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Abstract
In the kernel clustering problem we are given a large n × n positive semi-de�nite matrix A = (ai j)

with ∑n
i, j=1 ai j = 0 and a small k× k positive semi-de�nite matrix B = (bi j). The goal is to �nd a partition

S 1, . . . , S k of {1, . . . n} which maximizes the quantity

k∑

i, j=1


∑

(i, j)∈S i×S j

ai j

 bi j.

We study the computational complexity of this generic clustering problem which originates in the theory
of machine learning. We design a constant factor polynomial time approximation algorithm for this
problem, answering a question posed by Song, Smola, Gretton and Borgwardt. In some cases we manage
to compute the sharp approximation threshold for this problem assuming the Unique Games Conjecture
(UGC). In particular, when B is the 3 × 3 identity matrix the UGC hardness threshold of this problem is
exactly 16π

27 . We present and study a geometric conjecture of independent interest which we show would
imply that the UGC threshold when B is the k × k identity matrix is 8π

9

(
1 − 1

k

)
for every k ≥ 3.

1 Introduction
This paper is devoted to an investigation of the polynomial time approximability of a generic clustering
problem which originates in the theory of machine learning. In doing so, we uncover a connection with a
continuous geometric/analytic problem which is of independent interest. In [22] Song, Smola, Gretton and
Borgwardt introduced the following framework for kernel clustering problems. Assume that we are given a
centered kernel, i.e. an n × n positive semide�nite matrix A = (ai j) with real entries such that ∑n

i, j=1 ai j = 0
(the assumption that the kernel is centered is a commonly used normalization in learning theory�see [21]
for more information on this topic). Such matrices arise, for example, as correlation matrices of random
variables (X1, . . . , Xn) that measure attributes of certain empirical data, i.e. ai j = E

[
XiX j

]
. We think of n as

very large, and our goal is to �cluster� the matrix A to a much smaller k× k matrix in such a way that certain
features could still be extracted from the clustered matrix. Formally, given a partition of {1, . . . , n} into k
sets S 1, . . . , S k, de�ne the clustering of A with respect to this partition to be the k × k matrix, whose (i, j)th

entry is
∑

(i, j)∈S i×S j

ai j. (1)
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Let A(S 1, . . . , S k) denote the k × k matrix given by (1). In the kernel clustering problem, we are given a
positive semide�nite k × k matrix B = (bi j), and we wish to �nd the clustering A(S 1, . . . , S k) = C = (ci j)
of A, which is most similar to B in the sense that ∑k

i, j=1 ci jbi j, i.e its scalar product with B, is as large as
possible. In other words, our goal is to compute the number (and the corresponding partition):

Clust(A|B) B max


k∑

i, j=1


∑

(i, j)∈S i×S j

ai j

 bi j : {S 1, . . . , S k} is a partition of {1, . . . , n}


= max


k∑

i, j=1
A(S 1, . . . , S k)i j · bi j : {S 1, . . . , S k} is a partition of {1, . . . , n}



= max


n∑

i, j=1
ai jbσ(i)σ( j) : σ : {1, . . . , n} → {1, . . . , k}

 . (2)

The �exibility in the above formulation of the kernel clustering problem is clearly in the choice of
comparison matrix B, which allows us to enforce a wide-range of clustering criteria. Using the statistical
interpretation of (ai j) as a correlation matrix, we can think of the matrix B as encoding our belief/hypothesis
that the empirical data has a certain structure, and the kernel clustering problem aims to efficiently expose
this structure.

Several explicit examples of useful �test matrices� B are discussed in [22], including hierarchical clus-
tering and clustering data on certain manifolds. We refer to [22] for additional information which illustrates
the versatility of this general clustering problem, including its relation to the Hilbert Schmidt Independence
Criterion (HSIC) and various experimental results. In [22] it was asked if there is a polynomial time approx-
imation algorithm for computing Clust(A|B). Here we obtain a constant factor approximation algorithm for
this problem, and prove some computational hardness of approximation results.

Before stating our results in full generality we shall now present a few simple illustrative examples. If
B = Ik is the k × k identity matrix, then thinking once more of ai j as correlations E

[
XiX j

]
, our goal is to �nd

a partition S 1, . . . , S k of {1, . . . , n} which maximizes the quantity

k∑

i=1

∑

p,q∈S i

E
[
XpXq

]
,

i.e. we wish to cluster the variables so as to maximize the total intra-cluster correlations. As we shall
see below, our results yield a polynomial time algorithm which approximates Clust(A|Ik) up to a factor of
8π
9

(
1 − 1

k
)
. In particular, when k = 3 we obtain a 16π

27 approximation algorithm, and we show that assuming
the Unique Games Conjecture (UGC) no polynomial time algorithm can achieve an approximation guarantee
which is smaller than 16π

27 . The Unique Games Conjecture was posed by Khot in [12], and it will be described
momentarily. For the readers who are not familiar with this computational hypothesis and its remarkable
applications to hardness of approximation, it suffices to say that this hardness result should be viewed as
strong evidence that 16π

27 is the sharp threshold below which no polynomial time algorithm can solve the
kernel clustering problem when B = I3. Moreover, we conjecture that 8π

9
(
1 − 1

k
)

is the sharp approximability
threshold (assuming UGC) for Clust(A|Ik) for every k ≥ 3. In this paper, we reduce this conjecture to a
purely geometric/analytic conjecture, which we will describe in detail later, and prove some partial results
about it.
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Another illustrative example of the kernel clustering problem is the case

B =

(
1 −1
−1 1

)
.

In this case, we clearly have

Clust
(
A

∣∣∣∣∣∣
(

1 −1
−1 1

))
= max


n∑

i, j=1
: ai jεiε j : ε1, . . . , εn ∈ {−1, 1}

 . (3)

The optimization problem in (3) is well known as the positive semi-de�nite Grothendieck problem and
has several algorithmic applications (see [19, 17, 2, 5]). It has been shown by Rietz [19] that the natural
semide�nite relaxation of (3) has integrality gap π

2 (see also Nesterov's work [17]). Our results imply
that assuming the UGC π

2 is the sharp approximation threshold for the positive-semide�nite Grothendieck
problem. Note that without the assumption that A is positive semide�nite the natural semide�nite relaxation
of (3) has integrality gap Θ(log n). See [16, 6, 1] for more information, and [3] for hardness results for this
problem.

We can also view the problem (3) as a generalization of the MaxCut problem. Indeed, let G = (V =

{1, . . . , n}, E) be an n-vertex loop-free graph. For every vertex i ∈ V let di denote its degree in G. Let A be
the Laplacian of G, i.e. A is the n × n matrix given by

ai j =


di if i = j,
−1 if i , j ∧ i j ∈ E,
0 if i , j ∧ i j < E.

(4)

Then A is positive semi-de�nite since it is diagonally dominant. For every ε1, . . . , εn ∈ {−1, 1} let S ⊆ V be
the set S B {i ∈ V : εi = 1}. Then:

n∑

i, j=1
ai jεiε j =

n∑

i=1
di − 2|E(S , S )| − 2|E(V \ S ,V \ S )| + 2|E(S ,V \ S )|

= 2|E| − 2 (|E| − |E(S ,V \ S )|) + 2|E(S ,V \ S )| = 4|E(S ,V \ S )|. (5)

Hence
Clust

(
A

∣∣∣∣∣∣
(

1 −1
−1 1

))
= 4MaxCut(G).

Using Håstad's inapproximability result for MaxCut [10] it follows that if P , NP there is no polynomial
time algorithm which approximates (3) up to a factor smaller than 17

16 .
Our algorithmic results. For a �xed positive semide�nite matrix B, the approximability threshold for the
problem of computing Clust(A|B) depends on B. It is therefore of interest to study the performance of
our algorithms in terms of the matrix B. We do obtain bounds which depend on B (which are probably
suboptimal in general)�the precise statements are contained in Theorem 2.1 and Theorem 2.3. For the sake
of simplicity, in the introduction we state bounds which are independent of B. We believe that the problem
of computing the approximation threshold (perhaps under UGC) for each �xed B is an interesting problem
which deserves further research.

If A is centered, i.e. ∑n
i, j=1 ai j = 0, then for every k × k positive semi-de�nite matrix B our algorithm

achieves an approximation ratio of π
(
1 − 1

k
)
. If, in addition, B is centered and spherical, i.e. ∑k

i, j=1 bi j = 0
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and bii = 1 for all i, then our algorithm achieves an approximation ratio of 8π
9

(
1 − 1

k
)
. This ratio is also valid

if B is the identity matrix, and as we mentioned above, we believe that this approximation guarantee cannot
be improved assuming the UGC (and here we prove this conjecture for k = 3). When A is not necessarily
centered (note that this case is of lesser interest in terms of the applications in machine learning) we obtain
an algorithm which achieves an approximation ratio of 1 + 3π

2 (this is probably sub-optimal). All of our
algorithms, which are described in Section 2, use semi-de�nite programming in a perhaps non-obvious way.
The Unique Games Conjecture, hardness of approximation, and the propeller problem. Our hardness
result for kernel clustering problem is based on the Unique Games Conjecture which was put forth by Khot
in [12]. We shall now describe this conjecture. A Unique Game is an optimization problem with an instance
L = L (G(V,W, E), n, {πvw}(v,w)∈W). Here G(V,W, E) is a regular bipartite graph with vertex sets V and W
and edge set E. Each vertex is supposed to receive a label from the set {1, . . . , n}. For every edge (v,w) ∈ E
with v ∈ V and w ∈ W, there is a given permutation πvw : {1, . . . , n} → {1, . . . , n}. A labeling to the Unique
Game instance is an assignment ρ : V ∪ W → {1, . . . , n}. An edge (v,w) is satis�ed by a labeling ρ if and
only if ρ(v) = πvw(ρ(w)). The goal is to �nd a labeling that maximizes the fraction of edges satis�ed (call this
maximum OPT(L )). We think of the number of labels n as a constant and the size of the graph G(V,W, E)
as the size of the problem instance.

The Unique Games Conjecture asserts that for arbitrarily small constants ε, δ > 0, there exists a constant
n = n(ε, δ) such that no polynomial time algorithm can distinguish whether a Unique Games instance L
with n labels satis�es OPT(L ) ≥ 1 − ε or OPT(L ) ≤ δ1. This conjecture is (by now) a commonly used
complexity assumption to prove hardness of approximation results. Despite several recent attempts to get
better polynomial time approximation algorithms for the Unique Game problem (see the table in [4] for a
description of known results), the unique games conjecture still stands.

Our UGC hardness result for kernel clustering, which is presented in Section 3, is based at heart on the
�dictatorship vs. low-in�uence� paradigm that is recurrent in UGC hardness results (for example [12, 14]).
In order to apply this paradigm one usually designs a probabilistic test on a given Boolean function on
the Boolean hypercube and then analyzes the acceptance probability of this test in the two extremes of
dictatorship functions and functions without in�uential variables. The gap between these two acceptance
probabilities translates into the hardness of approximation factor. In our case, instead of a probabilistic test
we need to design a positive semide�nite quadratic form on the truth table of the function. Our form is the
sum of the squares of the Fourier coefficients of level 1. This already yields π

2 UGC hardness when k = 2.
For larger k we need to work with functions from {1, . . . , k}n to {1, . . . , k}. The analysis of this approach
leads to the �propeller problem� which we now describe. The details of this connection are explained in
Section 3.

We believe that one of the interesting aspects of the present paper is that complexity considerations lead
to geometric/analytic problems which are of independent interest. Similar such connections have been re-
cently discovered in [13, ?]. In our case the reduction from UGC to kernel clusterings leads to the following
question, which we call the �propeller problem� for reasons that will become clear presently. Let γk−1 de-
note the standard Gaussian measure on Rk−1, i.e. the density of γk−1 is (2π)−(k−1)/2e−‖x‖22/2. Let A1, . . . , Ak
be a partition of Rk−1 into measurable sets. For each i ∈ {1, . . . , k} consider the Gaussian moment of the set
Ai, i.e. the vector

zi B
∫

Ai

xdγk−1(x) ∈ Rk−1.

Our goal is to �nd the partition which maximizes the sum of the squared Euclidean lengths of the Gaussian
1As stated in [12], the conjecture says that it is NP-hard to distinguish between these two cases. However if one only wants to

rule out polynomial time algorithms, the conjecture as stated here suffices.
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moments of the elements of the partition, i.e. ∑k
i=1 ‖zi‖22. Let C(k) denote the value of this maximum (in

Section 3.1 we show that this is indeed a maximum and not just a supremum). In Section 3 we show that
assuming the UGC there is no polynomial time algorithm which approximates Clust(A|Ik) to a factor smaller
than 1−1/k

C(k) . In Section 3.1 we show that C(2) = 2
π and C(3) = 9

8π . The value of C(3) comes from the partition
of the plane R2 into a �propeller�, i.e. three cones of angle 2π

3 with cusp at the origin. We also show in
Section 3.1 that C(k) is attained at a simplicial conical partition, i.e. a partition A1, . . . , Ak of Rk−1 of the
following form: let A1, . . . , Am be the elements of the partition which are non-empty. Then A j = B j × Rk−m

where B j ⊆ Rm−1 is a cone with cusp at 0 whose base is a simplex. We conjecture that the optimal partition
of this type for every k ≥ 3 is actually {C1 × Rk−3,C2 × Rk−3,C3 × Rk−3}, where {C1,C2,C3} is the propeller
partition of R2�see Figure 1. If so then it would follow that the approximation algorithms described above
are optimal assuming the UGC for every k ≥ 4, and not just for k ∈ {2, 3}. In Section 3.1 we give the
following evidence for this conjecture: it is tempting to believe that the optimal simplicial conical partition
described above occurs when the cones B1, . . . , Bm are generated by the regular simplex. However, we
show that among such regular simplicial conical partitions the one which maximizes the sum of the squared
lengths of its Gaussian moments is when m = 3. The full propeller conjecture seems to be a challenging
geometric problem of independent interest, not just due to the connection that we establish between it and
the study of hardness of approximation for kernel clustering.

Figure 1: The conjectured optimal partition for the �sum of squares of Gaussian moments problem� de-
scribed above consists of a partition of Rk−1 into 3 parts, and the remaining k − 3 parts are empty. This
partition corresponds to a planar 120◦ �propeller� multiplied by an orthogonal copy of Rk−3.

We end this introduction with an explanation of how our work relates to the recent result of Raghaven-
dra [18] which shows that for any generalized constraint satisfaction problem2 (CSP) there is a generic
way of writing a semide�nate relaxation that achieves an optimal approximation ratio assuming the Unique

2In a generalized CSP, every assignment to variables in a constraint has a real-valued (possibly negative) pay-off instead of a
simple decision saying that the assignment is a satisfying assignment or not.
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Games Conjecture. Our clustering problem �ts in the framework of [18] as follows: we wish to compute

max


n∑

i, j=1
ai jbσ(i)σ( j) : σ : {1, . . . , n} → {1, . . . , k}

 , (6)

where (ai j) is a centered positive semi-de�nite matrix and (bi j) is a positive semi-de�nite matrix. One
can think of this problem as a CSP (with an extra global constraint corresponding to the positive semi-
de�niteness) where the set of variables is {1, . . . , n} and we wish to assign each variable a value from the
domain {1, . . . , k}. For every pair (i, j) ∈ {1, . . . , n} × {1, . . . , n}, there is a constraint with weight ai j. We get
a payoff of bst if variables i and j are assigned s ∈ {1, . . . , k} and t ∈ {1, . . . , k} respectively.

Raghavendra shows that every integrality gap instance for his generic SDP relaxation can be translated
into a UGC-hardness of approximation result with the hardness factor (essentially) the same as the integrality
gap. We make here the non-trivial observation that in the reduction of [18], starting with an integrality gap
instance for (the generic SDP relaxation of) the clustering problem (6), the matrix of the constraint weights
(ai j) indeed turns out to be positive semi-de�nite as required in the kernel clustering problem (this requires
proof�the details are omitted since this is a digression from the topic of this paper). Thus Raghavendra's
result can be made to apply to the kernel clustering problem (i.e. the generic SDP achieves the optimum
approximation ratio assuming UGC).

Nevertheless, it is also useful to look at different relaxations and rounding procedures for the following
reasons. Firstly, for a given problem there could be an SDP relaxation that is more natural than the generic
one and might be easier to work with. Secondly, Raghavendra's result (that the integrality gap is same as
the hardness factor) applies only when the integrality gap is a constant. This is a priori not clear for the
kernel clustering problem. For instance, a priori the integrality gap could be Ω(log n) (as is the case for
Grothendieck problem on a general graph�see [1]). So before applying the result of [18], one would need
to show that the integrality gap of the generic SDP is indeed a constant. Thirdly, for CSPs with negative
payoffs (as is the case in the kernel clustering problem), Raghavendra shows that the value computed by
the generic SDP achieves the optimal approximation ratio (modulo UGC), but the paper does not give a
rounding procedure. Finally, Raghavendra's result does not really shed light on the exact hardness threshold
in the sense that it shows how to translate integrality gap instances into a UGC hardness result, but gives
no idea as to how to construct an integrality gap instance in the �rst place. Constructing the integrality gap
instance in general amounts to answering certain isoperimetric type geometric question (naturally leading
to a dictatorship test, or the other way round. In other words, the geometric question itself might be inspired
by the dictatorship test that we have in mind). Thus as far as we know, we cannot avoid designing an explicit
dictatorship test and answering an isoperimetric type question, whether or not we start with Raghavendra's
generic SDP that is guaranteed to be optimal. As mentioned before, in the clustering problem where B =

(bst) is centered and spherical, we show that the UGC-hardness threshold is at least 1−1/k
C(k) and characterizing

C(k) seems to be a challenging geometric question.

2 Constant factor approximation algorithms for kernel clustering
Let A ∈ Mn(R) and B ∈ Mk(R) be positive semide�nite matrices. Then there are u1, . . . , un ∈ Rn and
v1, . . . , vk ∈ Rk such that ai j = 〈ui, u j〉 and bi j = 〈vi, v j〉. Such vectors can be found in polynomial time
(this is simply the Cholesky decomposition). The instance of the kernel clustering problem will be called
centered if ∑n

i, j=1 ai j = 0, or equivalently ∑n
i=1 ui = 0. The instance will be called spherical if bii = 1 = ‖vi‖22

for all i ∈ {1, . . . , k}. Let R(B) be the radius of the smallest Euclidean ball containing {v1, . . . , vk}. Note that
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R(B) is indeed only a function of B, i.e. it does not depend on the particular representation of B as a Gram
matrix. Moreover, it is possible to compute R(B), and given the decomposition bi j = 〈vi, v j〉 a vector w ∈ Rk

such that max j∈{1,...,k} ‖v j − w‖2 = R(B), in polynomial time (see [9]).
Our goal is to compute in polynomial time the quantity:

Clust(A|B) B max
σ:{1,...,n}→{1,...,k}

n∑

i, j=1
ai jbσ(i)σ( j) = max

σ:{1,...,n}→{1,...,k}

n∑

i, j=1
〈ui, u j〉〈vσ(i), vσ( j)〉.

Our algorithm, which is based on semide�nite programming, proceeds via the following steps:

1. Compute a Cholesky decomposition of B, i.e. v1, . . . , vk ∈ Rk with bi j = 〈vi, v j〉.
2. Compute (using for example [9]) R(B) and a vector w ∈ Rk such that

max
j∈{1,...,k}

‖v j − w‖2 = R(B).

3. Solve the semide�nite program

max


n∑

i, j=1
ai j ·

〈
‖w‖2u + R(B)xi, ‖w‖2u + R(B)x j

〉
: u, x1, . . . , xn ∈ Rn+1 ∧ ‖u‖2 = 1 ∧ ∀i ‖xi‖2 ≤ 1

 .

4. Choose p, q ∈ {1, . . . , k} such that ‖vp − vq‖2 = maxi, j∈{1,...,k} ‖vi − v j‖2. Let g1, g2 ∈ Rn+1 be i.i.d.
standard Gaussian vectors and de�ne σ : {1, . . . , n} → {1, . . . , k} by

σ(r) =

{
p if 〈g1, xr〉 ≥ 〈g2, xr〉,
q if 〈g2, xr〉 ≥ 〈g1, xr〉. (7)

5. Choose distinct α, β, γ ∈ {1, . . . , k} such that
∥∥∥∥∥vα −

vα + vβ + vγ
3

∥∥∥∥∥
2

2
+

∥∥∥∥∥vβ −
vα + vβ + vγ

3

∥∥∥∥∥
2

2
+

∥∥∥∥∥vγ −
vα + vβ + vγ

3

∥∥∥∥∥
2

2

is maximized among all such choices of α, β, γ. Let g1, g2, g3 ∈ Rn+1 be i.i.d. standard Gaussian
vectors and de�ne τ : {1, . . . , n} → {1, . . . , k} by

τ(r) =


α if 〈g1, xr〉 ≥ max {〈g2, xr〉, 〈g3, xr〉} ,
β if 〈g2, xr〉 ≥ max {〈g1, xr〉, 〈g3, xr〉} ,
γ if 〈g3, xr〉 ≥ max {〈g1, xr〉, 〈g2, xr〉} .

(8)

6. Output σ if ∑n
i, j=1 ai jbσ(i)σ( j) ≥ ∑n

i, j=1 ai jbτ(i)τ( j). Otherwise output τ.

Remark 2.1. The astute reader might notice that there is an obvious generalization of the above algorithm.
Namely for every �xed integer s ∈ [2, k] we can choose a subset S ⊆ {1, .., k} of cardinality s which
maximizes the quantity

∑

i∈S

∥∥∥∥∥∥∥∥
vi − 1

s
∑

j∈S
v j

∥∥∥∥∥∥∥∥

2

2

.
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Then, we can choose s i.i.d. standard Gaussians {gi}i∈S ⊆ Rn+1 and de�ne σs : {1, . . . , n} → {1, . . . , k}
analogously to the above, namely σs(r) = i if

〈gi, xr〉 = max
j∈S
〈g j, xr〉.

Then, we can consider the assignments σ2, σ3, . . . , σs and choose the one which maximizes the objective∑n
i, j=1 ai jbσ`(i)σ`( j). In spite of this �exibility, it turns out that the the rounding method described above

does not improve if we take s ≥ 4. In order to demonstrate this fact we will proceed below to analyze the
algorithm for general s, and then optimize over s.

Bounds on the performance of the above algorithm are contained in the following theorem:

Theorem 2.1. Assume that A is centered, i.e. that ∑n
i, j=1 ai j = 0. Let p, q, α, β, γ ∈ {1, . . . , k} and v1, . . . , vk

be as in the description above. Then the algorithm outputs in polynomial time a random assignment λ :
{1, . . . , n} → {1, . . . , k} satisfying

Clust(A|B)

≤ min


2πR(B)2

‖vp − vq‖22
,

16πR(B)2

9
(∥∥∥vα − vα+vβ+vγ

3
∥∥∥2

2 +
∥∥∥vβ − vα+vβ+vγ

3
∥∥∥2

2 +
∥∥∥vγ − vα+vβ+vγ

3
∥∥∥2

2

)


E


n∑

i, j=1
ai jbλ(i)λ( j)

 . (9)

In particular we always have

Clust(A|B) ≤ π
(
1 − 1

k

)
E


n∑

i, j=1
ai jbλ(i)λ( j)

 , (10)

and if B is centered and spherical, i.e. ∑k
i, j=1 bi j = 0 and bii = 1 for all i, then

Clust(A|B) ≤ 8π
9

(
1 − 1

k

)
E


n∑

i, j=1
ai jbλ(i)λ( j)

 . (11)

The same bound in (11) holds true if B is the identity matrix.

We single out in the next theorem the case k ∈ {2, 3}, since in these cases we have matching UGC
hardness results. Note that for general k we obtain a factor π approximation algorithm, answering positively
the question posed by Song, Smola, Gretton and Borgwardt in [22].

Theorem 2.2. Assume that A is centered and B is a 2 × 2 matrix. Then our algorithm achieves a π
2 ap-

proximation factor. Assuming the Unique Games Conjecture no polynomial time algorithm achieves an
approximation guarantee smaller than π

2 in this case.
Assume that A is centered, k = 3 and B is centered and spherical (since k = 3 this forces B to be

the Gram matrix of the-degree three roots of unity in the complex plane). Then our algorithm achieves
an approximation factor of 16π

27 . Assuming the Unique Games Conjecture no polynomial time algorithm
achieves an approximation guarantee smaller than 16π

27 in this case.
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In fact, we believe that the UGC hardness threshold for the kernel clustering problem when A is centered
and B is spherical and centered is exactly

8π
9

(
1 − 1

k

)
.

In Section 3 we describe a geometric conjecture which we show implies this tight UGC threshold for general
k.

We end the discussion by stating a (probably suboptimal) constant factor approximation result when A
is not necessarily centered (note that this case is of lesser interest in terms of the applications in machine
learning). In this case the above algorithm gives a constant factor approximation. The slightly better bound
on the approximation factor in Theorem 2.3 below follows from a variant of the above algorithm which will
be described in its proof.

Theorem 2.3. For general A and B (not necessarily centered) there exists a polynomial time algorithm that
achieves an approximation factor of

1 +
2π

‖vp − vq‖22
· max

i∈{1,...,k}

∥∥∥∥∥vi −
vp + vq

2

∥∥∥∥∥
2

2
≤ 1 +

3π
2 .

The proof of Theorem 2.2 is contained in Section 3. We shall now proceed to prove Theorem 2.1.
Before doing so we will show how the general bound in (9) implies the bounds (10) and (11). The proof of
Theorem 2.3 is deferred to the end of this section.

To prove that (9) implies (10) let D denote the diameter of the set {v1, . . . , vk}, i.e. D = ‖vp − vq‖2. A
classical theorem of Jung [11] (see [7]) says that

R(B) ≤ D ·
√

k − 1
2k ,

and (10) follows immediately by taking the �rst term in the minimum in (9).
We shall now show that (9) implies (11) when B is either centered and spherical or the identity matrix.

Assume �rst of all that B is centered and spherical. Note that since v1, . . . , vk are unit vectors, R(B) ≤ 1.
Hence, by considering the second term in the minimum in (9) we see that it is enough to show that there
exist α, β, γ ∈ {1, . . . , k} for which

∥∥∥∥∥vα −
vα + vβ + vγ

3

∥∥∥∥∥
2

2
+

∥∥∥∥∥vβ −
vα + vβ + vγ

3

∥∥∥∥∥
2

2
+

∥∥∥∥∥vγ −
vα + vβ + vγ

3

∥∥∥∥∥
2

2
≥ 2k

k − 1 .

This follows from an averaging argument. Indeed,

1(k
3
)

∑

α,β,γ∈{1,...,k}
α<β<γ

(∥∥∥∥∥vα −
vα + vβ + vγ

3

∥∥∥∥∥
2

2
+

∥∥∥∥∥vβ −
vα + vβ + vγ

3

∥∥∥∥∥
2

2
+

∥∥∥∥∥vγ −
vα + vβ + vγ

3

∥∥∥∥∥
2

2

)

=
2
k

k∑

i=1
‖vi‖22 −

2
k(k − 1)

∑

i, j∈{1,...,k}
i, j

〈vi, v j〉 =
2
k

k∑

i=1
bii − 2

k(k − 1)


k∑

i, j=1
bi j −

k∑

i=1
bii

 =
2k

k − 1 .

This complete the proof of (11) when B is spherical and centered. The same bound holds true when B = Ik is
the identity matrix since in this case if we denote by e1, . . . , ek the standard unit basis of Rk and e = 1

k
∑k

i=1 ei

9



then for every assignment λ : {1, . . . , n} → {1, . . . , k} we have

n∑

i, j=1
ai j(Ik)λ(i)λ( j) =

n∑

i, j=1
〈ui, u j〉〈eλ(i), eλ( j)〉

=

n∑

i, j=1
〈ui, u j〉〈eλ(i) − e, eλ( j) − e〉 + 2

〈 n∑

i=1
ui,

n∑

j=1
〈e, eλ( j)〉u j

〉
− ‖e‖22

∥∥∥∥∥∥∥
k∑

i=1
ui

∥∥∥∥∥∥∥

2

2
. (12)

The last two terms in (12) vanish since A is centered. Thus
n∑

i, j=1
ai j(Ik)λ(i)λ( j) =

k − 1
k

n∑

i, j=1
ai jcλ(i)λ( j),

where C = (ci j) = k
k−1 (〈ei − e, e j − e〉) is spherical and centered. Thus the case of the identity matrix reduces

to the previous analysis.

Proof of Theorem 2.1. Denote

SDP B max
n∑

i, j=1
ai j ·

〈
‖w‖2u + R(B)xi, ‖w‖2u + R(B)x j

〉
,

where the maximum is taken over all u, x1, . . . , xn ∈ Rn+1 such that ‖u‖2 = 1 and ‖xi‖2 ≤ 1 for all i. Observe
that

SDP ≥ Clust(A|B). (13)

Indeed, for every λ : {1, . . . , n} → {1, . . . , k} de�ne u = w
‖w‖2 and xi =

vλ(i)−w
R(B) and note that in this case

n∑

i, j=1
ai j ·

〈
‖w‖2u + R(B)xi, ‖w‖2u + R(B)x j

〉
=

n∑

i, j=1
ai jbλ(i)λ( j).

Let u∗, x∗1, . . . , x∗n be the optimal solution to the SDP. It will be convenient to think of the SDP solution
as being split into two parts. So we rewrite

SDP =

n∑

i, j=1
ai j ·

〈
‖w‖2u∗ + R(B)x∗i , ‖w‖2u∗ + R(B)x∗j

〉

=

n∑

i, j=1
〈ui, u j〉 · 〈‖w‖2u∗ + R(B)x∗i , ‖w‖2u∗ + R(B)x∗j〉

=

∥∥∥∥∥∥∥
n∑

i=1
ui ⊗ (‖w‖2u∗ + R(B)x∗i )

∥∥∥∥∥∥∥

2

2
(14)

=

∥∥∥∥∥∥∥

‖w‖2


n∑

i=1
ui

 ⊗ u∗
 +

R(B)
n∑

i=1
ui ⊗ x∗i


∥∥∥∥∥∥∥

2

2
= ‖P + Q‖22, (15)
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where

P B ‖w‖2
n∑

i=1
ui ⊗ u∗, (16)

and

Q B R(B)
n∑

i=1
ui ⊗ x∗i . (17)

Observe in passing that (15) implies that the objective function of the SDP is convex as a function of
u, x1, . . . , xn, and therefore we may assume that ‖u∗‖2 = 1 and ‖x∗i ‖2 = 1 for all i.

We shall now proceed with the analysis of our algorithm while using the variant described in Remark 2.1.
This will not create any additional complication, and will allow us to explain why there is no advantage in
working with subsets of size s ≥ 4. Recall the setting: for a �xed integer s ∈ [2, k] we choose a subset
S ⊆ {1, .., k} of cardinality s which maximizes the quantity

∑

i∈S

∥∥∥∥∥∥∥∥
vi − 1

s
∑

j∈S
v j

∥∥∥∥∥∥∥∥

2

2

.

Then, we choose s i.i.d. standard Gaussians {gi}i∈S ⊆ Rn+1 and de�ne σ : {1, . . . , n} → {1, . . . , k} by setting
σ(r) = i if

〈gi, x∗r 〉 = max
j∈S
〈g j, x∗r 〉.

Fix i, j ∈ {1, . . . , n}. As proved by Frieze and Jerrum in [8] (see Lemma 5 there), we have3:

Pr [σ(i) = σ( j)] =

∞∑

m=0
Rm(s)〈x∗i , x∗j〉m,

where the power series converges on [−1, 1] and all the coefficients Rm(s) are non-negative. Moreover
R0(s) = 1

s and

R1(s) =
1

s − 1

(
E

[
max

j∈S
g j

])2
=

s
(2π)s/2

∫ ∞

−∞
xe−x2/2

(∫ x

−∞
e−y2/2dy

)s−1
dx.

Note that conditioned on the event σ(i) = σ( j), the random index σ(i) is uniformly distributed over S .
Also, conditioned on the event σ(i) , σ( j), the pair (σ(i), σ( j)) is uniformly distributed over all s(s − 1)
pairs of distinct indices in S . Thus

E[bσ(i)σ( j)] = Pr[σ(i) = σ( j)] ·


1
s
∑

`∈S
b``

 + Pr[σ(i) , σ( j)] ·


1

s(s − 1)
∑

`,t∈S
`,t

b`t


.

3We are using here the fact that x∗1, . . . , x∗n are unit vectors.
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Denote Φ = 1
s
∑
`∈S b`` and Ψ = 1

s(s−1)
∑
`,t∈S
`,t

b`t. (note that Φ,Ψ depend on the matrix B as well as the
choice of the subset S ⊆ {1, . . . , k}. Thus

E[bσ(i)σ( j)] =


∞∑

m=0
Rm(s)〈x∗i , x∗j〉m

 · Φ +

1 −
∞∑

m=0
Rm(s)〈x∗i , x∗j〉m

 · Ψ

= (Ψ + (Φ − Ψ)R0(s)) + (Φ − Ψ)
∞∑

m=1
Rm(s)〈x∗i , x∗j〉m. (18)

Write v B 1
s
∑
`∈S v`. Observe that

Ψ + (Φ − Ψ)R0(s) = ‖v‖22. (19)

Indeed, since R0(s) = 1/s we have

Ψ + (Φ − Ψ)R0(s) =

(
1 − 1

s

)


1
s(s − 1)

∑

`,t∈S
`,t

b`t


+

1
s


1
s
∑

`∈S
b``

 =
1
s2

∑

`,t∈S
b`t =

∥∥∥∥∥∥∥
1
s

s∑

`∈S
v`

∥∥∥∥∥∥∥

2

2

= ‖v‖22.

Moreover,

(s − 1)(Φ − Ψ) =
∑

`∈S
‖v` − v‖22. (20)

In particular Φ − Ψ ≥ 0. To prove (20) we simply expand:
∑

`∈S
‖v` − v‖22 =

∑

`∈S
‖v`‖22 − s‖v‖22 = sΦ − 1

s
∑

`,t∈S
b`t = sΦ − 1

s (sΦ + s(s − 1)Ψ) = (s − 1)(Φ − Ψ).

Multiplying both sides of equation (18) by ai j and summing over i, j ∈ {1, . . . , n} while using (19) we
get that

E


n∑

i, j=1
ai jbσ(i)σ( j)

 = ‖v‖22
n∑

i, j=1
ai j + (Φ − Ψ)R1(s)

n∑

i, j=1
ai j〈x∗i , x∗j〉 + (Φ − Ψ)

∞∑

m=2
Rm(s)

n∑

i, j=1
ai j〈x∗i , x∗j〉m. (21)

Note that for every m ≥ 1 we have
n∑

i, j=1
ai j〈x∗i , x∗j〉m =

n∑

i, j=1
〈ui, u j〉

〈
(x∗i )⊗m, (x∗j)⊗m〉

=

∥∥∥∥∥∥∥
n∑

i=1
ui ⊗ (x∗i )⊗m

∥∥∥∥∥∥∥

2

2
≥ 0. (22)

Plugging (22) into (21), and using the fact that Φ − Ψ ≥ 0 and the positivity of Rm(s), we conclude that

E


n∑

i, j=1
ai jbσ(i)σ( j)

 ≥ ‖v‖
2
2

n∑

i, j=1
ai j + (Φ − Ψ)R1(s)

n∑

i, j=1
ai j〈x∗i , x∗j〉. (23)

We shall now use the fact that ∑n
i, j=1 ai j = 0 for the �rst time. In this case P = 0 (see equations (15)

and (16)) so that

SDP = R(B)2
n∑

i, j=1
ai j〈x∗i , x∗j〉. (24)
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Hence, using (23) and (19) we get the bound

E


n∑

i, j=1
ai jbσ(i)σ( j)

 ≥
R1(s) ∑`∈S ‖v` − v‖22

(s − 1)R(B)2 · SDP
(13)≥ R1(s) ∑`∈S ‖v` − v‖22

(s − 1)R(B)2 · Clust(A|B). (25)

The term R1(s) is studied in Section 3.1, where its geometric interpretation is explained. In particular, it
follows from Corollary 3.6 and Corollary 3.4 that R1(s) < R1(3) for every s ≥ 4 and that R1(2) = 1

π and
R1(3) = 9

8π . Hence the cases s ∈ {2, 3} in (25) conclude the proof of Theorem 2.1. Moreover, we see that
for s ≥ 4 the lower bound in (25) is worse than the lower bound obtained when case s = 3. Indeed, we have
already noted that in this case R1(s) < R1(3). In addition,

1(s
3
)

∑

T⊆S
|T |=3

1
2

∑

`∈T

∥∥∥∥∥∥∥v` − 1
3

∑

t∈T
vt

∥∥∥∥∥∥∥

2

2
=

1
s
∑

`∈S
‖v`‖22 −

1
s(s − 1)

∑

`,t∈S
`,t

〈v`, vt〉 =
1

s − 1
∑

`∈S

∥∥∥∥∥∥∥v` − 1
s
∑

t∈S
vt

∥∥∥∥∥∥∥

2

2
.

This implies that there exists T ⊆ S with |T | = 3 for which

1
2

∑

`∈T

∥∥∥∥∥∥∥v` − 1
3

∑

t∈T
vt

∥∥∥∥∥∥∥

2

2
≥ 1

s − 1
∑

`∈S
‖v` − v‖22,

so that when s ≥ 4 the lower bound in (25) is inferior to the same lower bound when s = 3. �

It remains to deal with the case ∑n
i, j=1 ai j > 0, i.e. to prove Theorem 2.3.

Proof of Theorem 2.3. We slightly modify the algorithm that was studied in Theorem 2.1. Let v1, . . . , vk and
p, q ∈ {1, . . . , k} be as before, that is bi j = 〈vi, v j〉 and ‖vp − vq‖2 = maxi, j∈{1,...,k} ‖vi − v j‖2 = D, the diameter
of the set {v1, . . . , vk} ∈ Rk. Denote w′ B vp+vq

2 and

R′(B) B max
i∈{1,...,k}

∥∥∥vi − w′
∥∥∥2 .

We now consider the modi�ed semide�nite program

SDP B max
n∑

i, j=1
ai j ·

〈
‖w′‖2u + R′(B)xi, ‖w′‖2u + R′(B)x j

〉
,

where the maximum is taken over all u, x1, . . . , xn ∈ Rn+1 such that ‖u‖2 = 1 and ‖xi‖2 ≤ 1 for all i. From
now on we will use the notation of the proof of Theorem 2.1 with w replaced by w′ and R(B) replaced by
R′(B) (this slight abuse of notation will not create any confusion). As before, we let g1, g2 ∈ Rn+1 be i.i.d.
standard Gaussian vectors and de�ne σ : {1, . . . , n} → {1, . . . , k} by

σ(r) =

{
p if 〈g1, xr〉 ≥ 〈g2, xr〉,
q if 〈g2, xr〉 ≥ 〈g1, xr〉. (26)

Note that the �rst place in the proof of Theorem 2.1 where the assumption that A is centered was used in
equation (24). Hence, in the present setting we still have the bounds

Clust(A|B) ≤ SDP = ‖P + Q‖22 ≤ (‖P‖2 + ‖Q‖2)2 , (27)
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where P and Q are de�ned in (16) and (17) (with w and R(B) replaced by w′ and R′(B), respectively). Also,
it follows from (23) that

E


n∑

i, j=1
ai jbσ(i)σ( j)

 ≥ ‖v‖
2
2

n∑

i, j=1
ai j +

(
‖vp − v‖22 + ‖vq − v‖22

)
R1(2)

n∑

i, j=1
ai j〈x∗i , x∗j〉, (28)

where v =
vp+vq

2 = w′. Note that ‖vp − v‖22 + ‖vq − v‖22 = D2

2 , and recall that R1(2) = 1
π . Thus (28) becomes:

E


n∑

i, j=1
ai jbσ(i)σ( j)

 ≥ ‖w
′‖22

n∑

i, j=1
ai j +

D2

2π

n∑

i, j=1
ai j〈x∗i , x∗j〉, (29)

Note that

‖P‖22 = ‖w′‖22 ·
∥∥∥∥∥∥∥

n∑

i=1
ui ⊗ u∗

∥∥∥∥∥∥∥

2

2
= ‖w′‖22 · ‖u∗‖22

n∑

i, j=1
〈ui, u j〉 = ‖w′‖22

n∑

i, j=1
ai j. (30)

and

‖Q‖22 = R′(B)2 ·
∥∥∥∥∥∥∥

n∑

i=1
ui ⊗ x∗i

∥∥∥∥∥∥∥

2

2
= R′(B)2

n∑

i, j=1
ai j〈x∗i , x∗j〉. (31)

Combining (27) and (29) with (30) and (31) we see that

Clust(A|B) ≤ (‖P‖2 + ‖Q‖2)2

‖P2‖22 + c‖Q‖22
· E


n∑

i, j=1
ai jbσ(i)σ( j)

 , (32)

where c = D2

2πR′(B)2 . The convexity of the function x→ x2 implies that

(‖P‖2 + ‖Q‖2)2 =

(
c

c + 1 ·
c + 1

c ‖P‖22 +

(
1 − c

c + 1

)
(c + 1)‖Q‖22

)2

≤ c + 1
c ‖P‖22 + (c + 1)‖Q‖22 =

(
1 +

1
c

) (
‖P‖22 + c‖Q‖22

)
.

Thus (32) implies that our algorithm achieves an approximation guarantee bounded above by

1 +
1
c = 1 +

2πR′(B)2

D2 = 1 +
2π

‖vp − vq‖22
· max

i∈{1,...,k}

∥∥∥∥∥vi −
vp + vq

2

∥∥∥∥∥
2

2
.

It remains to note that for every i ∈ {1, . . . , k} we know that ‖vi − vp‖2, ‖vi − vq‖2 ≤ D and therefore
‖vi − w′‖2 ≤

√
3

2 D. This implies that our approximation guarantee is bounded from above by 1 + 3π
2 . �
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3 UGC hardness
3.1 Geometric preliminaries: Propeller problems
Let γn be the standard Gaussian measure on Rn. For any integer k ≥ 2 de�ne

C(n, k) B sup


k∑

j=1

∥∥∥∥∥
∫

Rn
x f j(x)dγn(x)

∥∥∥∥∥
2

2
: f1, . . . , fk ∈ L2(γn) ∧ ∀ j f j ≥ 0 ∧

k∑

j=1
f j ≤ 1

 . (33)

We �rst observe that the supremum in (33) is attained at a k-tuple of functions which correspond to a partition
of Rn:

Lemma 3.1. There exist disjoint measurable sets A1, . . . , Ak ⊆ Rn such that A1 ∪ A2 ∪ · · · ∪ Ak = Rn and

k∑

j=1

∥∥∥∥∥∥
∫

A j

xdγn(x)
∥∥∥∥∥∥

2

2
= C(n, k).

Proof. Let H be the Hilbert space L2(γn)⊕ L2(γn)⊕ · · · ⊕ L2(γn) (k times). De�ne K ⊆ H to be the set of all
( f1, . . . , fk) ∈ H such that f j ≥ 0 for all j and ∑k

j=1 f j ≤ 1. Then K is a closed convex and bounded subset of
H, and hence by the Banach-Alaoglu it is weakly compact. The mapping ψ : K → R given by

ψ( f1, . . . , fk) B
k∑

j=1

∥∥∥∥∥
∫

Rn
x f j(x)dγn(x)

∥∥∥∥∥
2

2
=

k∑

j=1

n∑

i=1

(∫

Rn
xi f j(x)dγn(x)

)2

is weakly continuous since the mapping (x1, . . . , xn) → x j is in L2(γn) for each j. Hence ψ attains its
maximum on K, say at ( f ∗1 , . . . , f ∗k ) ∈ K.

De�ne z j B
∫
Rn x f ∗j (x)dγn(x) ∈ Rn and let

w B −
k∑

j=1
z j =

∫

Rn
x

1 −
k∑

j=1
f ∗j (x)

 dγn(x).

Note that

1
k

k∑

i=1



∑

1≤ j≤k
j,i

‖z j‖22 + ‖zi + w‖22


=

k∑

j=1
‖z j‖22 +

(
1 − 2

k

)
‖w‖22 ≥

k∑

j=1
‖z j‖22,

which implies the existence of i ∈ {1, . . . , k} for which

∑

1≤ j≤k
j,i

‖z j‖22 + ‖zi + w‖22 ≥
k∑

j=1
‖z j‖22.

Hence, if we de�ne for j ∈ {1, . . . , k},

g j B


f ∗j j , i
f ∗i + 1 −∑k

j=1 f ∗j j = i
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then (g1, . . . , gk) ∈ K, and

C(n, k) ≥
k∑

j=1

∥∥∥∥∥
∫

Rn
xg j(x)dγn(x)

∥∥∥∥∥
2

2
=

∑

1≤ j≤k
j,i

‖z j‖22 + ‖zi + w‖22 ≥
n∑

j=1
‖z j‖22 = C(n, k).

So
k∑

j=1

∥∥∥∥∥
∫

Rn
xg j(x)dγn(x)

∥∥∥∥∥
2

2
= C(n, k).

Note that ∑k
j=1 g j = 1, so we can de�ne a random partition A1, . . . , Ak of Rn as follows: let {sx}x∈Rn be

independent random variables taking values in {1, . . . , k} such that Pr(sx = j) = g j(x), and de�ne A j B {x ∈
Rn : sx = j}. Then by convexity and the de�nition of C(n, k) we see that

E
k∑

j=1

∥∥∥∥∥∥
∫

A j

xdγn(x)
∥∥∥∥∥∥

2

2
≥

k∑

j=1

∥∥∥∥∥
∫

Rn

(
E1A j(x))xdγn(x)

∥∥∥∥∥
2

2
=

k∑

j=1

∥∥∥∥∥
∫

Rn
xg j(x)dγn(x)

∥∥∥∥∥
2

2
= C(n, k).

It therefore follows that there exists a partition as required. �

Lemma 3.2. If n ≥ k − 1 then C(n, k) = C(k − 1, k) and if n < k − 1 then C(n, k) = C(n, n + 1).

Proof. Assume �rst of all that n ≥ k − 1. The inequality C(n, k) ≥ C(k − 1, k) is easy since for every
f1, . . . , fk ∈ L2(γk−1) which satisfy f j ≥ 0 for all j ∈ {1, . . . , k} and f1 + · · · + fk ≤ 1 we can de�ne
f̃1, . . . f̃k : Rn = Rk−1×Rn−k+1 → R by f̃ j(x, y) = f j(x). Then f̃1, . . . f̃k ∈ L2(γn), f̃1, . . . f̃k ≥ 0, f̃1+· · ·+ f̃k ≤ 1
and ∑k

j=1
∥∥∥∫
Rk−1 x f j(x)dγk−1(x)

∥∥∥2
2 =

∑k
j=1

∥∥∥∥
∫
Rn x f̃ j(x)dγn(x)

∥∥∥∥
2

2
. In the reverse direction, by Lemma 3.1 there

is a measurable partition A1, . . . , Ak of Rn such that if we de�ne z j B
∫

A j
xdγn(x) ∈ Rn then we have

∑k
j=1

∥∥∥z j
∥∥∥2

2 = C(n, k). Note that

k∑

j=1
z j =

∫

Rn


k∑

j=1
1A j

 xdγn(x) =

∫

Rn
xdγn(x) = 0.

Hence the dimension of the subspace V B span{z1, . . . , zk} is d ≤ k − 1. De�ne g1, . . . , gk : V → [0, 1] by

g j(x) = γV⊥
(
(A j − x) ∩ V⊥

)
.

Then g1 + · · · + gk = 1, so that

C(k − 1, k) ≥ C(d, k) ≥
k∑

j=1

∥∥∥∥∥
∫

V
xg j(x)dγV (x)

∥∥∥∥∥
2

2
=

k∑

j=1

∥∥∥∥∥
∫

V

∫

V⊥
1A j(x + y)xdγV (x)dγV⊥(y)

∥∥∥∥∥
2

2

=

k∑

j=1

∥∥∥∥∥∥
∫

A j

ProjV (w)dγn(w)
∥∥∥∥∥∥

2

2
=

k∑

j=1

∥∥∥ProjV (z j)
∥∥∥2

2 =

k∑

j=1

∥∥∥z j
∥∥∥2

2 = C(n, k).

We now pass to the case n < k − 1. The inequality C(n, n + 1) ≤ C(n, k) is trivial, so we need to show
that C(n, k) ≤ C(n, n + 1). We observe that since k > n + 1 for every v1, . . . , vk ∈ Rn there exist two distinct
indices i, j ∈ {1, . . . , k} such that 〈vi, v j〉 ≥ 0. The proof of this fact is by induction on n. If n = 1 then our

16



assumption is that k ≥ 3, and therefore at least two of the real numbers v1, . . . , vk must have the same sign.
For n > 1 we may assume that 〈v1, v j〉 < 0 for all j ≥ 2 (otherwise we are done). Consider the vectors{
v j − 〈v1,v j〉

‖v1‖22
· v1

}k

j=2
, i.e. the projections of v2, . . . , vk onto the orthogonal complement of v1. By induction

there are distinct i, j ∈ {2, . . . , k} such that

0 ≤
〈
vi − 〈v1, vi〉

‖v1‖22
· v1, v j −

〈v1, v j〉
‖v1‖22

· v1

〉
= 〈vi, v j〉 −

〈vi, v1〉〈v j, v1〉
‖v1‖22

≤ 〈vi, v j〉.

Now, let A1, . . . , Ak be a partition of Rn as in Lemma 3.1 and denote z j B
∫

A j
xdγn(x) ∈ Rn. By the above

argument there are distinct i, j ∈ {1, . . . , k} such that 〈zi, z j〉 ≥ 0. Hence

C(n, k − 1) ≥
∑

1≤`≤k
`<{i, j}

∥∥∥∥∥∥
∫

A`
xdγn(x)

∥∥∥∥∥∥
2

2
+

∥∥∥∥∥∥
∫

Ai∪A j

xdγn(x)
∥∥∥∥∥∥

2

2
=

∑

1≤`≤k
`<{i, j}

‖z`‖22 + ‖zi + z j‖22

≥
k∑

`=1
‖z`‖22 = C(n, k) ≥ C(n, k − 1).

So, C(n, k) = C(n, k − 1), and the required identity follows by induction. �

In light of Lemma 3.2 we denote from now on C(k) B C(k − 1, k). Given distinct z1, . . . , zk ∈ Rk−1 and
j ∈ {1, . . . , k} de�ne a set P j(z1, . . . , zk) ⊆ Rk by

P j(z1, . . . , zk) B
{

x ∈ Rk : 〈x, z j〉 = max
i∈{1,...,k}

〈x, zi〉
}
.

Thus
{
P j(z1, . . . , zk)

}k
j=1 is a partition of Rk−1 which we call the simplicial partition induced by z1, . . . , zk

(strictly speaking the elements of this partition are not disjoint, but they intersect at sets of measure 0).

Lemma 3.3. Let A1, . . . , Ak ⊆ Rk−1 be a partition as in Lemma 3.1, i.e. if we set z j B
∫

A j
xdγk−1(x) then

C(k) =
∑k

j=1 ‖z j‖22. Assume also that this partition is minimal in the sense that the number of elements of
positive measure in this partition is minimal among all the possible partitions from Lemma 3.1. By relabeling
we may assume without loss of generality that for some 1 ≤ ` ≤ k we have γk−1(A1), . . . , γk−1(A`) > 0 and
that γk−1(A`+1) = · · · = γk−1(Ak) = 0. Then up to an orthogonal transformation z1, . . . , z` ∈ R`−1, for any
distinct i, j ∈ {1, . . . , `} we have 〈zi, z j〉 < 0 and for each j ∈ {1, . . . , `} we have A j = P j(z1, . . . , z`)×Rk−` up
to sets of measure zero.

Proof. Since 1A1 + · · · + 1A` = 1 almost everywhere we have z1 + · · · z` = 0. Thus the dimension of
the span of z1, . . . , z` is at most ` − 1, and by applying an orthogonal transformation we may assume that
z1, . . . , z` ∈ R`−1. Also, if for some distinct i, j ∈ {1, . . . , `} we have 〈zi, z j〉 ≥ 0 we may replace Ai by Ai∪A j
and A j by the empty set and obtain a partition of Rk−1 which contains exactly ` − 1 elements of positive
measure and for which we have:

C(k) ≥
∑

1≤r≤k
`<{i, j}

∥∥∥∥∥∥
∫

Ar

xdγn(x)
∥∥∥∥∥∥

2

2
+

∥∥∥∥∥∥
∫

Ai∪A j

xdγn(x)
∥∥∥∥∥∥

2

2
=

∑

1≤r≤k
`<{i, j}

‖zr‖22 + ‖zi + z j‖22 ≥
k∑

r=1
‖zr‖22 = C(k).
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This contradicts the minimality of the partition A1, . . . , Ak.
Note that the above reasoning implies in particular that the vectors z1, . . . , z` are distinct, and therefore{

P j(z1, . . . , z`) × Rk−`}`
j=1 is a partition of Rk−1 (up to sets of measure 0). Assume for the sake of contradic-

tion that these exist i ∈ {1, . . . , `} such that

γk−1
(
Ai \

(
P j(z1, . . . , z`) × Rk−`)) > 0.

Note that up to sets of measure 0 we have:

Ai \
(
P j(z1, . . . , z`) × Rk−`) =

⋃

j∈{1,...,`}
j,i

∞⋃

m=1

{
x ∈ Ai : 〈x, z j〉 ≥ 〈x, zi〉 + 1

m

}
.

Hence there exists m > 0 and j ∈ {1, . . . , `} \ {i} such that if we denote E B
{
x ∈ Ai : 〈x, z j〉 ≥ 〈x, zi〉 + 1

m
}

then γk−1(E) > 0. De�ne a partition Ã1, . . . Ãk of Rk−1 by

Ãr B


Ar r < {i, j}
Ai \ E r = i
A j ∪ E r = j.

Then for w B
∫

E xdγk−1(x) we have

C(k) ≥
k∑

r=1

∥∥∥∥∥∥
∫

Ãr

xdγk−1(x)
∥∥∥∥∥∥

2

2
=

∑

1≤r≤k
r<{i, j}

‖zr‖22 + ‖zi − w‖22 + ‖z j + w‖22 =

k∑

r=1
‖zr‖22 + 2‖w‖22 + 2〈z j,w〉 − 2〈zi,w〉

≥ C(k) + 2‖w‖22 + 2
∫

E

(
〈z j, x〉 − 〈zi, x〉

)
dγk−1(x) ≥ C(k) +

2γk−1(E)
m > C(k),

a contradiction. �

Corollary 3.4. We have C(2) = 1
π and C(3) = 9

8π .
Proof. Note that Lemma 3.3 implies that for each k ≥ 2 there exists a partition A1, . . . , Ak of Rk−1 such that
each A j is a cone and C(k) =

∑k
j=1

∥∥∥∥
∫

A j
xdγk−1(x)

∥∥∥∥
2

2
. When k = 2 the only such partition of R consists of the

positive and negative half-lines. Thus

C(2) = 2
(

1√
2π

∫ ∞

0
xe−x2/2dx

)2
=

1
π
.

When k = 3 the partition A1, A2, A3 consists of disjoint cones of angles α1, α2, α3 ∈ [0, 2π], respectively,
where α1 + α2 + α3 = 2π. Now, for j ∈ {1, 2, 3} we have

∥∥∥∥∥∥
∫

A j

xdγ2(x)
∥∥∥∥∥∥

2

2
=

∣∣∣∣∣∣
1

2π

∫ ∞

0

∫ α j/2

−α j/2
eiθr2e−r2/2drdθ

∣∣∣∣∣∣
2

=
sin2(α j/2)

2π .

Hence

C(3) =
1

2π max
{
sin2(α1/2) + sin2(α2/2) + sin2(α3/2) : α1, α2, α3 ∈ [0, π] ∧ α1 + α2 + α3 = 2π

}

=
3

2π · sin2
(
π

3

)
=

9
8π, (34)

where (34) follows from a simple Lagrange multiplier argument. �
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It is tempting to believe that for every k ≥ 2, C(k) is attained at a regular simplicial partition, i.e. a
partition of Rk−1 of the form {P j(v1, . . . , vk)}kj=1 where v1, . . . , vk are the vertices of the regular simplex in
Rk−1. This was shown to be true for k ∈ {2, 3} in Corollary 3.4. We will now show that this is not the case
for k ≥ 4.

Lemma 3.5. Let v1, v2, . . . , vk ∈ Rk−1 be vertices of a regular simplex in Rk−1, i.e. for each i ∈ {1, . . . , k} we
have ‖vi‖2 = 1 and for each distinct i, j ∈ {1, . . . , k} we have 〈vi, v j〉 = − 1

k−1 . Let

zi B
∫

Pi(v1,...,vk)
x dγk−1(x).

Then
k∑

i=1
‖zi‖22 =

1
k − 1

(
E

[
max

j∈{1,...,k}
g j

])2
,

where g1, g2, . . . , gk are independent standard Gaussian random variables.

Proof. By symmetry all the zi have the same length r > 0 and zi has the same direction as vi. Thus for all i
we have 〈zi, vi〉 = r. Now,

k∑

i=1
〈zi, vi〉 =

k∑

i=1

∫

Pi(v1,...,vk)
〈x, vi〉 dγk−1(x) =

k∑

i=1

∫

Pi(v1,...,vk)

(
max

j∈{1,...,k}
〈x, v j〉

)
dγk−1(x)

=

∫

Rk−1

(
max

j∈{1,...,k}
〈x, v j〉

)
dγk−1(x) = E

[
max

j∈{1,...,k}
h j

]
,

where h1, . . . , hk are standard Gaussian random variables with covariances E[hih j] = 〈vi, v j〉. Let h be a
standard Gaussian which is independent of h1, . . . , hk. Then

E

[
max

j∈{1,...,k}
h j

]
= E

[
h√

k − 1
+

(
max

j∈{1,...,k}
h j

)]
= E

[
max

j∈{1,...,k}

(
h√

k − 1
+ h j

)]
= E

[
max

j∈{1,...,k}
h̃ j

]
, (35)

where we set h̃ j B h√
k−1 +h j so that h̃ j are independent Gaussians with mean zero and variance k

k−1 . The last

term in (35) is same as
√

k
k−1 · E

[
max j∈{1,...,k} g j

]
where g1, . . . , gk are independent standard Gaussians. �

Corollary 3.6. For k ≥ 2 denote

R(k) B 1
k − 1

(
E

[
max

j∈{1,...,k}
g j

])2
=

k
(2π)k/2

∫ ∞

−∞
xe−x2/2

(∫ x

−∞
e−y2/2dy

)k−1
dx. (36)

Then for every integer k ∈ {2, 4, 5, . . .} we have R(k) < R(3) = 9
8π . Thus, if vk

1, . . . , v
k
k are the vertices of the

regular simplex in Rk−1 then for k ≥ 4 we have

k∑

j=1

∥∥∥∥∥∥∥

∫

P j(vk
1,...,v

k
k)

xdγk−1(x)
∥∥∥∥∥∥∥

2

2
<

3∑

j=1

∥∥∥∥∥∥∥

∫

P j(v3
1,v

3
2,v

3
3)×Rk−3

xdγk−1(x)
∥∥∥∥∥∥∥

2

2
.
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Proof. It follows from Corollary 3.4 that R(3) = C(3) = 9
8π . We require a crude bound on R(k). An

application of Stirling's formula shows that for p ≥ 2 we have

(
E

[|g1|p])1/p
=

(
2p/2
√
π

Γ

(
p + 1

2

))1/p
≤

√
p
2 .

Hence

R(k) ≤ 1
k − 1

(
E

[
max

j∈{1,...,k}
|g j|

])2
≤ 1

k − 1E




k∑

j=1
|g j|p


1/p

2

≤ 1
k − 1


k∑

j=1
E

[
|g j|p

]


2/p

≤ 1
k − 1 · k

2/p · p
2 .

Choosing p = 2 log k ≥ 2 log 4 > 2 we see that

R(k) ≤ e log k
k − 1 . (37)

The function k → log k
k−1 is decreasing on [4,∞), and therefore a direct computation using (37) shows that

R(k) < 9
8π for k ≥ 26. For k ≤ 25 one can compute numerically (say, using Maple) the integral in (36) and

get the following values:

R(4) = 0.3532045529, R(5) = 0.3381215916, R(6) = 0.3211623921, R(7) = 0.3047310600,
R(8) = 0.2895196903, R(9) = 0.2756580116, R(10) = 0.2630844408, R(11) = 0.2516780298,
R(12) = 0.2413075184, R(13) = 0.2318492693, R(14) = 0.2231929784, R(15) = 0.2152425349,
R(16) = 0.2079150401, R(17) = 0.2011392394, R(18) = 0.1948538849, R(19) = 0.1890062248,
R(20) = 0.1835506894, R(21) = 0.1784477705, R(22) = 0.1736630840, R(23) = 0.1691665868,
R(24) = 0.1649319261, R(25) = 0.1609358965.

Since R(3) = 0.3580986219 it follows that R(k) < R(3) for every integer k ∈ [4, 25] as well. �

We conjecture that C(k) ≤ C(3) for every integer k ≥ 2. For future reference we end this section with
the following alternative characterization of C(k):

Lemma 3.7. We have the following identity:

C(k) = sup



(
E

[
max j∈{1,...,k} g j

])2

∑k
j=1 E

[
g2

j
] : (g1, . . . , gk) ∈ Rk mean zero Gaussian vector

 . (38)

Proof. First we show that C(k) is at most the right hand side of (38). We know that there exists a partition
A1, . . . , Ak of Rk−1 such that if we write zi B

∫
Ai

x dγk−1(x) then A j = P j(z1, . . . , zk)for all j ∈ {1, . . . , k} and
C(k) =

∑k
j=1 ‖z j‖22. Now,

C(k) =

k∑

j=1
‖z j‖22 =

k∑

j=1

∫

P j(z1,...,zk)
〈x, z j〉 dγk−1(x) =

k∑

j=1

∫

P j(z1,...,zk)

(
max

i∈{1,...,k}
〈x, zi〉

)
dγk−1(x)

=

∫

Rk−1

(
max

i∈{1,...,k}
〈x, zi〉

)
dγk−1(x) = E

[
max

j∈{1,...,k}
h j

]
, (39)
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where in (39) h1, . . . , hk are mean-zero Gaussians with covariances E[hih j] = 〈zi, z j〉. Thus

C(k) =

(
E

[
max j∈{1,...,k} h j

])2

∑k
j=1 E

[
h2

j
] ,

which implies the desired upper bound on C(k).
For the other direction �x a mean zero Gaussian vector (g1, . . . , gk) ∈ Rk and let v1, v2, . . . , vk ∈ Rk be

vectors such that E[gig j] = 〈vi, v j〉 for all i, j ∈ {1, . . . , k}. For i ∈ {1, . . . , k} let wi B
∫

Pi(v1,...,vk) x dγk−1(x).
Now,

√√√
k∑

i=1
‖wi‖22




k∑

i=1
‖vi‖22

 ≥
k∑

i=1
〈wi, vi〉 =

k∑

i=1

∫

Pi(v1,...,vk)
〈x, vi〉 dγk−1(x)

=

k∑

i=1

∫

Pi(v1,...,vk)

(
max

j∈{1,...,k}
〈x, v j〉

)
dγk−1(x) =

∫

Rk−1

(
max

j∈{1,...,k}
〈x, v j〉

)
dγk−1(x) = E

[
max

j∈{1,...,k}
g j

]
.

Therefore,

C(k) ≥
k∑

i=1
‖wi‖2 ≥

(
E

[
max j∈{1,...,k} g j

])2

∑k
j=1 ‖v j‖22

=

(
E

[
max j∈{1,...,k} g j

])2

∑k
j=1 E

[
g2

j
] .

This completes the proof of (38). �

3.2 Dictatorships vs. functions with small in�uences
In what follows all functions are assumed to be measurable and we use the notation [k] B {1, . . . , k}. In this
section we will associate to every function from {1, . . . , k}n to

∆k B

x ∈ Rk : xi ≥ 0 ∧ ∀ i ∈ [k],
k∑

i=1
xi ≤ 1



a numerical parameter, or �objective value�. We will show that the value of this parameter for functions
which depend only on a single coordinate (i.e. dictatorships) differs markedly from its value on functions
which do not depend signi�cantly on any particular coordinate (i.e. functions with small in�uences). This
step is an analog of the �dictatorship test� which is prevalent in PCP based hardness proofs.

We begin with some notation and preliminaries on Fourier-type expansions. For any function f : Rn →
∆k we write f = ( f1, f2, . . . , fk) where fi : Rn → [0, 1] and ∑k

i=1 fi ≤ 1. With this notation we have

C(k) = sup
f :Rk−1→∆k

k∑

i=1

∥∥∥∥∥
∫

Rk−1
x fi(x)dγk−1(x)

∥∥∥∥∥
2

2
,

where C(k) is as in Section 3.1. We have already seen that the supremum above is actually attained and at
the supremum we have ∑k

i=1 fi = 1. Also C(k) remains the same if the supremum is taken over functions
over Rn with n ≥ k − 1, i.e. for every n ≥ k − 1,

C(k) = sup
f :Rn→∆k

k∑

i=1

∥∥∥∥∥
∫

Rn
x fi(x)dγ(x)

∥∥∥∥∥
2

2
.
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Let (Ω = [k], µ) be a probability space, µ being the uniform measure. Let (Ωn, µn) be the product space.
We will be analyzing functions f : Ωn → ∆k (and more generally into Rk). Fix a basis of orthonormal
random variables on Ω where one of them is the constant 1, i.e. {X0, X1, . . . , Xk−1} where ∀ i, Xi : Ω → R,
X0 ≡ 1 and Eω∈Ω[Xi(ω)X j(ω)] = 0 for i , j and equal to 1 if i = j. Then any function f : Ω → R can be
written as a linear combination of the Xi's.

In order to analyze functions f : Ωn → R, we let X = (X1,X2, . . . ,Xn) be an �ensemble� of random
variables where for 1 ≤ i ≤ n, Xi = {Xi,0, Xi,1, . . . , Xi,k−1}, and for every i, {Xi, j}k−1

j=0 are independent copies
of the {X j}k−1

j=0. Any σ = (σ1, σ2, . . . , σn) ∈ {0, 1, 2, . . . , k − 1}n will be called a multi-index. We shall denote
by |σ| the number on non-zero entries in σ. Each multi-index de�nes a monomial xσ := ∏

i∈[n],σi,0 xi,σi on a
set of n(k − 1) indeterminates {xi j | i ∈ [n], j ∈ {1, 2, . . . , k − 1}}, and also a random variable Xσ : Ωn → R as

Xσ(ω) :=
n∏

i=1
Xi,σi(ωi).

It is easy to see that the random variables {Xσ}σ form an orthonormal basis for the space of functions
f : Ωn → R. Thus, every such f can be written uniquely as (the �Fourier expansion�)

f =
∑

σ

f̂ (σ)Xσ, f̂ (σ) ∈ R.

We denote the corresponding multi-linear polynomial as Q f =
∑
σ f̂ (σ)xσ. One can think of f as the polyno-

mial Q f applied to the ensembleX, i.e. f = Q f (X). Of course, one can also apply Q f to any other ensemble,
and speci�cally to the Gaussian ensemble G = (G1,G2, . . . ,Gn) where Gi = {Gi,0 ≡ 1,Gi,1, . . . ,Gi,k−1} and
Gi, j, i ∈ [n], 1 ≤ j ≤ k − 1 are i.i.d. standard Gaussians. De�ne the in�uence of the i'th variable on f as

Infi(F) B
∑

σi,0
f̂ (σ)2.

Roughly speaking, the results of [20, 15] say that if f : Ωn → [0, 1] is a function with all low in�uences, then
f = Q f (X) and Q f (G) are almost identically distributed, and in particular, the values of Q f (G) are essentially
contained in [0, 1]. Note that Q f (G) is a random variable on the probability space (Rn(k−1), γn(k−1)).

Consider functions f : Ωn → ∆k. We write f = ( f1, f2, . . . , fk) where f : Ωn → [0, 1] with ∑k
i=1 fi ≤ 1.

Each fi has a unique representation (along with the corresponding multi-linear polynomial)

fi =
∑

σ

f̂i(σ)Xσ, Qi := Q fi =
∑

σ

f̂i(σ)xσ.

We shall de�ne an objective function OBJ( f ) that is a positive semi-de�nite quadratic form on the table
of values of f . Then we analyze the value of this objective function when f is a �dictatorship� versus when
f has all low in�uences.

The objective value

For a function f : Ωn → ∆k (or more generally, f : Ωn → Rk) de�ne

OBJ( f ) :=
k∑

i=1

∑

σ: |σ|=1
f̂i(σ)2. (40)

In words, OBJ( f ) is the total �Fourier mass� of all functions { fi}ki=1 at level 1. Note that there are n(k − 1)
multi-indices σ such that |σ| = 1.

22



The objective value for dictatorships

For ` ∈ [n] we de�ne a dictatorship function f dict,` : Ωn → ∆k as follows. The range of the function is
limited to only k points in ∆k, namely the points {e1, e2, . . . , ek} where ei is a vector with ith coordinate 1 and
all other coordinates zero.

f dict,`(ω) := ei if ω` = i. (41)

In other words, when one writes f dict,` = ( f1, f2, . . . , fk), fi is {0, 1}-valued and fi(ω) = 1 iff ω` = i. It is
easy to see that the Fourier expansion of fi is

fi(ω) =
1
k

∑

σ: σ j=0 ∀ j,`
Xσ`(i) Xσ(ω). (42)

Indeed, the right hand side of (42) equals

1
k

∑

0≤σ`≤k−1
Xσ`(i) Xσ`(ω`) =

{
1 if ω` = i,
0 otherwise.

The Fourier mass of f dict,`
i at level 1 equals

∑

1≤σ`≤k−1

(Xσ`(i)
k

)2
= −

(
X0(i)

k

)2
+

∑

0≤σ`≤k−1

(Xσ`(i)
k

)2
= − 1

k2 +
k
k2 =

k − 1
k2 .

Summing the Fourier mass of all f dict,`
i 's at level 1, we get

OBJ( f dict,`) = 1 − 1
k . (43)

The objective value for functions with low in�uences

For f : Ωn → R, j ∈ [n] and m ∈ N denote

Inf≤m
j ( f ) B

∑

|σ|≤m
σ j,0

f̂ (σ)2.

For every η > 0 we will use the smoothing operator:

Tη f =
∑

σ

η|σ| f̂ (σ)Xσ.

The following theorem is the key analytic fact used in our UGC hardness result:

Theorem 3.8. For every ε > 0, there exists τ > 0 so that the following holds: for any function f : Ωn → ∆k
such that

∀ i ∈ [k], ∀ j ∈ [n], Inf≤log(1/τ)
j ( fi) ≤ τ

we have,
OBJ( f ) ≤ C(k) + ε.

23



Proof. Let δ, η > 0 be sufficiently small constants to be chosen later. Let Qi = Q fi be the multi-linear
polynomial associated with fi. Recall that Qi is a multi-linear polynomial in n(k−1) indeterminates {x j` | j ∈
[n], ` ∈ [k − 1]}. Moreover fi = Qi(X) has range [0, 1] and ∑k

i=1 fi ≤ 1.
Let Ri = (T1−δQi)(X) and S i = (T1−δQi)(G) (the smoothening operator T1−δ helps us meet some techni-

cal pre-conditions before applying the invariance principle on [15]). Note that Ri has range [0, 1] and S i has
range R. It will follow however from [15] that S i is with high probability in [0, 1]. First we relate OBJ( f ) to
the functions S i which will, up to truncation, induce a partition of Rn(k−1), which in turn will give the bound
in terms of C(k).

(1 − δ)2 · OBJ( f ) = (1 − δ)2
k∑

i=1

∑

σ:|σ|=1
f̂i(σ)2

= (1 − δ)2
k∑

i=1

n∑

j=1

k−1∑

`=1

∣∣∣∣∣
∫

Rn(k−1)
x j` Qi(x)dγn(k−1)(x)

∣∣∣∣∣
2

= (1 − δ)2
k∑

i=1

∥∥∥∥∥
∫

Rn(k−1)
x Qi(x)dγn(k−1)(x)

∥∥∥∥∥
2

2

=

k∑

i=1

∥∥∥∥∥
∫

Rn(k−1)
x (T1−δQi)(x)dγn(k−1)(x)

∥∥∥∥∥
2

2

=

k∑

i=1

∥∥∥∥∥
∫

Rn(k−1)
x S i(x)dγn(k−1)(x)

∥∥∥∥∥
2

2
. (44)

We bound the last term by C(k) + o(1). For any real-valued function h on Rn(k−1), let

chop(h)(x) :=


0 if h(x) < 0,
h(x) if h(x) ∈ [0, 1],
1 if h(x) > 1.

For every subset I ⊆ [k], let QI := ∑
i∈I Qi. Since every Qi has small low-degree in�uence, so does every

QI . Let RI B
∑

i∈I(T1−δQi)(X), and S I B
∑

i∈I(T1−δQi)(G). Note that R{i} = Ri and S {i} = S i. Applying
Theorem 3.20 in [15] to the polynomial QI , it follows that (provided τ is sufficiently small compared to δ
and η),

∥∥∥S I − chop(S I)
∥∥∥2

2 =

∫

Rn(k−1)

∣∣∣S I(x) − chop(S I)(x)
∣∣∣2 dγn(k−1)(x) ≤ η. (45)

The functions chop(S i) are almost what we want except that they might not sum up to at most 1. So
further de�ne

S ∗i (x) :=



chop(S i)(x) if ∑k
i=1 chop(S i)(x) ≤ 1,

chop(S i)(x)
(∑k

i=1 chop(S i)(x)) if ∑k
i=1 chop(S i)(x) > 1.

Clearly, S ∗i have range [0, 1] and ∑k
i=1 S ∗i ≤ 1. Observe that the following holds point-wise:

0 ≤ chop(S i) − S ∗i ≤
k∑

j=1

(
chop(S j) − S ∗j

)
≤ max

0,
k∑

j=1
chop(S j) − 1

 ≤
∑

I⊆[k]

∣∣∣S I − chop(S I)
∣∣∣ ,
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where the last inequality holds since for every x, by de�ning I = I(x) = { j | S j(x) ≥ 0},
k∑

j=1
chop(S j)(x) − 1 =

∑

j∈I
chop(S j)(x) − 1 ≤

∑

j∈I
S j(x) − 1 ≤

∣∣∣S I(x) − chop(S I)(x)
∣∣∣ .

It follows that ∥∥∥chop(S i) − S ∗i
∥∥∥2 ≤

∑

I⊆[k]

∥∥∥S I − chop(S I)
∥∥∥2 ≤ 2k √η,

where we used (45). Finally,
∥∥∥S i − S ∗i

∥∥∥2 ≤
∥∥∥S i − chop(S i)

∥∥∥2 +
∥∥∥chop(S i) − S ∗i

∥∥∥2 ≤ (2k + 1)√η. (46)

Now write
∫

Rn(k−1)
x S i(x)dγn(k−1)(x) =

∫

Rn(k−1)
x S ∗i (x)dγn(k−1)(x) +

∫

Rn(k−1)
x (S i(x) − S ∗i (x))dγn(k−1)(x). (47)

The norm of second integral is bounded by (2k + 1)√η using (46) and Lemma 3.9 below. Since ‖S ∗i ‖2 ≤ 1,
the norm of �rst integral is bounded by 1, and thus

∥∥∥∥∥
∫

Rn(k−1)
x S i(x)dγn(k−1)(x)

∥∥∥∥∥
2

2
≤

∥∥∥∥∥
∫

Rn(k−1)
x S ∗i (x)dγn(k−1)(x)

∥∥∥∥∥
2

2
+ 2(2k + 1)√η + (2k + 1)2η.

Returning to the estimation in Equation (44) and noting that ∑k
i=1 S ∗i ≤ 1,

k∑

i=1

∥∥∥∥∥
∫

Rn(k−1)
x S i(x)dγn(k−1)(x)

∥∥∥∥∥
2

2
≤

k∑

i=1

(∥∥∥∥∥
∫

Rn(k−1)
x S ∗i (x)dγn(k−1)(x)

∥∥∥∥∥
2

2
+ 2(2k + 1)2 √η

)

≤ sup
f :Rn(k−1)→∆k


k∑

i=1

∥∥∥∥∥
∫

Rn(k−1)
x fi(x)dγn(k−1)(x)

∥∥∥∥∥
2

2

 + 2(2k + 1)3 √η

= C(k) + 2(2k + 1)3 √η.

It follows that OBJ( f ) ≤ C(k)+2(2k+1)3 √η
1−δ2 ≤ C(k) + ε, provided that η and δ are small enough. �

Lemma 3.9. Let g ∈ L2(Rn, γn). Then
∥∥∥∥∥
∫

Rn
x g(x)dγn(x)

∥∥∥∥∥
2
≤ ‖g‖2.

Proof. Note that the square of the left hand side equals
n∑

i=1

∣∣∣∣∣
∫

Rn
xi g(x)dγn(x)

∣∣∣∣∣
2

=

n∑

i=1
〈xi, g〉2.

Since xi ∈ L2(Rn, γn) are an orthonormal set of functions, the sum of squares of projections of g onto them
is at most the squared norm of g. �
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The intended hardness factor

As we show next, the dictatorship test can be translated (in a more or less standard way by now) into a
UGC-hardness result. The hardness factor (as usual) turns out to be the ratio of the objective value when the
function is a dictatorship versus the function has all low in�uences, i.e.

1 − 1/k
C(k) + o(1) =

1 − 1/k
C(k) − o(1).

3.3 The reduction from unique games to kernel clustering
Given a Unique Games Instance L(G(V,W, E), [n], {πvw : [n] → [n]}(v,w)∈E), we construct an instance of the
clustering problem. We �rst reformulate the kernel clustering problem for the ease of presentation.

Reformulation of the problem

Given an instance of the kernel clustering problem (A = (ast), B = (bi j)) where A and B are N × N and k × k
PSD matrices respectively, we note that

max
σ:[N]→[k]

∑

s,t
ast bσ(s),σ(t) = max

F:[N]→∆k

∑

s,t
ast

∑

i j
bi jF(s)iF(t) j (48)

= max
F:[N]→∆k

∑

i, j
bi j

∑

s,t
astFi(s)F j(t) (49)

= max
F:[N]→∆k

∑

i, j
bi jQA(Fi, F j) (50)

where on line (48), instead of choosing a label σ(s) ∈ [k], we allow a distribution over the k labels F(s) ∈ ∆k.
The equality follows since any such probabilistic labeling F yields a labeling σ with the same expected
objective value by picking, for every s ∈ [N], a label i with probability F(s)i. On line (49) we interchanged
the order of summation and interpreted the ith co-ordinate of F(s) (i.e. F(s)i) as the value of a function Fi :
[N]→ [0, 1] at index s (i.e. Fi(s)). Thus F = (F1, F2, . . . , Fk). On line (50) we rewrote ∑

s,t astFi(s)F j(t) as
a PSD quadratic form QA(Fi, F j) on the tables of values of functions Fi and F j.

This enables us to reformulate the clustering problem as: Given a PSD matrix B, and a PSD quadratic
form Q(·, ·) on RN × RN , �nd F : [N]→ ∆k, F = (F1, F2, . . . , Fk), so as to maximize ∑

i j bi jQ(Fi, F j).

The clustering problem instance

Given a Unique Games instance

L
(G(V,W, E), [n], {πvw : [n]→ [n]}(v,w)∈E

)
,

the clustering problem is to �nd F : W × Ωn → ∆k so as to maximize ∑k
i=1 Q(Fi, Fi) where Q is a suitably

de�ned PSD quadratic form. Thus the matrix B is the k × k identity matrix. For notational convenience, we
let

Fw := F(w, ·), Fw : Ωn → ∆.

Also, for every v ∈ V , we let

Fv B E(v,w)∈E [Fw ◦ πvw] , Fv : Ωn → ∆.
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We used the following notation: for any function g : Ωn → ∆k and π : [n]→ [n], g ◦ π : Ωn → ∆k denotes a
function

(g ◦ π)(ω) := g(ωπ(1), ωπ(2), . . . , ωπ(n)).

As usual, we denote Fw = (Fw,1, Fw,2, . . . , Fw,k) where each Fw,i has range [0, 1] and ∑k
i=1 Fw,i ≤ 1. Simi-

larly, Fv = (Fv,1, Fv,2, . . . , Fv,k). Now we are ready to de�ne the clustering problem instance.
Clustering instance: The goal is to �nd F : W ×Ωn → ∆k so as to maximize:

max
F:W×Ωn→∆k

Ev∈V [OBJ(Fv)] = max
F:W×Ωn→∆k

k∑

i=1
Ev∈V


∑

σ:|σ|=1
F̂v,i(σ)2

 . (51)

Completeness.

We will show that if the Unique Games instance has an almost satisfying labeling, then the objective value
of the clustering problem is (1 − o(1)) · (1 − 1/k). So, let ρ : V ∪W → [n] be the labeling, such that for at
least 1 − ε fraction of the vertices v ∈ V (call such v good) we have

πvw(ρ(w)) = ρ(v) ∀ (v,w) ∈ E.

De�ne F : W ×Ωn → ∆k as follows: for every w ∈ W, Fw : Ωn → ∆k equals the dictatorship for ρ(w) ∈ [n],
i.e.

Fw := f dict,ρ(w).

Lemma 3.10. f dict, j ◦ π = f dict,π( j).

Proof. f dict,π( j)(ω) equals e` if ωπ( j) = `. On the other hand

( f dict, j ◦ π)(ω) = f dict, j(ωπ(1), ωπ(2), . . . , ωπ(n)),

which equals e` since ωπ( j) = `. �

Lemma 3.11. For a good v ∈ V, Fv = f dict,ρ(v).

Proof. For a good v, πvw(ρ(w)) = ρ(v) for every (v,w) ∈ E. Thus

Fv = E(v,w)∈E
[

Fw ◦ πvw
]

= E(v,w)∈E
[

f dict,ρ(w) ◦ πvw
]

= E(v,w)∈E
[

f dict,πvw(ρ(w))] = E(v,w)∈E
[

f dict,ρ(v)] = f dict,ρ(v)

�

Thus the contribution of v in (51) is OBJ( f dict,ρ(v)) = 1 − 1/k as observed in Equation (43). Since 1 − ε
fraction of v ∈ V are good, (51) is at least (1 − ε) · (1 − 1/k).
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Soundness

Suppose on the contrary that the value of (51) is at least C(k) + 2ε. We will prove that the Unique Games
instance must have a labeling that satis�es at least ετ2

4k log(1/τ) fraction of its edges, reaching a contradiction,
provided its soundness is chosen to be lower to begin with.

We de�ne a labeling as follows. First we de�ne a not-too-large set of labels L(w) ⊆ [n] for every w ∈ W.
Let τ be as in Theorem 3.8.

L(w) :=
{
j ∈ [n] | ∃ i ∈ [k], Inf≤log(1/τ)

j (Fw,i) ≥ τ/2
}

Clearly, |L(w)| ≤ 2k log(1/τ)
τ since each Fw,i has range [0, 1] and therefore the sum of all degree-log(1/τ)

in�uences is at most log(1/τ).
Now assume that the value of (51) is at least C(k) + 2ε. By an averaging argument, for at least ε fraction

of v ∈ V (call such v nice), OBJ(Fv) ≥ C(k) + ε. Applying Theorem 3.8, we conclude that there exists
i0 ∈ [k], j0 ∈ [n] such that Inf≤log(1/τ)

j0 (Fv,i0) ≥ τ. Observe that

τ ≤ Inf≤log(1/τ)
j0 (Fv,i0)

= Inf≤log(1/τ)
j0

(
E(v,w)∈E

[Fw,i0 ◦ πvw
] )

≤ E(v,w)∈E
[
Inf≤log(1/τ)

j0
(Fw,i0 ◦ πvw

)] Using Lemma 3.12 below

= E(v,w)∈E

[
Inf≤log(1/τ)

π−1
vw( j0)

(Fw,i0
)] Using Lemma 3.14 below

This implies that for at least τ
2 fraction of w such that (v,w) ∈ E, we have τ

2 ≤ Inf≤log(1/τ)
π−1

vw( j0)
(Fw,i0

). Thus
π−1

vw( j0) ∈ L(w) by the de�nition of L(w). De�ne j0 to be the label of v. Finally, for every w ∈ W, select a
random label from L(w) (or an arbitrary label if L(w) = ∅). Noting that ε fraction of v ∈ V are nice, and
|L(w)| ≤ 2k log(1/τ)

τ , it follows that the labeling satis�es ε · τ2 · 1
2kτ−1 log(1/τ) = ετ2

4k log(1/τ) fraction of the edges of
the Unique Games instance.

Lemma 3.12. Suppose C is a class of functions g : Ωn → R and h := Eg∈C[g]. Then for any j ∈ [n] and
integer d,

Inf j(h) ≤ Eg∈C
[
Inf j(g)

]
, Inf≤d

j (h) ≤ Eg∈C
[
Inf≤d

j (g)
]
.

Proof. We prove the �rst inequality, the second is similar by restricting summations to multi-indices |σ| ≤ d.

Inf j(h) :=
∑

σ:σ j,0
ĥ(σ)2 =

∑

σ:σ j,0

(
Eg∈C

[̂g(σ)]
)2 ≤

∑

σ:σ j,0
Eg∈C

[
ĝ(σ)2] = Eg∈C

[
Inf j(g)

]
.

�

Lemma 3.13. Suppose g : Ωn → R, π : [n]→ [n] and let σ be a multi-index. Then

ĝ ◦ π(σ) = ĝ(π−1(σ)).

Proof. The proof is a straightforward computation which we omit. �

Lemma 3.14. Suppose g : Ωn → R, π : [n]→ [n] and j ∈ [n]. Then

Inf j(g ◦ π) = Infπ−1( j)(g), Inf≤d
j (g ◦ π) = Inf≤d

π−1( j)(g).

28



Proof. We prove the �rst equality, the second is similar by restricting summations to multi-indices |σ| ≤ d.

Inf j(g ◦ π) :=
∑

σ:σ j,0
ĝ ◦ π(σ)2 =

∑

σ:σ j,0
ĝ(π−1(σ))2 =

∑

σ:σπ−1( j),0
ĝ(σ)2 = Infπ−1( j)(g).

�
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