
Approximate Center Points with Proofs∗

Gary L. Miller
glmiller@cs.cmu.edu

Donald R. Sheehy
dsheehy@cs.cmu.edu

Computer Science Department
Carnegie Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

We present the Iterated-Tverberg algorithm, the first de-
terministic algorithm for computing an approximate center-
point of a set S ∈ R

d with running time sub-exponential
in d. The algorithm is a derandomization of the Iterated-
Radon algorithm of Clarkson et al and is guaranteed to
terminate with an O(1/d2)-center. Moreover, it returns a
polynomial-time checkable proof of the approximation guar-
antee, despite the coNP-Completenes of testing centerpoints
in general. We also explore the use of higher order Tverberg
partitions to improve the runtime of the deterministic al-
gorithm and improve the approximation guarantee for the
randomized algorithm. In particular, we show how to im-
prove the O(1/d2)-center of the Iterated-Radon algorithm

to O(1/d
r

r−1) for a cost of O((rd)d) in time for any integer
r.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations

General Terms

Algorithms, Theory

Keywords

centerpoints, derandomization, approximation algorithms,
Tverberg’s Theorem

1. INTRODUCTION
A centerpoint of a set S ⊂ R

d is a point c such that
every closed half-space containing c also contains at least

n
d+1

points of S. Intuitively, every hyperplane through a c

∗This work was supported in part by the National Science
Foundation under grants CCF-0635257

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’09, June 8–10, 2009, Aarhus, Denmark.
Copyright 2009 ACM 978-1-60558-501-7/09/06 ...$5.00.

divides S into roughly equal parts. The existence of cen-
terpoints was established by a theorem of Rado [12], which
deals with general measures of which point sets are a special
case. The simplified proof for the case of centerpoints of
point sets is due to Danzer et al[4].

A centerpoint is a natural generalization of the median
to higher dimensions. They are used as robust estimators
in statistics, because they are invariant under affine trans-
formation and robust to outliers [5]. They are also used in
mesh partitioning[7].

The existence of centerpoints can be proven directly from
either of two classic theorems of convexity theory, Helly’s
Theorem and Tverberg’s Theorem. In Section 3, we dis-
cuss how these two proofs of the centerpoint theorem lead
to different options for designing algorithms for computing
centerpoints.

The exact complexity of computing centerpoints in higher
dimensions is not known. The dual problem of testing if a
given point is a centerpoint is coNP-Complete [14]. How-
ever, a simple corollary of Tverberg’s Theorem guarantees
the existence of a subset of centerpoints, call them Tver-
berg points, that admit polynomial-time checkable proofs.
Moreover, testing if a point is a Tverberg point is NP-
Complete[14]. In this case, the decision problem is well un-
derstood but sheds little light on the hardness of the search
problem of actually finding a centerpoint.

We consider the problem of finding an approximate center-
point. Call c a β-center if every closed half-space containing
c also contains a β fraction of the points of S. So, a classical
centerpoint is a 1

d+1
-center. The fastest known algorithm

for computing a centerpoint of S ⊂ R
d is due to Chan [1]

and computes a β-center in time O(nd−1) where β is the
maximum achievable for the set S. In the literature, such a
β-center is also known as a Tukey median.

The Iterated-Radon algorithm of Clarkson et al was the
first algorithm that computes an approximate centerpoint
in time sub-exponential in d [2]. The algorithm computes
a O(1/d2)-center with high probability. Section 3 describes
how this algorithm resembles the proof of the Centerpoint
Theorem via Helly’s Theorem.

The main operation in the Iterated-Radon algorithm is
to replace sets of points by their Radon point, a point in
the common intersection of the convex hull of two disjoint
subsets. Radon’s Theorem guarantees the existence of such
a point. Tverberg’s Theorem is a generalization of Radon’s
Theorem that guarantees a common intersection for a larger
collection of subsets.

In this paper, we use the intuition from Tverberg’s The-

orem to construct a proof for an approximate centerpoint.
The result is a new approximation algorithm, Iterated-Tverberg,
that derandomizes the Iterated-Radon algorithm of Clark-
son et al. In Section 4, we prove that the Iterated-Tverberg
algorithm produces a a O(1/d2)-center in time sub-exponential
in d with a polynomial-time checkable proof.

We elaborate on this intuition in Section 5, showing how
solving larger sub-problems can be used to speed up the
run time of the deterministic algorithm and to improve the
approximation ratio of the randomized version.

2. RELATED WORK
Centerpoints are the most well known definition of a geo-

metric median [6]. Like many such medians, it can be com-
puted via linear programming and the problem of finding
a “best” centerpoint can be written as a maximum feasible
subsystem problem (see [5] for a survey of computational
aspects of data depth). As might be expected, any linear

programming method will require time nO(d), limiting their
usefulness to low-dimensional instances.

In the plane, centerpoints can be computed in linear time [9].
Several algorithms are known to compute centerpoints in R

3

in O(n2 polylog n) time [3, 11]. The best known algorithm
for general dimensions is due to Chan and runs in O(nd−1)
randomized time[1]. Chan’s algorithm computes the deep-
est possible centerpoint, also known as a Tukey median. He
conjectures that the O(nd−1) runtime is optimal for this
problem in the algebraic decision tree model. However, the
exact complexity of computing centerpoints is not known.
In particular, it is not known if it is possible to compute a
centerpoint in time polynomial in n and d.

Several approximation algorithms for centerpoints exist in
the literature. Several approaches using random sampling
are known [10, 14, 2]. Verbarg showed that for dense points,
the mean is a good approximate centerpoint[16]; it is a β-
center where β depends on the density.

The only previously known algorithm to compute a cen-
terpoint in time sub-exponential in d is the Iterated-Radon
algorithm of Clarkson et al [2]. The Iterated-Radon algo-
rithm returns a O(1/d2)-center with high probability in time
polynomial in n and d. Unfortunately, Iterated-Radon is a
Monte Carlo algorithm and there is no way known to verify
that the point returned by the algorithm is indeed a cen-
terpoint. The inner loop of Iterated-Radon depends on the
following classic theorem [13].

Theorem 2.1 (Radon’s Theorem, 1921). Given n >
d+1 points S ⊂ R

d, there exists a partition (U, U) of S such
that conv(U) ∩ conv(U) 6= ∅.

We call a partition of d + 2 points as described in the
Theorem, a Radon partition, and we call a point in the
intersection, a Radon point. The simplest version of the
Iterated-Radon algorithm works as follows. Build a bal-
anced (d + 2)-ary tree of height h. Fill in the leaves with
points from the input set S by sampling them uniformly
at random. Each interior node of the tree is filled in with
the Radon point of its children. A height of h = lg n is
needed to compute a O(1/d2)-center with high probability,
resulting in a runtime that is O(poly(d)nlg d+2). Thus it is
sub-exponential in d but not polynomial. A second version
of the algorithm is also presented in [2] that pushes the run-
ning time down to O(poly(n, d)). The Iterated-Tverberg we

present in this paper is reminiscent of the former and has
similar time complexity. We also describe a modification
analogous to the latter, but at this time, we are unable to
analyze the running time.

The Iterated-Radon algorithm has also been modified to
use sampling to achieve sub-linear running times. Because
a centerpoint of a sufficiently large random sample is an ap-
proximate center of the original set, sampling may be used
as a preprocess on any approximate centerpoint algorithm.
Iterated-Radon has also been augmented to solve the center-
point problem exactly (using the linear programming meth-
ods described above) on subsets of points to achieve a higher
quality O(1/d + ε)-center. We present a new way to lever-
age these larger subproblems to improve centerpoint quality
and analyze its impact in both the randomized and the de-
terministic algorithms (see Section 5).

3. TWO PROOFS OF THE CENTERPOINT

THEOREM

Theorem 3.1 (The Centerpoint Theorem). Given
a set of n points S ⊂ R

d, there exists a centerpoint c ∈ R
d

such that every closed half-space containing c also contains

at least
l

n
d+1

m

points of S.(Rado [12], 1947, Danzer et al [4],

1963)

The Centerpoint Theorem is generally presented as an
easy consequence of Helly’s Theorem. It is also possible to
prove the existence of centerpoints via Tverberg’s Theorem.
The relationship between these two proofs gives insight into
the relationship between the Iterated-Radon algorithm and
its derandomization presented in this paper.

Theorem 3.2 (Helly’s Theorem [8], 1913). Given a
collection of compact, convex sets X1, . . . , Xn ⊂ R

d. If ev-
ery d+1 of these sets have a common intersection, then the
whole collection has a common intersection.

The Centerpoint Theorem follows from Helly’s Theorem
as follows. Consider the set H of all open half-spaces that
contain more than dn

d+1
points of S. For each such half-

space h ∈ H let Ph denote conv(S ∩ h). Clearly, any d +
1 of the half-spaces have a common intersection at one of
the points of S, and thus every d + 1 of the Ph’s also have
a common intersection. We apply Helly’s Theorem to the
sets Ph. The common intersection guaranteed by Helly’s
Theorem is exactly the set of all centerpoints.

The most common elementary proof of Helly’s Theorem
makes extensive use of Radon’s Theorem, despite that Helly’s
Theorem technically came first (though published second).
The proof first considers the case where there are only d+2
sets. The hypothesis of the Theorem implies the existence
of d + 2 points, each taken from the common intersection of
d+1 of the sets. The Radon point of these d+2 points satis-
fies the conclusion of the Theorem. The proof for n > d + 2
sets uses induction. The inductive step again considers a
set of points taken from each of the common intersections
of n− 1 sets, and shows the Radon point of this set satisfies
the Theorem. Unraveling this induction into an algorithm,
we arrive at something very much like the Iterated-Radon
algorithm of Clarkson et al. The difference is that the run
time is prohibitive because we would have to consider far
too many sets.

The Centerpoint Theorem can also be proven via Tver-
berg’s generalization of Radon’s Theorem.

Theorem 3.3 (Tverberg’s Theorem [15], 1966). Given
(d + 1)(r − 1) + 1 points S ⊂ R

d, there exists a partition of
S into S1, . . . , Sr, such that

Tr
i=1 conv(Si) 6= ∅.

Observe that Radon’s Theorem is a special case of Tver-
berg’s Theorem when r = 2.

Say that a point c is a Tverberg point if it is in the com-
mon intersection of the convex hulls in the Tverberg parti-
tion. Then, setting r = ⌈n/d + 1⌉ yields a Tverberg point
contained in the convex hull of ⌈n/d + 1⌉ pairwise disjoint
subsets of S. Any half-space containing c must also contain
at least one point from each of the subsets and therefore, c
is a centerpoint.

Observe that the centerpoints guaranteed by Tverberg’s
Theorem come equipped with a polynomial-time checkable
proof. Given the partition, we need only verify that the
point is in the convex hull of each part. If any part in the
partition has more than d+1 points then by Carathéodory’s
Theorem, there is a subset of size d + 1 that contains the
Tverberg point is its convex hull. We may therefore assume
the convex hulls are simplices of dimension at most d, so
checking can be done quickly. The key insight in derandom-
izing the Iterated-Radon algorithm is to actively construct
these Tverberg partitions for the intermediate points used
in the algorithm.

4. DERANDOMIZING THE ITERATED-

RADON ALGORITHM
The Iterated-Tverberg algorithm looks very similar to the

Iterated-Radon algorithm. The key difference is that each
successive approximation computed along the way carries
with it a proof of its quality as a centerpoint. The proof is
in the form of a Tverberg partition of a subset of the inputs.
Define the depth of a Tverberg point to be the number of
parts in the corresponding Tverberg partition.

When we combine d + 2 points of depth r into a Radon
point c, we can rearrange the proofs to get a new proof that
c has depth 2r as shown in the following Lemma.

Lemma 4.1. Given a set P of d + 2 Tverberg points of
depth r with disjoint partitions, the Radon point of P has
depth 2r.

Proof. Let (P1, P2) be the Radon partition for P , and let
c be the Radon point. For each pi ∈ P , order the partitions
in the proof of pi and call the jth partition Ui,j . We build
a proof that c has depth at least 2r. The partitions in the
new proof are of the form

S

pi∈Pk
Ui,j for some choice of

k ∈ {1, 2} and j ∈ {1, . . . , r}.
To show that the new proof is correct, it suffices to show

that for any choice of j and k, the new approximation c is
contained in conv(

S

pi∈Pk
Ui,j). What follows is the long

proof of the intuitive statement that a convex combination
of convex combinations is itself a convex combination of the
base set.

Because c is a Radon point, we know that c ∈ conv(Pk).
Also, the Tverberg points pi ∈ Pk are each contained in
conv(Ui,j). So, we can write c =

P

pi∈Pk
λipi and pi =

P

um∈Ui,j
αmum, where

P

λi =
P

αm = 1 and λi, αm ≥ 0.

Iterated-Tverberg(S ∈ R
d : |S| = n)

IF |S| ≤ 2(d + 1)2

RETURN any point of S (it is a proof of depth 1)
ENDIF

FOR i = 1 to d + 2
Select

˚

n
2

ˇ

points S′ ⊂ S.
Pi ← Iterated− Tvererg(S′).
S ← S \ proof(Pi)

ENDFOR

center, U,U ← Radon(center(P1), . . . , center(Pd+2)).
Combine proofs from P1, . . . , Pd+2.

Prune the proof until it is minimal for depth
l

n
2(d+1)2

m

.

RETURN the center and the proof.

Combining these two convex combinations, we see that

c =
X

pi∈Pk

λi

X

um∈Ui,j

αmum (1)

=
X

um∈
S

pi∈Pk
Ui,j

λiαmum. (2)

To show that this is indeed a convex combination, we note
that

P

i,m λiαm =
P

i λi(
P

m αm) =
P

i λi(1) = 1.

The preceding Lemma implies a simple linear time de-
terministic algorithm for computing an approximate center-
point. Construct a (d + 2)-ary tree with n leaves. Fill the
leaves with the points of S. Fill in each interior node of the
tree by the Radon point of its children. The height of the
tree is logd+2 n, so Lemma 4.1 implies that the depth of the

root is 2logd+2 n = O(n1/ lg(d+2)). Not too shabby for such a
simple algorithm, but the depth of the output is only sub-
linear in n. To get a constant-factor approximate center, we
need to find a way to build this tree higher, and in order to
do that, we need more leaves. The following Lemma gives
a hint as to where we can look to find some more points to
stick in the leaves.

Lemma 4.2. If there is a proof that a point p has depth
r, there exists such a proof that contains at most r(d + 1)
points of S.

Proof. Let P1, . . . , Pr be the sets in the proof for p.
This means that p ∈ conv(Pi) for each i = 1 . . . r. By
Carathéodory’s Theorem, there exists a subset P ′

i ⊂ Pi of
at most d + 1 points such that p ∈ conv(P ′

i). So, the sets
P ′

1, . . . , P
′

r is the desired proof of the correct size.

We refer to this economizing of proofs as pruning. In
the algorithm, pruning is applied to the proofs generated
by combining smaller proofs as in Lemma 4.1. In such in-
stances, the convex combination is known. Moreover, if the
combined proofs were each pruned, then the total number
of points in the combined sets is at most 2(d + 1), and the
pruned set can be found by computing O(d) projections.

It can easily be done in poly(d) time.

4.1 Analysis of the deterministic algorithm

Theorem 4.3. The Iterated-Tverberg algorithm (see Fig-

ure 4) always returns a β-center of depth at least
l

n
2(d+1)2

m

.

a) b) c)

d) e) f)

Figure 1: The Iterated-Tverberg algorithm: (a) Sets of d + 2 points are divided into Radon partitions. (b)
d + 2 Radon points are combined into a second-order Radon partition. (c) A proof polygon is formed by
taking the convex hull of two subpartitions, one from each of the Radon points in the second order partition.
(d) The proof polygon is reduced to a simplex. (e) All of the proof polygons before the reduction phase. (f)
The proof simplices after the reduction.

Proof. Observe first that proof returned by the algo-

rithm always has at most
l

n
2(d+1)2

m

sets. It has at least

this value in the base case, where n ≤ 2(d + 1)2 because the
point returned is itself a proof of depth 1. We only need d+2
points by Radon’s Theorem to get depth 2 so the algorithm
also succeeds when n ≤ 4(d + 1)2, and we may assume that
n > 4(d + 1)2.

Suppose for contradiction that for some minimal set S of
size n′, the proof output by the algorithm has fewer than

⌈ n′

2(d+1)2
⌉ sets. Let gk denote the size of the proof (in sets)

returned by the algorithm when the input is an arbitrary k
element subset of S′. Because S′ is a minimal contradiction,
we have gk = ⌈ k

2(d+1)2
⌉ for all k < n′. In particular,

gl

n′

2

m =

&

⌈n′

2
⌉

2(d + 1)2

’

(3)

≤
n′ + 1

4(d + 1)2
+ 1. (4)

The number of points of S contained in d + 1 proofs of size
gl

n′

2

m is

(d + 1)2gl

n′

2

m ≤ (d + 1)2
„

n′ + 1

4(d + 1)2

«

+ (d + 1)2 (5)

=
n′ + 1

4
+ (d + 1)2 (6)

<
n′ + 1

4
+

n

4
(7)

≤

—

n′

2

�

. (8)

This means that after d + 1 recursive calls, we still have
l

n′

2

m

points left in S, enough to make one more. So, we are

able to run the combining operation on the d+2 (point,proof)

pairs to get a new point with proof of depth 2gl

n′

2

m by

Lemma 4.1. We can now derive a contradiction by show-
ing that gn′ is larger than we supposed.

gn′ = 2gl

n′

2

m (9)

= 2

2

6

6

6

l

n′

2

m

2(d + 1)2

3

7

7

7

(10)

≥

‰

n′

2(d + 1)2

ı

. (11)

4.2 Running Time
The algorithm of the previous section can be analyzed as

follows. Let tn represent the running time for n nodes. We
see that tn is as follows.

tn = (d + 2)t⌈n
2 ⌉

+ O(n poly(d)) (12)

≤ (d + 2)lg n + O(poly(d)n lg n) (13)

= O(nlg(d+2) + poly(d)n lg n). (14)

4.3 Reusing Work
The Iterated-Tverberg Algorithm as presented could ben-

efit from a very simple optimization. At each phase, when
the combined proofs are pruned and some are thrown back,
we can attempt to reuse the computation of the now extrane-
ous Tverberg points. The hope is that by reusing work, the
algorithm will run faster. Unfortunately, this dynamic pro-
gramming variant does not achieve an asymptotic speedup
of the algorithm over the straightforward version presented.

5. LEVERAGING LARGER SUBPROBLEMS
Both the Iterated-Radon algorithm and the Iterated-Tverberg

algorithm combine sets of d + 2 points by partitioning them
into two sets by Radon’s Theorem. In this section we ad-
dress the result on these algorithms if we instead solve larger
subproblems. That is, rather than combining points in sets
of d + 2, we look at sets of size (d + 1)(r − 1) + 1 for some
fixed r. It is not known how to solve these larger problems
in time sub-exponential in d. However, if n is large and d
is not too large, it may be feasible to solve subproblems in
O(dd) time even though O(nd) is prohibitive.

5.1 Improving the approximation for the
Iterated-Radon Algorithm

The Radon point of d+2 points is a centerpoint of the sub-
set. Consider the following modified version of the Iterated-
Radon Algorithm.

We can run the same iterative algorithm as before except
using r-partitions instead of 2-partitions. In fact, it is not
necessary to keep around the partition, it actually suffices
just to find any centerpoint of (d+1)(r−1)+1 points at each
round. We can go through the analysis from the Clarkson et
al and see the impact of r in the quality of the centerpoint
achieved.

The analysis works by looking at any projection of the
point set to the line. We compute the probability fh(x) that
the tree of iterations with height h returns a center of depth
at most x. Without loss of generality, the projections of the
points of S land on 1

n
, 2

n
, . . . , 1. It follows that f0(x) ≤ x.

The quality of the center will be nx where x is such that
fh(x) is very small.

At each iteration, the centerpoint is at least r deep in the
projection. There are

`

(d+1)(r−1)+1
r

´

choices for the r points
less than the centerpoint in the projection. By the union
bound,

fh(x) ≥

(d + 1)(r − 1) + 1

r

!

fh−1(x)r. (15)

Say, β =
`

(d+1)(r−1)+1
r

´−1
.

fh(x) ≥ β−1fh−1(x)r (16)

≥ β−1(β−rfh−2(x)r2

) (17)

≥ β−1 · β−r · · ·β−rh

f0(x)rh

(18)

≥ β
1−rh

r−1 xrh

(19)

≥ β
1

r−1

x

β
1

r−1

!rh

(20)

Now, since β = O((rd)−r), we can choose x smaller than

O((rd)
−r

r−1) and the probability fh(x) vanishes as desired.
So, even for a choice of r = 3, we can improve the quality of

the resulting centerpoint by O

„

n

d
1
2

«

.

5.2 Speeding up the Iterated-Tverberg
Algorithm

In this section, we show how the same trick of solving
larger subproblems can speed up the run time of the de-
terministic algorithm. Tverberg’s Theorem guarantees the

existence of a partition of S into r sets whose convex hulls
have a common intersection as long as |S| > (d+1)(r−1)+1.
Say T (r) is the time required to compute a Tverberg par-
tition into r parts. To the best of our knowledge, nothing
better than brute force is known for computing Tverberg
partitions for r > 2.

We will show that a slight modification to the Iterated-
Tverberg algorithm to use Tverberg r-partitions instead of
Radon partitions results in a nlg r/T (r) speedup. Thus, for
n large enough, we get a substantial speedup.

The modified algorithm simply makes recursive calls on
sets of ⌈n/r⌉ points and combines them in sets of (r−1)(d+
1) + 1. The analysis is virtually identical to the original
version except we give up a factor of r/2 in the depth of the
output. As for the running time, the new algorithm now has
a recursion tree with higher fan out and the resulting run
time is O((d + 2)logr nT (r)) = O(nlg(d+2)/ lg rT (r)).

6. CONCLUSION
We have presented the Iterated-Tverberg algorithm, the

first algorithm that deterministically computes an approx-
imate centerpoint in time sub-exponential in d. By com-
bining intuition from both Helly’s Theorem and Tverberg’s
Theorem, our method sheds an interesting new light on the
problem of computing centerpoints. It still remains open
whether it is possible to compute approximate centerpoints
deterministically in time polynomial in n and d. We conjec-
ture that it is.

We also extended both our algorithm and the Iterated-
Radon algorithm by looking at the impact of solving larger
subproblems. One consequence of this work is that any new
results on quickly computing centerpoints for small point
sets can be used to improve these algorithms. Currently, it is
not known how to compute centerpoints of more than 2d+2
points in time polynomial in d. However, we conjecture that
computing the centerpoint of 2d+3 points in R

d is NP-hard.
The computation of centerpoints draws a compelling cor-

respondence between fundamental theorems in convexity the-
ory, Helly’s Theorem and Tverberg’s Theorem, and funda-
mental complexity classes of NP and coNP. It is our hope
that future work will further elucidate this correspondence.

7. REFERENCES

[1] T. Chan. An optimal randomized algorithm for
maximum Tukey depth. In SODA: ACM-SIAM
Symposium on Discrete Algorithms, 2004.

[2] K. Clarkson, D. Eppstein, G. Miller, C. Sturtivant,
and S.-H. Teng. Approximating center points with
iterated Radon points. International Journal of
Computational Geometry and Applications,
6(3):357–377, Sep 1996. invited submission.

[3] R. Cole, M. Sharir, and C. K. Yap. On k-hulls and
related problems. SIAM J. Comput., 16(1):61–77,
1987.

[4] L. Danzer, B. Grünbaum, and V. Klee. Helly’s
theorem and its relatives. In Proc. Symp. Pure Math,
volume VII, 1963.

[5] K. Fukuda and V. Rosta. Data depth and maximum
feasible subsystems. In Avis, Hertz, and Marcotte,
editors, Graph Theory and Combinatorial
Optimization, Springer, 2005. 2005.

[6] J. Gil, W. L. Steiger, and A. Wigderson. Geometric
medians. Discrete Mathematics, 108(1-3):37–51, 1992.

[7] J. Gilbert, G. Miller, and S. Teng. Geometric mesh
partitioning: Implementation and experiments. SIAM
J. Scientific Computing, 19(6):2091–2110, 1998.

[8] E. Helly. Über Mengen konvexer Körper mit
gemeinschaftlichen Punkten. Jber. Deutsch. Math,
32:175–176, 1923.

[9] S. Jadhav and A. Mukhopadhyay. Computing a
centerpoint of a finite planar set of points in linear
time. Discrete & Computational Geometry,
12(3):291–312, 1994.

[10] J. Matoušek. Approximations and optimal geometric
divide-and-conquer. In 23rd ACM Symp. Theory of
Computing, pages 512–522, 1991.

[11] N. Naor and M. Sharir. Computing a point in the
center of a point set in three dimensions. In CCCG:
Canadian Conference in Computational Geometry,
1990.

[12] R. Rado. A theorem on general measure. J. Lond.
Math. Soc., 21:291–300, 1947.

[13] J. Radon. Mengen Konvexer Körper, die Einen
Gemeinschaftlichen Punkt Enthalten. Mathematische
Annalen, 83:113–115, 1921.

[14] S.-H. Teng. Points, Spheres, and Separators: A
Unified Geometric Approach to Graph Partitioning.
PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania, Aug.
1991. Available as Technical Report CMU-CS-91-184.

[15] H. Tverberg. A generalization of Radon’s theorem. J.
Lond. Math. Soc., 41:123–128, 1966.

[16] K. Verbarg. Approximate center points in dense point
sets. Information Processing Letters, 61(5):271–278,
1997.

