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Abstract

We describe reductions from the problem of determining the satisfiability of Boolean CNF
formulas (CNF-SAT) to several natural algorithmic problems. We show that attaining any of
the following bounds would improve the state of the art in algorithms for SAT:

• an O(nk−ε) algorithm for k-Dominating Set, for any k ≥ 3,

• a (computationally efficient) protocol for 3-party set disjointness with o(m) bits of com-
munication,

• an no(d) algorithm for d-SUM,

• an O(n2−ε) algorithm for 2-SAT with m = n1+o(1) clauses, where two clauses may have
unrestricted length, and

• an O((n + m)k−ε) algorithm for HornSat with k unrestricted length clauses.

One may interpret our reductions as new attacks on the complexity of SAT, or sharp lower
bounds conditional on exponential hardness of SAT.
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1 Introduction

Do NP-hard problems require us to exhaustively search over all solutions? This basic question
is the heart of the P versus NP problem. Over the last decade or so, the area of exact algorithms
for NP-hard problems has seen vast development. Hundreds of papers have been written on how to
solve hard problems exponentially faster than brute-force search. Most results report algorithms
running in O⋆(2δt) time for a constant δ < 1, where O⋆(2t) would be the runtime of an exhaustive
search.1 We say that an improved algorithm for a problem to be one with a runtime bound of
the above type. A surprising number of search problems have been shown to exhibit improved
algorithms. To cite a representative list of papers at this point is not really possible, but the
surveys by Woeginger [31, 32] are somewhat comprehensive on recent work.

For certain key problems, we still do not know improved algorithms. The most famous of
these is the “original” NP-complete problem: the satisfiability problem for Boolean formulas in
conjunctive normal form, which we abbreviate as CNF-SAT. Satisfiability is so ubiquitous that an
entire conference on theory and applications of the problem is held annually [29]. A sequence of
papers has given algorithms for CNF-SAT with 2n−o(n) · poly(m) runtime [28, 30, 10, 11, 12, 13],
where n is the number of variables and m is the number of clauses. The current best, implicit in
Calabro, Paturi, and Impagliazzo [4] and observed by Dantsin and Hirsch [14], is a deterministic
algorithm that runs in

2
n
(

1− 1
O(log(m/n))

)

· poly(m) time.

One implication of this algorithm that for every constant c > 0, there is an δ(c) < 1 such that
SAT with n variables and cn clauses can be solved in O(2δ(c)n) time. An algorithm with such a
guarantee was first given by Arvind and Schuler [2].

It does not appear that the current approaches will lead to a bound of O⋆(2δn) for general CNF-
SAT, with constant δ < 1. Nor do they seem promising for a more modest goal, namely a bound
of O∗(2δn) for k-SAT, where k can be any constant (hidden in the asymptotic notation), but δ < 1
is a universal constant independent of k.

One positive result in this direction follows from Calabro, Paturi, and Impagliazzo [4]. Their
duality between clause density and clause width shows that an improved algorithm for CNF-SAT
with n variables and f(n) clauses would follow from an algorithm for k-SAT with n variables and
f(n) clauses that runs in time 2δn, where δ < 1 is any constant and k ≥ 1

δ log f(n) + Ω(1). Hence,
it suffices to restrict attention to formulas with “logarithmic length” clauses.

Going in the opposite direction, Impagliazzo and Paturi [23] showed that an O∗(2δn) algorithm

for CNF-SAT implies an O∗(2δn·(1− 1
e·k )) algorithm for k-SAT. Thus, an improvement to the state

of the art for CNF-SAT will immediately imply algorithms for the family of k-SAT problems. This
offers some evidence that any improvement for CNF-SAT is unlikely, though one must be careful
in judging how compelling the evidence is. For example, if δ = .99, the implied k-SAT algorithm
is only an improvement over the known O∗((2 − 2

k+1)n) algorithm for k > 107.

We have spent significant time attempting to either find an improved algorithm, or give inter-
esting evidence against its possibility. In this paper, we present several hypotheses which appear

1The O
⋆ notation suppresses polynomial factors in the input size.
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plausible, given the current state of knowledge. We prove that if any of the hypotheses are true,
then CNF-SAT has an improved algorithm. One can either interpret our reductions as new attacks
on the complexity of CNF-SAT, or lower bounds (ruling out all hypotheses) conditional on the
hardness of CNF-SAT.

The proofs themselves exhibit strong connections between SAT and k-Dominating Set, 2-
SAT, HornSat, the 3-party set disjointness problem in communication complexity, and the d-
SUM problem. A side result of our work is a further elucidation of the relationships between open
problems in exact algorithms and celebrated open problems in other areas of research. (Weaker
forms of these connections have been reported before in the literature, as we will discuss later.)

More precisely, we show that CNF-SAT can be solved inq 2δn · poly(m) time for some δ < 1, if
any one of the following hypotheses are true:

1. (Section 2) Define k-Dominating Set to be the problem of finding a k-set S of nodes in
graph, where all nodes are either adjacent to S are in S. The problem is a special case of the
celebrated k-junta problem in learning theory. We know that for all k ≥ 7, the k-Dominating

Set problem on n node graphs can be solved in nk+o(1) time [17].

Hypothesis: For some k ≥ 3 and ε > 0, k-Dominating Set is in O(nk−ε) time.

2. (Section 3) Define 2Sat+2Clauses to be the problem of satisfying a 2-CNF formula on
n variables and m clauses, conjoined with two additional clauses of arbitrary length. We
know the problem has an O(mn + n2) time algorithm, via a natural reachability algorithm
on graphs.

Hypothesis: For m = n1+o(1) and some constant ε > 0, 2Sat+2Clauses is in O(n2−ε)
time.

3. (Appendix A) Define HornSat+kClauses to be the problem of satisfying a Horn CNF
formula conjoined with k additional clauses of arbitrary length. We know the problem is in
O(nk · (m + n)) time, where n is the number of variables and m is the number of clauses.

Hypothesis: For some ε > 0 and k ≥ 2, HornSat+kClauses is in O((n + m)k−ε) time.

A weaker problem than CNF-SAT is the k-SAT problem for arbitrary k ≥ 3. All known algo-
rithms for k-SAT have increasingly longer running times as k increases. In particular, the running
times for k-SAT are all of the form 2(1−1/Θ(k))n. Impagliazzo and Paturi [23] have shown that the
running time must indeed increase with k, assuming the Exponential Time Hypothesis (ETH) which
states that 3-SAT cannot be solved in 2o(n) time.

The following hypothesis from commmunication complexity implies that k-SAT can be solved in
O(1.74n) time for any constant k. Note that this does not have any known implications on general
CNF-SAT. However, it does imply that CNF-SAT with constant clause density can also be solved
in this running time, by results of Calabro, Impagliazzo, and Paturi [4].

• (Section 4) In 3-Party Set Disjointness, there are three parties and subsets S1, S2, S3 ⊆
[m], where the ith party has access to all sets except for Si. (This problem is also called
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“set disjointness in the number on the forehead model”.) The parties wish to determine if
S1∩· · ·∩Sk = ∅, with minimum communication. An m-bit communication protocol is trivial,
and a major open problem is to determine whether 3-party set disjointness has a sublinear
communication protocol.

Hypothesis: There is a protocol for 3-party set disjointness where the parties communicate

o(m) bits and perform 2o(m) time computations.

Finally, we show a tight correspondence between the Exponential Time Hypothesis and the
difficulty of the d-SUM problem. The d-SUM problem asks whether a set of N numbers contains
a d tuple that sums to zero. The best known algorithm runs in O(n⌈d/2⌉/polylogn) time. In
computational geometry, d-SUM is a basis for a hardness theory for many problems. We show the
following hypothesis implies k-SAT can be solved in 2o(n) time for all constant k:

• (Section 5) Hypothesis: There is a d < N0.99 such that d-SUM on N numbers of O(d lg N)
bits can be solved in No(d) time.

All our proofs use a special type of divide and conquer: we reduce CNF-SAT and k-SAT instances
to mildly exponential-sized instances of the above problems, by enumerating short lists of partial
assignments inside the instance and using the structure of the problem to encode satisfiability.
This maneuver exponentially increases the problem size, but the task of combining subproblems to
obtain a global solution becomes drastically easier.

While the above results can be seen as new attacks on the complexity of SAT, of course they
can also be seen as hardness results. That is, if we assume that CNF-SAT and k-SAT for arbitrary
constant k cannot be solved in 1.99n time, then our work deduces a multitude of interesting lower
bounds: strong lower bounds on dominating set, a nearly quadratic lower bound for finding a pair
of nodes with no path between them (in a directed graph), nΩ(d) lower bounds on d-SUM (which
in turn imply other lower bounds in computational geometry), and an Ω(m) communication lower
bound on computable protocols for 3-party set disjointness.

Remark on notation. All functions used in theorem statements are implicitly assumed to be
efficiently computable.

2 SAT and k-Dominating Set

In Parameterized Complexity, k-Dominating Set is one of the canonical W [2]-complete prob-
lems [16]. Given an undirected graph on n nodes and m edges, the problem is to find a k-set S of
nodes where every node of the graph is either in S, or is incident to a node in S. It is equivalent
to finding a set cover of k sets. It is also a special case of the k-junta problem in learning theory,
where we are given a set of examples from {0, 1}n, each labeled with a 0 or a 1, and wish to find a
function on k variables that maps the examples to their corresponding labels.

For a long while, the best algorithm known for solving k-Dominating Set was the obvious
O(nk+1) brute-force algorithm. Fast matrix multiplication can improve this time bound slightly,
cf. Eisenbrand and Grandoni [17]. Consider the special case of 2-dominating set. Take the Boolean
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adjacency matrix A of the graph G, complement it (flip 1’s to 0’s, and 0’s to 1’s) and multiply the

resulting matrix with its transpose, i.e. compute B = A · AT
. We have the following.

Proposition 1 G has a 2-dominating set ⇐⇒ For some i and j, B[i, j] = 0.

Proof. Let M [i, :] denote the ith row of M and M [:, j] denote the jth column of M . Let
V = [n] be the vertices of G. Then

{i, j} is a 2-dominating set ⇐⇒ (A ∨ I)[i, :] ∨ (A ∨ I)[j, :] = 1, the all-1’s vector

⇐⇒ 〈(A ∨ I)[i, :], (A ∨ I)[j, :]〉 = 0

⇐⇒ 〈(A ∨ I)[i, :], (A ∨ I)
T
[:, j]〉 = 0

⇐⇒ B[i, j] = 0.

2

Therefore, 2-Dominating Set can be solved in O(nω) time, where ω < 2.376 is the matrix
multiplication exponent [8]. To generalize the algorithm to k-Dominating Set, let v1, . . . , vn be
a list of the vertices, and S1, . . . , S( n

k/2)
be a list of all k/2-sets of the vertices. Define an

( n
k/2

)

× n

Boolean matrix Ak, where

Ak[i, j] = 0 ⇐⇒ vj is dominated by Si.

Then, the product Bk = Ak × AT
k is an

( n
k/2

)

×
( n
k/2

)

matrix, where Bk[i, j] = 0 iff Si ∪ Sj is a
dominating set.

Using Coppersmith’s rectangular matrix multiplication [9], this algorithm can be implemented
to run in nk+o(1) time for all k > 7.

Proposition 2 For k ≥ 7, k-Dominating Set can be solved in nk+o(1) time.

Proof. Coppersmith [9] gave an algorithm for multiplying a n × n.294 matrix with a n.294 × n
matrix in n2+o(1) ring operations. The product Bk = Ak×AT

k is essentially a product of an N×N2/k

matrix with a N2/k × N matrix, for N =
( n
k/2

)

. But 2/k ≤ 0.294 when k ≥ 7, so Coppersmith’s
algorithm can be applied. 2

This method is almost Ω(n) faster than the trivial algorithm, but still requires that one examine
every possible k-set of vertices. A major open question in parameterized algorithms is whether a
time bound even slightly better than nk is possible for k-Dominating Set.

Hypothesis 1 There exist k ≥ 3 and ε ∈ (0, k) such that k-Dominating Set is in O(nk−ε) time.

We know of no results suggesting that Hypothesis 1 may be false. Surprising algorithms have
been found for hard parameterized problems in the past. For example, the W [1]-complete problem
k-Clique has an O(n.793k) algorithm [27]. However, if one believes that there is even a slight
improvement for k-Dominating Set, then one must believe there is an improved algorithm for
CNF-SAT.

Theorem 2.1 Hypothesis 1 implies that CNF-SAT has an improved algorithm.

A slightly weaker connection between k-Dominating Set and SAT has been established in the
literature.
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Theorem 2.2 (Chen et al. [6], Theorem 5.4) k-Dominating Set is not in f(k)no(k) time,

for any function f , unless FPT = W [1].

That is, it was known that if k-Dominating Set is in no(k) time, then k-SAT has a 2o(n)

algorithm (i.e., the Exponential Time Hypothesis is false [23]). However, this result does not say
anything a priori about the complexity of CNF-SAT. As far as we know, it is consistent with
current knowledge that k-SAT has a 2o(n) algorithm, yet CNF-SAT still does not have an improved
algorithm.

Theorem 2.1 is a special case of the following lemma.

Lemma 2.1 Suppose there is an integer k ≥ 3 and function f such that k-Dominating Set is

solvable in O(nf(k)) time. Then CNF-SAT is in O
(

(m + k2
n
k )f(k)

)

time.

Proof of Lemma 2.1. Fix k ≥ 3. Let F be a CNF formula with n variables; we build a
corresponding graph GF . Without loss of generality, assume k divides n. Partition the set of its
variables into k parts of n/k size each. For each part, make a list of all 2n/k partial assignments to
variables in that part. Each partial assignment shall correspond to a node in GF .

Make each of the k parts a clique, so there are k disjoint 2n/k-cliques with O(22n/k) edges. Now
add m more nodes, one for each clause, and place an edge from a partial assignment node to a clause
node iff the partial assignment satisfies the clause. Finally, for each partial assignment clique, add
a dummy node that has edges to all nodes in that clique, but no edges to clause nodes or any other
clique.

Consider a k-dominating set S in GF . Note that no clause node is in S, otherwise some dummy
node would not be dominated. Suppose S has two (or more) partial assignment nodes from the
same clique. Then there is some clique for which S chose no node; but then S does not dominate
its dummy node. Therefore, the collection of partial assignments corresponding to the nodes of S
is some satisfying variable assignment, since all clause nodes are dominated.

The total number of nodes is k2n/k + m + k, so the lemma follows. 2

The above result can be rephrased in terms of the k Set Cover problem. Here, one is given a
collection C of n sets over a universe of size m, and the task is to find a S ⊆ C so that |S| = k and
every element of the universe is contained in some set of S. By associating the set Sv = N(v)∪{v}
with each vertex of a graph G = ({v1, . . . , vn}, E), and setting the universe to be {v1, . . . , vn}, a k
set cover for the collection {Sv1 , . . . , Svn} is a k-dominating set for G. Thus an immediate corollary
of Theorem 2.1 is the following.

Theorem 2.3 If there is k ≥ 2, k Set Cover can be solved in O(nk−ε) time for a collection of

n sets over a universe of size poly(log n), then Sat has an improved algorithm on instances with

poly(n) clauses.

2.1 A partial converse

An intriguing question is whether or not a converse to Theorem 2.1 holds. That is, does the
existence of a good CNF-SAT algorithm imply the existence of a good k-Dominating Set algo-
rithm? One would like to encode a graph into a small CNF formula, whereby an assignment to
k log n variables satisfies the formula iff the graph has a k dominating set.
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We can show a partial converse of this kind. Define the problem Cnf-Sat-S to have instances
of the form (F, S), where F is a CNF formula and S is a subset of the variables of F . The problem
is to find an assignment a to S such that F [S = a] is a satisfiable Horn formula. (Recall a Horn
formula is a CNF formula where each clause has at most one positive literal. Horn satisfiability is
well-known to be in P.) In other words, the problem is to verify that S is a “backdoor set” [33] of
variables for F , with respect to a subsolver for Horn formulas.

Cnf-Sat-S is perhaps more difficult than CNF-SAT in terms of exact algorithms, in that we
are only allowed to set variables within a certain subset (other variables are out of our control), and
the assignment we find must not only extend to a satisfying assignment for the formula, but also
extend easily to a satisfying assignment. Cnf-Sat-S is essentially equivalent to the CircuitSAT

problem, where instead of a CNF F , we are given a circuit C and wish to set its n input variables so
that the circuit is satisfied (here, the input variables play the role of S). Note that Cnf-Sat-S can
be solved in O∗(2|S|) and CircuitSat can be solved in O∗(2n). We show that a time improvement
with respect to k implies a better dominating set algorithm.

Theorem 2.4 If Cnf-Sat-S is in O(f(m + n) · 2δ|S|) time for some δ ∈ (0, 1) and function f ,

then k-Dominating Set is in O(f(kn2) · nδk) time.

Notice that for any δ < 1 and constant c > 1, nc+δk ∈ O(nk−ε) for sufficiently large k and
sufficiently small ε > 0. So if f is a polynomial in the above, then the implication is indeed an
improved dominating set algorithm for large enough k.

Proof of Theorem 2.4. Let G = (V,E) be given and let n = |V |. We will set up a formula
FG. Define a set of variables S = {x1,1, . . . , x1,log n, x2,1, . . . , x2,log n, . . . , xk,1, . . . , xk,log n}. These
variables will represent the binary encoding of a dominating set– specifying an assignment to the
O(k log n) variables of S will be equivalent to specifying a k-set of vertices in G. For j ∈ [k] and
i ∈ [n], let vj,i be kn variables representing the n vertices in the graph G. Informally, we’ll have
vj,i = 1 if and only if the jth vertex in the candidate dominating set does not dominate the ith
vertex of G.

The clauses of FG check that the k-set guessed by S is indeed dominating. Define x1
i,j := xi,j,

and x0
i,j := ¬xi,j. Fix a vertex u ∈ V in the following. Let b1b2 · · · blog n be a binary encoding of u.

Define the neighborhood N(u) := {v | {u, v} ∈ E}. Let us index the elements of V − N(u) as

V − N(u) = {ui1 , . . . , uin−deg(u)
}.

Then for all j = [k] and d = 1, . . . , n − deg(u), add the clause:

(x1−b1
j,1 ∨ · · · ∨ x

1−blog n

j,log n ∨ vj,id)

to FG. Intuitively, this clause says that the idth vertex is not dominated by the jth vertex in the
candidate dominating set. Note there are O(kn2) clauses of this kind, one for each possible setting
of j, u, and d. For all vertices i = 1, . . . , n, add the clause

(¬v1,i ∨ ¬v2,i ∨ · · · ∨ ¬vk,i)

to FG. These clauses stipulate that at least one of the k vertices in the candidate dominating set
must dominate the ith vertex, for all i. This completes the description of FG.
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Observe that once all of the variables in S are set to values (say, an assignment a), all remaining
clauses in FG are either of the form (x) or (¬x ∨ ¬y ∨ · · · ∨ ¬z). That is, the remaining formula is
Horn, and thus satisfiability for it can be determined in linear time.

We claim that the Horn formula FG[S = a] is satisfiable if and only if a denotes a dominating
set of G. First, since every clause in FG[S = a] is either a positive literal or a collection of negative
literals, observe that FG[S = a] is unsatisfiable if and only if the clauses (v1,i),(v2,i), . . ., (vk,i)

appear in FG[S = a], for some i = 1, . . . , n. A clause (vj,i) appears iff the literals x1−b1
j,1 , . . .,

x
1−blog n

j,log n are set false and (x1−b1
j,1 ∨ · · · ∨ x

1−blog n

j,log n ∨ vj,i) is a clause in FG. But x1−b1
j,1 , . . ., x

1−blog n

j,log n

are false iff the jth vertex in the set S has binary encoding b1b2 · · · blog n, and the above clause is
in FG iff the vertex with binary encoding b1b2 · · · blog n does not have the ith vertex as a neighbor.
Therefore the clauses (v1,i),(v2,i), . . ., (vk,i) appear in FG[S = a] iff for all j = 1, . . . , n, the jth
vertex in S does not have the ith vertex as a neighbor, i.e. the set S is not dominating.

Hence the pair (F, {xi,j | i ∈ [k], j ∈ [n]}) is an instance of Cnf-Sat-S with |S| = O(k log n) and
|F | = O(kn2). From the above discussion, it follows that a satisfying assignment to S is equivalent
to a dominating set in the graph. 2

3 SAT and 2-SAT

2-SAT is the well-known restriction of CNF-SAT to instances with at most two literals per clause.
The problem has fast algorithms, being solvable in linear time [3]. One possible direction for finding
an improved algorithm for CNF-SAT is to try reducing it to 2-SAT in some interesting way. As we
do not believe P = NP, this reduction should be exponential, but not terribly exponential (say, of
2(1−ε)n total size for some ε > 0). If such a reduction existed, the linear time algorithm for 2-SAT
would imply an improved CNF-SAT algorithm.

The results of this section are inspired by this potential direction. We present a minor generaliza-
tion of 2-SAT, which we call 2Sat+2Clauses. This problem admits a straightforward O(mn+n2)
time algorithm. We prove that if it has a sub-quadratic time algorithm, then CNF-SAT has an
improved algorithm, via a “mildly exponential” reduction.

Define an instance of 2Sat+2Clauses to be a 2-CNF formula that is conjoined with at most
two additional clauses of arbitrary length. For example,

(¬x1 ∨ x4) ∧ (x2 ∨ ¬x3) ∧ (x5 ∨ x6) ∧ (x1 ∨ x2 ∨ · · · ∨ x6) ∧ (¬x1 ∨ ¬x2 ∨ · · · ∨ ¬x6)

is a 2Sat+2Clauses instance. Similar “mixed” instances have been studied in the past, especially
in the average-case setting (cf. [26]) where the satisfiability of random formulas has been analyzed.
We start with a simple algorithm for solving this problem.

Theorem 3.1 2Sat+2Clauses is in O(mn + n2) time, where n is the number of variables and

m is the total number of clauses.

Proof. Let F be an instance and C1, C2 be its two arbitrary size clauses. Construct a directed
graph G where each node is a literal of F (a variable or its negation) and there is an edge from ℓi

to ℓj iff (¬ℓi ∨ ℓj) ∈ F − C1 − C2. Note the edge relation plays the role of implication.

We start by preprocessing G. Compute the transitive closure of G in O(mn + n2) time using
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standard techniques [7]. This results in a Boolean matrix M where M [i, j] = 1 ⇐⇒ ℓi → ℓj, for
all literals ℓi and ℓj. If there is a variable x such that x → ¬x and ¬x → x then return unsatisfiable.

For every pair of literals ℓi in C1 and ℓj in C2, we will determine if ℓi ∧ ℓj can be extended to a
satisfying assignment for all of F . Observe that

(ℓi ∧ ℓj) ≡ ¬(¬ℓi ∨ ¬ℓj) ≡ ¬(ℓi → ¬ℓj).

We can determine in O(1) time if (ℓi → ¬ℓj) is true, by looking up the corresponding entry in M .
If that entry is 0, then we return satisfiable, since it means that ℓi = true and ℓj = true can be
extended to a satisfying assignment for F . Otherwise we move to the next pair of literals. If all
pairs of literals have been exhausted, we return unsatisfiable. 2

Note the above proof shows that the following purely graph-theoretic problem is at least as
difficult as the 2Sat+2Clauses problem: given a directed graph G = (V,E) and subsets S, T ⊆ V ,

determine if there is some s ∈ S and t ∈ T with no path from s to t.2

Our second hypothesis is that there is a better algorithm for 2Sat+2Clauses:

Hypothesis 2 For some ε > 0, 2Sat+2Clauses is in O((m + n)2−ε) time.

Theorem 3.2 Hypothesis 2 implies that CNF-SAT has an improved algorithm.

Proof. We show how to embed an CNF formula F into an (exponentially sized) 2Sat+2Clauses

instance F ′. In particular, if F has n variables and m clauses, then F ′ will have O(2n/2 + m + n)
variables and O(m2n/2 + mn) clauses. This immediately implies the claim of the theorem.

The variables of F ′ will be of the form xS , where S is a proposition that is either a conjunction
of literals in F , or a disjunction of literals in F . Intuitively, we want xS to be true if and only if S
is true. We therefore want ¬xS ⇐⇒ x(¬S), which we capture with the clauses

(xS ∨ x(¬S)) ∧ (¬xS ∨ ¬x(¬S))

for every proposition S in the below.

We split the set of n variables into two parts of n/2 size. (WLOG we may assume n is even.) For
both parts, list all the possible 2n/2 partial assignments P to the variables of that part. We interpret
each P as a conjunction of n/2 literals in the natural way. (For example we would interpret the
partial assignment y1 = 1, y2 = 0, y3 = 1 as the conjunction y1 ∧ ¬y2 ∧ y3.) For each P , make two
variables xP and x(¬P ) in F ′. Let P1, . . . , P2n/2 and Q1, . . . , Q2n/2 be the partial assignments of the
first and second part, respectively. The two arbitrary size clauses in F ′ will be:

(xP1 ∨ · · · ∨ xP
2n/2

) and (xQ1 ∨ · · · ∨ xQ
2n/2

).

The remaining clause structure of F can be represented using a 2-CNF. For each clause C of F ,
let C1 (C2) be the disjunction of literals in C involving variables from the first (second) part,
respectively. Make variables xC1 , x(¬C1), xC2 , and x(¬C2), and include the clause

xC1 ∨ xC2 .

2Let G be the directed graph from the proof. In linear time we can rule out if G has a path from some x to ¬x

and back to x. Let S be the literals in C1 and let T be the negations of those literals in C2. There is an s ∈ S and
t ∈ T with no path iff there are two literals, one in C1 and one in C2, that can be extended to a satisfying assignment
to F .
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Finally, we relate the clause variables to the partial assignment variables. For each variable yi of
F , we have the variables xyi and x¬yi in F ′. For every Ci of the form (yi ∨ D), F ′ has the clause

x(¬Ci) → x¬yi .

For every partial assignment P that sets yi = 1, F ′ has the clause xP → xyi , and for every partial
assignment P that falsifies a clause Ci, F ′ also has xP → x(¬Ci).

We now prove that F ′ is satisfiable iff F is satisfiable. It is not hard to see that, if F is satisfiable
by assignment a, then F ′ is satisfied by setting xS = 1 if and only if the proposition S is satisfied
by a.

The other direction (F ′ is satisfiable implies F is satisfiable) is a little more involved. First, we
claim that if xPj = 1 for an n/2-variable partial assignment Pj , then for all j 6= i, xPi = 0. Let y
be a variable in which Pi and Pj differ in assignment. Without loss of generality, xPj → xy and
xPi → x¬y → ¬xy, therefore only one of xPi and xPj can be true for all i 6= j.

Suppose there is a satisfying assignment to F ′ with xA = 1 and xA′ = 1, where A (A′) is a
partial assignment for the variables in the first (respectively, second) part. We claim that the
variable assignment denoted by A and A′ satisfies F . For suppose this assignment falsified a clause
C, and C1 (C2) is the disjunction of literals in C involving variables from the first (respectively,
second) part. Then by definition, xA → x(¬C1) and xA′ → x(¬C2). But the satisfying assignment
to F ′ sets xA = 1 and xA′ = 1, so x(¬C1) ∧ x(¬C2) is satisfied by the assignment, and hence
(¬xC2) ∧ (¬xC2) is also satisfied. However, the satisfying assignment to F ′ also satisfies the clause
(xC1 ∨ xC2) in F ′. This is a contradiction. 2

4 SAT and the Communication Complexity of Disjointness

Next, we connect a major open problem in communication complexity to the feasibility of CNF-
SAT. In the k-party disjointness problem, we have k computational parties, and given subsets
S1, . . . , Sk ⊆ [m] where the ith party has access to all sets except for Si. (This problem is also
called “set disjointness in the number on the forehead model”.) The parties wish to determine if
S1 ∩ · · · ∩ Sk = ∅, without communicating many bits.

The disjointness problem has received much attention in the complexity community, due to its
fundamental nature and notorious difficulty. The best known upper bound on its communication
complexity is O(km/2k), by a protocol of Grolmusz [22]. It has been only recently that progress
has been made on lower bounds. For a long time, only an Ω(log m) lower bound was known, but
Lee and Shraibman [25] and Chattopadhyay and Ada [5] have shown Ω

(

m1/(k+1)
)

lower bounds
on communication, which hold even when the parties can use randomness.

We show that reasonably computable nondeterministic protocols for 3-party set disjointness
with o(m) communication complexity would imply a breakthrough in satisfiability algorithms. In
particular, CNF SAT would have an algorithm running in 2ωn/3 · 2o(m) time, where ω is the matrix
multiplication exponent, n is the number of variables, and m is the number of clauses. By the
Sparsification Lemma of Impagliazzo, Paturi, and Zane [24], such an algorithm can be used to solve
the k-SAT problem in O(1.74n) time for all k. As a consequence of the clause density and clause
width duality of Calabro, Impagliazzo, and Paturi [4], this k-SAT algorithm can be used to solve
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CNF SAT for formulas with cn clauses and n variables in the same running time, for any fixed
c > 0. For those researchers who believe that an algorithm with such a running time is not possible,
they may interpret our theorem as compelling evidence that 3-party disjointness does require Ω(m)
bits of communication.

Let ω < 2.376 be the matrix multiplication exponent [8].

Theorem 4.1 If 3-party disjointness has a nondeterministic protocol with communication com-

plexity o(m) such that all parties run in deterministic 2o(m) time, then for every k ≥ 3, the k-SAT

problem is in O(2ωn/3+o(n)) ≤ O(1.74n) time, where n is the number of variables.

All known algorithms for k-SAT run in O(2ckn) time for some sequence ck → 1. Assuming
k-SAT cannot be solved in 2o(n) time, the sequence ck is non-decreasing [23].

Proof of Theorem 4.1. Let F be an instance of k-SAT with n variables and m clauses. By
the Sparsification Lemma of [24], for every ε > 0 we can reduce any k-CNF F to a 2εn collection
of k-CNF formulas F , where each formula in F has ck,εn clauses, for a constant ck,ε depending on
k and ε. Thus we may assume without loss of generality that m ≤ cn for some constant. We also
suppose that n is divisible by 3.

Conceptually split the set of variables of F into three equal parts V1, V2, V3. Let ai be an
assignment on the variables from part Vi. Define Sai ⊆ [m], where j ∈ Sai if and only if the
jth clause is not satisfied after plugging ai into the jth clause. (That is, j ∈ Sai iff ai does
not assign true to any variable in the jth clause.) For partial assignments a1, a2, a3 from parts
V1, V2, V3 (respectively), it is easy to see that the assignment a1, a2, a3 satisfies F if and only if
Sa1 ∩ Sa2 ∩ Sa3 = ∅.

The SAT algorithm first cycles over every possible sequence Q of pairs (b1, i1), (b2, i2), . . . , (bk, ik),
where bj ∈ {0, 1}∗, ∑

j |bj | ≤ o(m), and ij ∈ {1, 2, 3}. These sequences represent all possible
o(m)-bit communications that could take place in a (nondeterministic) communication protocol for
3-party disjointness. Note the number of such sequences is 2o(m).

Given F and communication sequence Q, we construct an O(2n/3) node graph G that contains
a triangle if and only if there is a variable assignment a1, a2, a3 such that Q represents a commu-
nication sequence between the parties in which they accept, concluding that Sa1 ∩ Sa2 ∩ Sa3 = ∅.

Let V1, V2, V3 be three disjoint sets of vertices on O(2n/3) nodes, where each node vi of some Vi

is indexed by an n/3-bit string a(vi). For i = 1, 2, 3, relabel each node vi in Vi with the set Sa(v).

Put an edge {v2, v3} ∈ V2×V3 iff it is consistent for the first party to accept and speak according
to communication sequence Q, while holding the sets Sa(v2) and Sa(v3), and viewing the communi-
cations (stated in Q) from the other two parties. Similarly put an edge {v1, v3} ∈ V1 × V3 iff Q is
consistent with the second party, and an edge {v1, v2} ∈ V1 × V2 iff Q is consistent with the third
party. Note the construction of G can be done in polynomial time. Then, a triangle v1, v2, v3 in the
graph corresponds to a situation where the parties determine that Sa1 ∩ Sa2 ∩ Sa3 = ∅ and each
party holds two of the three sets.

Finally, we can determine whether or not G is triangle-free in O(2ωn/3) time, by taking the cube
of the adjacency matrix of G, and determining if the trace of the resulting matrix is nonzero. (In
general, one can test if an N -node graph is triangle-free or not, in O(Nω) time.) 2
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The above proof also shows the following.

Corollary 4.1 If 3-party disjointness has a nondeterministic protocol with communication com-

plexity o(m) such that all parties run in deterministic 2o(m) time, then CNF-SAT can be solved in

O∗(2ωn/3+o(m)) time, where n is the number of variables and m is the number of clauses in the

instance.

Therefore, the hypothesis implies that CNF-SAT with cn clauses and n variables can always be
solved in O(1.74n) time for all constants c.

In their work on algebrization, Aaronson and Wigderson [1] gave a Merlin-Arthur protocol for
two-party set disjointness that uses only Õ(

√
m) bits of communication, which can be generalized

to three parties. Is it possible to adapt their protocol to get a better satisfiability algorithm? This
does not seem possible, and the main problem is the use of randomness. In order for their protocol
to work in our setting, the number of random bits must be Ω(n), as we need to rule out false
positives over all possible variable assignments.

5 SAT and d-SUM

The d-SUM problem asks whether a set of N numbers contains a d tuple that sums to zero. It is
conjectured that this problem requires Ω(n⌈d/2⌉/polylogn) time, and this conjecture is instrumental
in understanding the complexity of many problems in computational geometry (via reductions).

The d-SUM problem hardly needs an introduction. The seminal work of Gajentaan and Over-
mars [19] introduced 3SUM for the purpose of arguing that problems in planar geometry “should”
take Ω(n2) time. Showing 3SUM-hardness for a problem is considered routine today.

In d dimensions, the best algorithms for many natural problems run in only nO(d) time, a
phenomenon labelled the “curse of dimensionality” because the problems quickly become intractable
for high dimensions. The presumed hardness of the d-SUM problem is used to argue that these
running times are likely optimal. Here, we show a relationship between the difficulty of d-SUM and
the difficulty of k-SAT:

Theorem 5.1 Let d < N0.99 and δ < 1. If d-SUM over N numbers of O(d lg N) bits can be

solved in O(N δd) time, then for every k ≥ 3, the k-SAT problem over n variables can be solved in

2δ1/O(k)·O(kn) time.

In particular, our result implies:

Corollary 5.1 Let d < N0.99. If d-SUM over N numbers of O(d lg N) bits can be solved in No(d)

time, then 3-SAT on n variables can be solved in 2o(n) time.

The unparameterized version of d-SUM is, of course, the Subset-Sum problem, which is well-
known to be NP-complete. For the parameterized version, the standard hardness reduction (see,
for example, the book of Downey and Fellows [16]) embeds an instance of the k-clique problem
into an instance of O(k2)-SUM. While this is enough to rule out a fixed parameter solution with
running time f(k) · poly(n), the “lower bound” is suboptimal: as k-clique can be solved in O(nk)

time, this reduction at most implies an nΩ(
√

d) hardness for d-SUM.

Proof of Theorem 5.1. Let F be an instance of k-SAT with n variables and m clauses. By

11



the improved Sparsification Lemma of Calabro, Impagliazzo, and Paturi [4], for any ε > 0, we can
reduce F to a collection of 2εn k-CNF formulas F , all of which have n variables and n · (k/ε)O(k)

clauses. With hindsight, choose ε = k · δ1/(γk) for an appropriate constant γ. Then, the number of
clauses of each formula will be m′ = n/

√
δ.

Now convert each formula to a 3-SAT formula with O(m′k) variables and clauses. Secondly,
convert each 3-SAT formula to a 1-in-3 SAT formula, by the classic reduction of Schaefer (see [20]).
For every clause (x ∨ y ∨ z), this reduction introduces 6 new variables a, b, c, d, e, f and clauses
R(x, a, d) ∧ R(y, b, d) ∧ R(a, b, e) ∧ R(c, d, f) ∧ R(z, c, False), where R denotes the 1-in-3 relation.
The final formula also has O(m′k) variables and clauses.

Now we reduce 1-in-3 SAT to the d-SUM problem. Conceptually split the variables of each
1-in-3 SAT formula into d blocks of equal size. In each block, try all 2O(m′k/d) assignments to the
variables. For each assignment, we generate another number in the list. Our numbers are generated
as strings of digits in base d + 1. The first d digits represent the block of variables to which the
number belongs: a number from block k will have a zero in all positions except the k-th, where it
has a one. The next digits, one per clause, mark the number of variables in this assignment that
are satisfying each particular clause.

Let X be the number with all digits equal to one. We can ask for a sum of d values equal to the
number X. (This is a mild generalization of d-SUM, which can be reduced to the original problem
by adding −X/d to all numbers.) To obtain X as a sum of d values, it must be that one value
comes from each block. Furthermore, it must be that each clause is satisfied exactly once. Thus, a
d-sum exists if and only if the 1-in-3 SAT formula is satisfiable.

The size of our d-SUM problem is N = d · 2O(m′k/d). If the problem can be solved in O(N δd)

time, a 1-in-3 SAT problem can be solved in 2O(δm′k) time. This is time 2O(δnk/
√

δ)) = 2O(kn
√

δ).
We must multiply this by the number of sparse k-CNF formulas that we have to solve, which is
2εn = 2kn·δ1/O(k)

. Thus, the overall time to solve an arbitrary k-CNF is 2O(kn)·δ1/O(k)
. 2

6 Conclusion

We have demonstrated new connections between algorithms for satisfiability and other diverse
problems from different research threads. The fact that there are some relationships is probably not
too surprising, given the widespread phenomenon of NP-completeness in general. The surprising
property of our reductions are their striking tightness: seemingly minor improvements on any of
several well-studied problems would imply faster satisfiability algorithms.

To complement these results, it would be interesting if one could find good evidence for the
impossibility of an improved CNF-SAT algorithm, beyond our mere intuition.
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A HornSat versus CNF-SAT

Similar to 2-SAT, the HornSat problem is another restriction of CNF-SAT that is known to
be solvable in linear time [15]. An instance of HornSat is a CNF formula with at most one non-
negative literal per clause. HornSat is considered to be a more powerful restriction than 2-SAT,
since HornSat is P-complete and 2-SAT is NL-complete. Somewhat analogous to the previous
section, we show that better algorithms for an extension of HornSat imply better algorithms for
CNF-SAT. Owing to the power of HornSat, the result we prove here will be more general than
our result for 2-SAT.

Let k ≥ 2. We define HornSat+kClauses to be a Horn CNF formula conjoined with k
additional clauses of arbitrary size having only positive literals. Clearly, an instance of this problem
can be solved in O(nk · (m + n)) time, where n is the number of variables and m is the number of
clauses.

Theorem A.1 If there is a k and ε > 0 such that HornSat+kClauses is in O((n + m)k−ε)
time, then CNF-SAT has an improved algorithm.

We are less certain of a better algorithm for this problem, since the “gap” between the runtime
of the best algorithm we know and the time bound we would like is larger. The proof is similar to
the one for 2Sat+2Clauses, but with a few modifications.

Proof. (Sketch) Let F be a CNF of n variables and m clauses. Split the set of n variables into
k equal-sized parts, and form all possible 2n/k assignments for the variables in each part. For each
of the k2n/k partial assignments A to some n/k variables, we make an “assignment variable” xA in
the new formula. For each part i = 1, . . . , k, we make an “assignment clause” in the new formula,
which is just the disjunction of all 2n/k assignment variables from part i. These are the k clauses
of arbitrary length.

Now we describe the rest of the formula, which is Horn. For each literal ℓ in F , we make a
“literal variable” xℓ in the new formula, and add clauses

(¬xA ∨ xℓ)

for each literal ℓ that is directly implied by a partial assignment A. Note an assignment variable
xA implies exactly n/k literal variables. We also add n clauses of the form

(¬xℓ ∨ ¬x¬ℓ)
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for all pairs of literal variables, forbidding two opposing literal variables to both be true. (For this
reason, at most one assignment variable from an assignment clause can possibly be true.)

For each clause C from F , define Ci to be the restriction of C to just those variables from part
i. Each clause C from F will have 2k “clause variables” in the new formula. In particular, for each
part, there are two clause variables xCi and x¬Ci , representing Ci. A clause C in F is represented
by the Horn clause

(¬x¬C1 ∨ · · · ∨ ¬x¬Ck−1
∨ xCk

).

Suppose Ci = (ℓ1 ∨ · · · ∨ ℓj). Then we make the Horn clauses

(¬x¬ℓ1 ∨ · · · ∨ ¬x¬ℓj
∨ x¬Ci), (¬xℓ1 ∨ xCi), . . . , (¬xℓj

∨ xCi).

We add clauses forbidding both xCi and x¬Ci , for all clause variables Ci:

(¬xCi ∨ ¬x¬Ci).

Finally, we claim that this new formula is satisfiable iff F is satisfiable. Namely, the chosen partial
assignment variables from each of the k assignment clauses correspond to a satisfying assignment
for F . 2
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