1 ≤ i ≤ 4, as
follows:

Di(P) = {p ∈ P|Wi(p) ∩ P = {p}}

DEFINITION 2.3. (Monotonic sets) Let P = {p1, p2, . . . , pk} be
a set of points that is sorted by x coordinate. P is monotonic non-
decreasing (resp. monotonic non-increasing) if py

j ≥ py
i (resp. py

j ≤
py

i ) ∀1 ≤ i, j ≤ k, j > i.

It is easy to see that the dominating set of type 2 and 3 (resp. type
1 and 4) are monotonic non-decreasing (resp. non-increasing); see
Figure 1.
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Figure 1: Dominating sets: the shaded region represents the
lower right quadrant, and the solid black points represent the
dominating set D3(P) of type 3.

DEFINITION 2.4. (r-Grid) Let r ∈ Z+ be a positive integer. An
r-grid on P (see Figure 2), denoted by Gr = Gr(P), is an r × r axis-
parallel grid containing all points of P. For i = 1, . . . , r, denote by
Ri and Ci the subsets of P lying in the ith row and column of Gr ,
respectively. Denote by B(Gr), the maximum number of points of
P in a row or a column of Gr . For 1 ≤ h ≤ 2r − 1, let M1

h (resp.
M2

h) be the set of grid cells lying along a diagonal h of positive
slope (resp. negative slope) in Gr . For l = 2, 3 (resp. l = 1, 4), let
Dh

l = ∪(i, j)∈M1
h
Dl(Ri ∩ C j) (resp. Dh

l = ∪(i, j)∈M2
h
Dl(Ri ∩ C j)) be the

union of dominating sets of type l over grid cells in M1
h (resp. M2

h).
LetDl = ∪(i, j)∈Gr Dl(Ri∩C j) be the union of dominating sets of type
l over all the grid cells in Gr.

Figure 2: r-grid Gr(P): r = 4, B(Gr) = 24, the four types of
dominating sets are shown as solid circles in four different col-
ors, and the remaining points are shown as hollow circles. The
shaded cells represent the set M1

h .



Note that, for l = 2, 3 and 1 ≤ h ≤ 2r − 1, Dh
l is monotonic

non-decreasing, since the grid cells in M1
h , which lie along the di-

agonal of positive slope, are horizontally and vertically separated
and hence the union of Dl(Ri ∩ C j) (which are monotonic non-
decreasing), is also monotonic non-decreasing. By similar argu-
ment, for l = 1, 4 with M2

h and 1 ≤ h ≤ 2r − 1, Dh
l is monotonic

non-increasing.

DEFINITION 2.5. (Quasi-conflict-free coloring) Given a grid
Gr = Gr(P) on P, we call a coloring χ : P 7→ N quasi-conflict-free
with respect to Gr , if every axis-parallel rectangle which contains
points only from the same row or the same column of Gr is conflict-
free.

Let Gr be an r-grid on a point set P such that B(Gr) = B. It is
shown in [7] that there exists a quasi-conflict-free coloring of Gr(P)
requiring Õ(B3/4) colors.

3. A SIMPLE Õ(n6/13) CONFLICT-FREE
COLORING ALGORITHM

In this section, we sketch a simple algorithm for CF-coloring
P in order to illustrate the main ideas. This algorithm CF-colors
P using Õ(n6/13) colors. We can assume w.l.o.g. that P has no
monotone sequences of size Ω(n7/13). If there is one, we pick every
other point in the sequence (this is a set I of size Ω(n7/13)), color
them all with one color, and recurse on the rest of the points with a
different set of colors. It is easy to show that this gives an O(n6/13)
CF-coloring if such a monotone sequence always exists (see [10]
for more details).

Let A be an O(n1/2) conflict-free coloring algorithm [10]. Our
algorithm can be described as follows. Let r = n

5
13 . Grid the

point set P using Gr such that each row and column has B = n
8

13

points of P. Compute the dominating sets Dl(P),1 ≤ l ≤ 4 and let
D = ∪4

l=1Dl(P) and P′ = P \D. We quasi-CF color P′ with Õ(B3/4)
colors using the algorithm of [7] (which uses A as subroutine).
Then, we CF-color D using A with a different set of colors.

LEMMA 3.1. The above coloring of P is conflict-free.

PROOF. Let T ∈ R be a rectangle such that T ∩P , ∅. We show
that T contains a point of unique color among the points in T ∩ P.

We consider 4 cases:

Case 1. A monotone sequence of size Ω(n7/13) is found and we
colored every other point in the sequence (set I) with one color: if
(T ∩ P) \ I , ∅, then by induction and the fact that I and P \ I are
colored with distinct sets of colors, we know that T ∩ P contains
a point of a unique color. If T ∩ P ⊆ I, then |T ∩ P| = 1 (since
I consists of every other point in a monotone sequence) and the
statement trivially holds.

We assume thus that case 1 does not hold.

Case 2. T ∩ D , ∅: The CF-coloring of D guarantees that there
is a point p of unique color among points in T ∩ D. Since D and
P′ = P \ D are colored with distinct sets of colors, p is a point of
unique color among points in T ∩ P also.
Case 3. T spans at least 2 rows and 2 columns of Gr: Let (i, j) be a
grid cell of Gr such that T ∩ (Ri∩C j) , ∅. Since T contains at least
one corner of grid cell (i, j), T ∩Dl(Ri∩C j) , ∅ for some l ∈ {1, 4},
i.e., T contains at least one point of the dominating set of points in
grid cell (i, j). This implies that T ∩D , ∅ and we are back to Case
2.

We may assume now that cases 1, 2 and 3 do not hold.

Case 4. T lies completely within one row or one column of Gr:
Since T ∩ P , ∅ and T ∩ D = ∅, we have T ∩ P′ , ∅. The quasi-
CF coloring of P′ guarantees that there is a point p of unique color
among the points in T ∩P′. p is also a point of unique color among
points in T ∩ P.

We now bound the total number of colors used by our algorithm.
Quasi-CF-coloring of P′ requires Õ(n

8
13×

3
4 ) = Õ(n6/13) colors. To

bound the number of colors used in CF-coloring D, we first bound
the size of D: |Dk

l | = O(n7/13) for all k, because Dk
l is a monotonic

sequence. Since D = ∪l,hDh
l over 1 ≤ h ≤ 2n5/13 −1, and 1 ≤ l ≤ 4,

we have |D| = O(n12/13). Thus, the CF-coloring of D (using the
O(n1/2)-coloring algorithm A) requires O(n6/13) colors. The total
number of colors used by our algorithm is thus Õ(n6/13).

THEOREM 3.1. Any set of n points P ⊆ R2, can be CF-colored
with Õ(n6/13) colors.

4. GENERALIZED ALGORITHM
In this section, we generalize the algorithm described in Section

3. Recall that, in our coloring algorithm, we used an O(n1/2) “black-
box” A for CF-coloring the dominating set D and the quasi-CF-
coloring of P′. As a result we obtained an Õ(n6/13) CF-coloring
algorithm. We can improve this coloring further by using now this
Õ(n6/13) as a new black-box for CF-coloring the dominating set D
and quasi-CF-coloring of P′. An easy calculation shows that the
number of colors used is asymptotically smaller than Õ(n6/13).

We can now take this approach (almost) to the limit. This results
in a sequence of strictly improved algorithms,A = A0,A1,A2, . . .

For k = 1, 2, . . . , the structure of Ak is similar to the algorithm
described in Section 3: Grid the point set P using Gr, where r =
n1−αk , for some αk; Partition P into dominating set D and P′ =
P \ D and use algorithm Ak−1 for CF-coloring D and quasi-CF-
coloring P′. We choose the parameter αk such that both the CF-
coloring of D and quasi-CF-coloring of P′ balance-out into using
an Õ(nβk ) colors, for some βk as small as possible. Ideally, one
would like to always recursively apply algorithmA∞ to get a bound
of Õ(nβ∞ ) on the number of colors. However, there is a technical
problem with such a recursion: the sublinearity of the bound on the
number of colors implies that the power of the logarithmic factor
increases exponentially with k. To solve this problem, we stop the
recursion at a level of O(log 1

ε
), settling at a bound of Õ(nβ∞+ε), for

any arbitrarily small constant ε > 0.

To be more precise and describe our coloring procedure formally,
we need a few more definitions. Given a coloring χ : P 7→ N , we
denote by range(χ) = {χ(p) : p ∈ P}, the set of distinct colors used
to color P. Let f : R+ 7→ R+ be a monotone sublinear function on
the positive reals. An f (·)-conflict-free coloring algorithm A takes
as an input a point set P ⊆ R2, and a set of colors N ⊆ N such that
|N| ≥ f (|P|), and returns a conflict-free coloring χ : P 7→ N of P
such that | range(χ)| ≤ f (|P|).

REMARK 4.1. It will simplify the analysis to assume, without
loss of generality, that there exists a polylogarithmic factor (or even
a constant) δ = polylog(|P|) such that the size of each color class
(that is max` |{p ∈ P : χ(p) = `}) in the coloring returned by A is
at most δ|P|/ f (|P|). (This can be justified as follows. Let P′ ⊆ P be
the largest monochromatic set returned byA when applied to P. If
|P′| ≥ δn/ f (n), where n = |P|, then let P′′ be a subset of P′ of size
exactly δn/ f (n). Color all points of P′′ with the same color `, then
the points P − P′′ recursively with colors different from `. Since
f (n) is sublinear, we get the required bound.)



It will be convenient to think of the set of colors N , which we
use to color the points, as a subset of the sequences of natural num-

bers N∗
def
= N ∪ N2 ∪ . . . This allows us to take unions and prod-

ucts of colors. More precisely, for disjoint subsets P′, P′′ ⊆ P and
colorings χ′ : P′ 7→ N∗ and χ′′ : P′′ 7→ N∗, we let χ′ + χ′′ de-
note the coloring χ : P′ ∪ P′′ 7→ N

∗ defined by χ(p) = χ′(p)
if p ∈ P′ and χ(p) = χ′′(p) if p ∈ P′′. For two colorings
χ′, χ′′ : P 7→ N∗, we denote by χ′ × χ′′ the coloring χ : P 7→ N∗
given by χ(p) = (χ′(p), χ′′(p)) for p ∈ P.

The generalized coloring algorithm is given in Figure 3. We set
the values of αk, βk, n0 for k ≥ 1, by the following recurrence rela-
tions and formulas:

β0 = 1/2, βk =
2βk−1(2 − βk−1)

3 + βk−1 − β2
k−1

, β∞ = (3 −
√

5)/2 (1)

αk =
2 − βk

3 − βk−1
(2)

γ0 = 4, γk = 2k+2 − 1 (3)

n0 = 210 (4)

ProcedureAk(P, S ):
Input: A point set P ⊆ R2, |P| = n, a set of colors S
Output: A CF-coloring χ : P 7→ S with | range(χ)| ≤ fk(n)

1. if k = 0 or n ≤ n0 then
2. return a coloring of P using the O(

√
n)-coloring algorithm

3. else
4. Compute αk and βk using (1)-(2); Set r ← n1−αk

5. if ∃ a monotonic sequence L of size 2n1−βk then
6. Let I be the set consisting of every other point of L
7. Color every point of I with the same color i ∈ S ,

i.e. set χ′(p)← i for all p ∈ I
8. χ′′ ←Ak(P \ I, S \ {i})
9. return χ′ + χ′′

10. else
11. Grid P using Gr

12. Compute the dominating set D w.r.t. Gr(P)
13. χ′ ←QCFC(P \ D,Gr ,Ak−1, S )
14. χ′′ ←Ak−1(D, S \ range(χ′))
15. return χ′ + χ′′

Figure 3: Conflict-free coloring

The structure of the generalized coloring algorithm is the same
as the algorithm described in Section 3. Hence, by Lemma 3.1, the
coloring returned by the algorithm is conflict-free.

5. GENERALIZED QUASI CONFLICT
FREE COLORING

In this section we describe the quasi-CF coloring algorithm.
Given an r-grid Gr(P) on point set P, we start by coloring the points
of each column, using a CF-coloring algorithm A as a black-box.
We use the same set of colors for all columns. Then randomly and
independently for each column, we redistribute the colors on the
different color classes of the column. Finally, a recoloring step is
applied on each monochromatic set of points in each row, again us-
ing algorithm A as the CF-coloring procedure. When we do the
recoloring, we color all sets assigned a color ` in the first step using
the same set of colors S `. A formal description of this procedure is
given in Figure 4.

Procedure QCFC(P,A,Gr , S ):
Input: A point set P ⊆ R2, an f (·)-CF-coloring algorithmA

an r-grid Gr on P, and a set of possible colors S
Output: A quasi-CF-coloring χ : P 7→ S of P w.r.t. Gr

1. Let h = f (B(Gr)); N = {1, . . . , h}
2. for i = 1, . . . , r do
3. χi ← A(Ci,N)
4. Let π ∈ Sh be a random permutation
5. foreach p ∈ Ci do
6. χ′i (p)← π(χi(p))
7. χ′ ← ∑r

i=1 χ
′
i

8. Let S 1, . . . , S h be disjoint subsets of N of size B(Gr)
9. for i = 1, . . . , r do
10. for ` = 1, . . . , h do
11. P`i ← {p ∈ Ri : χ′(p) = `}
12. χ′′i,` ← A(P`i , S `)
13. χ′′ ← ∑r

i=1
∑h
`=1 χ

′′
i,`

14. return χ′ × χ′′ (mapped to S )

Figure 4: Quasi-conflict-free coloring of a grid

The following is a straightforward generalization of Theorem 3
in [7]. We include the proof in the Appendix A for completeness.

THEOREM 5.1. Given any point set P ⊆ R2, a grid Gr = Gr(P)
with B(GR) = B on P, and a conflict-free coloring algorithm A
with guarantee f (·) such that

r · f (B)(log(δB/ f (B))+ 1)(δ log B)(− log B)/4 ≤ 1
2
, (5)

procedure QCFC returns a quasi-conflict-free coloring of Gr(P)
using

q(B) = f (B) f

(

2δB log B log((δB/ f (B))+ 1)
f (B)

)

(6)

colors, in expected polynomial time, where δ is the parameter given
in Remark 4.1.

6. ANALYSIS
We denote by fk(·) an upper bound on the number of colors re-

quired by the algorithm at the kth level. If n ≤ n0 or k = 0, we use
a 4
√

n coloring algorithm. Thus, fk(n) ≥ 4
√

n for 4 ≤ n ≤ n0 or
k = 0. Otherwise, if any of the monotonic sets Dh

l (for 1 ≤ l ≤ 4
and 1 ≤ h ≤ 2 n1−αk − 1) is larger than 2n1−βk , we color every al-
ternate node in the monotonically increasing dominating set with a
single color and recurse on the rest. Thus, fk(n) ≥ 1+ fk(n− n1−βk ).
If there is no such monotonic set, we grid the point set such that
all rows and columns contain approximately (but not more than)
nαk points, recursively color the dominating set D and quasi color
P \D. Let δk(n) = logγk n. We can conclude from Theorem 5.1 that
if for all n > n0 and k > 1,

n1−αk · fk−1(nαk )

(

log (
δk−1(nαk )nαk

fk−1(nαk )
) + 1

)

· (δk−1(nαk ) log nαk
)(− log nαk )/4 ≤ 1/2 (*)

then the upper bound on the number of colors required by our
algorithm will be



fk(n) ≥ fk−1(16 · n(2−αk−βk)) + fk−1(nαk )

· fk−1

(

2δk−1(nαk )nαk log nαk
(

log (δk−1(nαk ) · nαk/ fk−1(nαk )) + 1
)

fk−1(nαk )

)

Our main theorem in this Section is that fk(n) defined as

fk(n) =















n for n < 4

min{4
√

n, δk−1(n) nβk } for n ≥ 4

satisfies all the recursions mentioned above. Coupled with
Lemma 6.1, where we prove that for k = O(log 1/ε), β∞ < βk ≤
β∞ + ε, this shows that the number of colors required by our al-
gorithm is bounded above by nβ∞+ε logO(1/ε) n = Õ(nβ+ε ) for any
ε > 0.

LEMMA 6.1. β∞ < βk ≤ β∞ + ε for k = O(log 1/ε)

PROOF. The first inequality follows from the monotonicity of
the sequence βk and its convergence to β∞. For the second in-
equality, let us define εk = βk − β∞. We show that εk ≤ ε for
k = log 2−β∞

2−2β∞

0.5−β∞
ε

. By definition,

βk =
2(β∞ + εk−1)(2 − β∞ − εk−1)

3 + (β∞ + εk−1) − (β∞ + εk−1)2

=
2β∞(2 − β∞) + 4εk−1(1 − β∞) − 2ε2k−1

(3 + β∞ − β2
∞) + (εk−1 − 2β∞εk−1 − ε2k−1)

≤ 2β∞(2 − β∞) + 4εk−1(1 − β∞)
(3 + β∞ − β2

∞) + (εk−1 − 2β∞εk−1)

≤ 2β∞(2 − β∞) + 4εk−1(1 − β∞)
(3 + β∞ − β2

∞)
(assuming 2β∞ ≤ 1)

Since 3 + β∞ − β2
∞ = 2(2 − β∞), we get

βk ≤ β∞ +
4εk−1(1 − β∞)

2(2 − β∞)

Therefore,

εk ≤
εk−1(2 − 2β∞)

(2 − β∞)

Since this is true for any k > 0, we get

εk ≤
(

2 − 2β∞
2 − β∞

)k

ε0

=

(

2 − 2β∞
2 − β∞

)k

(0.5 − β∞)

Thus for k = log 2−β∞
2−2β∞

0.5−β∞
ε

, εk ≤ ε.

The following claims can be easily verified:

CLAIM 6.1. For k ≥ 1, 0.61 < α1 ≤ αk ≤ α∞ < 0.62.

CLAIM 6.2. For k ≥ 0, 0.38 < β∞ ≤ βk ≤ β0 ≤ 0.50.

CLAIM 6.3. For k ≥ 1, αk + βk ≥ 1.

LEMMA 6.2. For all k and 4 ≤ n ≤ n0, fk(n) ≥ 4 n0.5.

PROOF. fk(n) = nβk logγk n ≥ nβ∞ logγ0 n ≥ 4 n0.5

The last inequality holds because 4 ≤ n ≤ n0.

LEMMA 6.3. fk(n) ≥ 1 + fk(n − n1−βk ) for k > 0 and n > n0.

PROOF.

fk(n) − fk(n − n1−βk ) ≥ (nβk − (n − n1−βk )βk ) logγk n

Since nβk − (n − n1−βk )βk ) ≥ βk ≥ β∞ for n > n0 and
logγk n ≥ logγ0 n0 > 1/β∞,

(nβk − (n − n1−βk )βk ) logγk n ≥ 1

Thus, fk(n) − fk(n − n1−βk ) ≥ 1.

LEMMA 6.4. For k > 0 and n > n0, (∗) holds.

PROOF. Since fk−1(nαk ) ≤ nαk , the left hand side of (∗) is at most

n1−αk nαk (log nαk(1−βk−1)
+ 1)

(

δk−1(nαk ) log nαk
)(− log nαk )/4

≤ n
(

log nαk(1−βk−1)
+ 1

)

(

logγk−1 (nαk ) log nαk
)(− log nαk )/4

≤ n
(

log nα∞(1−β∞)
+ 1

)

(

logγ0(nα1 ) log nα1
)(− log nα1 )/4

(using Claim 6.1, 6.2 and the definition of γk)

= h(n)

The function h(n) is monotonically decreasing for n ≥ n0 and
h(n0) < 1/2. We therefore conclude that for k > 0 and n > n0,
(∗) holds.

LEMMA 6.5. For k > 0 and n > n0,

fk(n) ≥ fk−1(16 · n2−αk−βk ) + fk−1(nαk )

· fk−1

















2δk−1(nαk )nαk log nαk
(

log (δk−1(nαk )nαk/ fk−1(nαk )) + 1
)

fk−1(n)

















PROOF. We first show that

fk−1

















2δk−1(nαk )nαk log nαk
(

log (δk−1(nαk )nαk/ fk−1(nαk )) + 1
)

fk−1(nαk )

















≤ nαkβk−1(1−βk−1)
(

2 log nαk (log (nαk(1−βk−1)) + 1)
)βk−1
δk−1(n)

Note that

fk−1

















2δk−1(nαk )nαk log nαk
(

log (δk−1(nαk )nαk/ fk−1(nαk )) + 1
)

fk−1(nαk )

















= fk−1

















2δk−1(nαk )nαk log nαk
(

log (δk−1(nαk )nαk/ fk−1(nαk )) + 1
)

δk−1(nαk )nαkβk−1

















= fk−1

(

2nαk (1−βk−1) log nαk
(

log nαk(1−βk−1)
+ 1

))

= nαkβk−1(1−βk−1)
(

2 log nαk
(

log nαk (1−βk−1)
+ 1

))βk−1

· δk−1

(

2nαk(1−βk−1) log nαk (log nαk (1−βk−1)
+ 1)

)

Now,

2nαk(1−βk−1) log nαk (log nαk(1−βk−1)
+ 1)

≤ 2nα∞(1−β∞) log nα∞ (log nα∞(1−β∞)
+ 1)

(using Claim 6.1 and 6.2)

≤ n,

where the last inequality follows from the fact that n is asymptoti-
cally larger and the inequality holds for n = n0. So, we have

fk−1(
2δk−1(nαk )nαk log nαk (log (δk−1(nαk )nαk ) + 1)

fk−1(nαk )
)

≤ nαkβk−1(1−βk−1)
(

2 log nαk (log nαk(1−βk−1)
+ 1)

)βk−1
δk−1(n)



Therefore,

fk−1(16 · n(2−αk−βk)) + fk−1(nαk )

· fk−1

(

2δk−1(nαk )nαk log nαk (log (δk−1(nαk )nαk ) + 1)
fk−1(n)

)

≤ fk−1(16 n2−αk−βk ) + fk−1(nαk )

· nαkβk−1(1−βk−1)
(

2 log nαk (log nαk(1−βk−1)
+ 1)

)βk−1
δk−1(n)

≤ 16βk−1 n(2−αk−βk)βk−1δk−1(16 n2−αk−βk ) + nαkβk−1δk−1(nαk )

· nαkβk−1(1−βk−1)(2 log nαk (log nαk(1−βk−1)
+ 1))βk−1δk−1(n)

= nβk (16βk−1 δk−1(16 n2−αk−βk ) + δk−1(nαk )

·
(

2 log nαk (log nαk(1−βk−1)
+ 1)

)βk−1
δk−1(n))

(since (2 − αk − βk)βk−1 = αkβk−1 + αk(1 − βk−1)βk−1 = βk)

≤ nβk (16βk−1 δk−1(16 n) + δk−1(nαk )δk−1(n)

·
(

2 log nαk (log nαk(1−βk−1)
+ 1)

)βk−1
) (using Claim 6.3)

≤ nβk (16βk−1 δk−1(n2) + δk−1(nαk )δk−1(n)

·
(

2 log nαk (log nαk(1−βk−1)
+ 1)

)βk−1
) (since n ≥ n0 > 16)

≤
(

nβk log2γk−1+1 n
)

·
(

16βk−1 logγk−1 n2

log2γk−1+1 n
+
α
γk−1
k

log n

(

2 log nαk (log nαk(1−βk−1)
+ 1)

)βk−1

)

= fk(n)

(

16βk−1 logγk−1 n2

log2γk−1+1 n
+
α
γk−1
k

log n

(

2 log nαk (log nαk(1−βk−1)
+ 1)

)βk−1

)

(since γk = 2γk−1 + 1)

= fk(n)

(

16βk−1 2γk−1

logγk−1+1 n
+
α
γk−1
k

log n

(

2 log nαk (log nαk (1−βk−1)
+ 1)

)βk−1

)

= fk(n)

(

0.5 · 16βk−1

(0.5 log n)γk−1+1
+
α
γk−1
k

log n

(

2 log nαk (log nαk (1−βk−1)
+ 1)

)βk−1

)

≤ fk(n)

(

0.5 · 16β0

(0.5 log n)γ0+1
+
α
γ0
∞

log n

(

2 log nα∞ (log nα∞(1−β∞)
+ 1)

)β0

)

(using Claim 6.1, 6.2 and the definition of γk)

≤ fk(n)

It can be verified that the last inequality holds for n > n0.

Combining Lemmas 6.2, 6.3, 6.4 and 6.5, we get the following
theorem:

THEOREM 6.1. fk(n) = nβk logγk n satisfies all of the following
recursions:

(i) fk(n) ≥ 4
√

n (for all k > 0, 4 ≤ n ≤ n0 or k = 0)

(ii) fk(n) ≥ 1 + fk(n − n1−βk ) (for k > 0 and n > n0)

(iii) n1−αk fk−1(nαk ) log(
δk−1(nαk )nαk

fk−1(nαk )
+ 1)

· (δk−1(nαk ) log nαk )(− log nαk )/4 ≤ 0.5

(for k > 0 and n > n0)

(iv) fk(n) ≥ fk−1(16 · n2−αk−βk ) + fk−1(nαk )

· fk−1

(

2δk−1(nαk )nαk log nαk (log (δk−1(nαk )nαk )/ fk−1(nαk ) + 1)

fk−1(n)

)

(for k > 0 and n > n0)

Using Theorem 6.1 and Lemma 6.1, we get the following:

THEOREM 6.2. Let P be a set of n points in R2. Algorithm
Ak(P,S ) conflict-free colors P with respect to rectangle ranges us-
ing nβ+ε logO(1/ε) n = Õ(nβ+ε ) colors, for any arbitrarily small ε > 0.

7. DISCUSSION
Note that the quasi-CF-coloring Algorithm QCFC when fed

with an Õ(nβk−1 )-CF-coloring algorithm Ak−1 as an input, returns
a Õ(nβk ) = Õ(B(Gr)βk−1(2−βk−1))-quasi-CF-coloring of P′, P′ ⊆ P,
where r = n1−αk . This is actually how the successive improve-
ments are made, since βk < βk−1. Suppose there exists a quasi-CF-
coloring algorithm that uses B(Gr)c colors for some c > 0. Then an
easy calculation shows that our algorithmAk returns a CF-coloring
using nc/(c+1) colors. Clearly any improvement on the quasi-CF-
coloring algorithm will translate to an improvement on the general
case. By setting c = ε, for any ε > 0, we obtain the following:

COROLLARY 7.1. Let P be a set of points of size n, and r =
n1−α for some α ∈ (0, 1). If there exists a quasi-CF-coloring al-
gorithm of the grid Gr(P) that requires O(B(Gr)ε ) colors, for any
ε > 0, then we can obtain a CF-coloring algorithm of P that re-
quires O(nε

′
) colors, where ε′ = ε/(ε + 1).

Similarly, any improved coloring of the dominating set D also
leads to an improved CF-coloring algorithm.

One might think that, if an improved CF-coloring algorithm (that
uses O(nc) colors, c < β∞) is obtained, it could be further im-
proved using our iterated improvement scheme given in Section 4.
However, this is not possible since it can be easily seen that, if
βk−1 < β∞, then βk > βk−1. Thus, one cannot hope to improve a CF-
coloring algorithm that uses fewer than O(nβ∞ ) colors by directly
using our iterated improvement scheme.
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APPENDIX

A. PROOF OF THEOREM 5.1
Let χi, χ

′, χ′′, h, P`i be as defined in the procedure, and χ = χ′×χ′′
be the coloring returned in Step 14. The theorem follows from the
following two claims.

CLAIM A.1. ([7]) χ is quasi-conflict-free.

PROOF. Let T ∈ R be any rectangle that lies completely inside a
row or a column of Gr, such that T∩P , ∅. If T contains only points
belonging to a single column C j of Gr , then the fact that algorithm
A returns a conflict-free coloring of C j and the definition of χ′j
imply that T contains a point p ∈ T ∩ C j such that χ′j(p) , χ′j(p′)
for all p′ ∈ T ∩P, p′ , p. Then χ′(p) and hence χ(p) is different in
the first coordinate from χ(p′) for every p′ ∈ T ∩ P, p′ , p. Now
assume that T contains only points belonging to a single row i of
Gr . Since T ∩ P , ∅, there is an ` ∈ [h] such that T ∩ P`i , ∅.
Since A returns a conflict-free coloring χ′′i,` of P`i , there is a point
p ∈ T ∩ P`i , such that χ′′i,`(p) , χ′′i,`(p′) for all p′ ∈ T ∩ P`i , p′ , p.
Thus if p′ ∈ T ∩ Ri, then either p′ ∈ P`

′
i for `′ , ` in which

case χ′(p′) , χ′(p), or p′ ∈ P`i but χ′′(p′) , χ′′(p). In both cases
χ(p′) , χ(p).

CLAIM A.2. With probability at least 1/2, | range(χ)| ≤ q(B)
given by (6).

PROOF. Fix i ∈ [r] and ` ∈ [h]. Define t = δB/h. For j ∈
[r], let A`i, j = {p ∈ Ri ∩ C j : χ j(p) = `} and note that |A`i, j| ≤
δB/ f (B) = t (by Remark 4.1 and the sub-linearity of f (·)). For
m = 1, 2, . . . , dlog te, let

Am
i, j = {A`i, j : 2m−1 ≤ |A`i, j| ≤ 2m, ` = 1, . . . , h},

and note that
r

∑

j=1

|Am
i, j | ≤

B
2m−1
, (7)

since the total number of points in row i of Gr is at most B, and
each set inAm

i, j has at least 2m−1 points.

Note that, for any j ∈ [r], every point p ∈ A`i, j gets the same
color χ′(p) in Step 6. Thus we can think of the coloring in Step 6
as of permuting randomly the colors to the sets A`i, j, ` = 1, . . . , h,
and may use χ′(A`i, j) to denote the color assigned in Step 6 to all

points in A`i, j. Let Ym,`
i, j be the indicator random variable that takes

value 1 if and only if there exists a set S ∈ Am
i, j with χ′(S ) = `

(if Am
i, j is empty, then the corresponding random variable is 0 with

probability 1). Let Ym,`
i =

∑r
j=1 Ym,`

i, j . Then,

E[Ym,`
i, j ] = Pr[Ym,`

i, j = 1] =
|Am

i, j|
h

E[Ym,`
i ] =

r
∑

j=1

|Am
i, j |

h
≤ B

h2m−1
=

t
δ2m−1

,

where the last inequality follows from (7).
Note that the variable Ym,`

i is the sum of independent Bernoulli
trials, and thus applying the Chernoff bound1 , we get

Pr[Ym,`
i >

t log B
2m−1

] ≤ e
− t log B

4·2m−1 ln















t log B

E[Ym,`
i ]·2m−1















. (8)

Using E[Y i,`
m ] ≤ t/(δ2m−1) and 2m ≤ 2t, we deduce from (8) that

Pr[Ym,`
i >

t log B
2m−1

] ≤ (δ log B)−(log B)/4.

Thus, the probability that there exist i, `, and m such that Ym,`
i >

t log B/2m−1 is at most

rh(log t + 1)(δ log B)−(log B)/4 ≤ 1
2
,

by (5). Therefore with probability at least 1/2, Ym,`
i ≤ t log B/2m−1

for all i, `, and m. In particular, with constant probability, for all i
and `, we have

|P`i | ≤
dlog te
∑

m=1

Ym,`
i · 2m ≤ 2t log B(log t + 1).

Since algorithmA has guarantee f (·), with constant probability, the
total number of colors needed, by the sublinearity of f (·), is

| range(χ)| ≤
h

∑

`=1

f (|P`i |) ≤ h · f (2t log B(log t + 1)) ≤ q(B),

as claimed.

1In particular, the following version [11]: Pr[X ≥ (1 + θ)µ] ≤
e−(1+θ) ln(1+θ)µ/4, for θ > 1 and µ = E[X].


