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1 Introduction

The area of geometric functional analysis1 is concerned with studying the properties of geometric
(normed) spaces. A typical question in the area is: for two spaces X and Y , equipped with norms
‖·‖X and ‖·‖Y , under which conditions is there an embedding F : X → Y such that for any p, q ∈ X,
we have ‖p − q‖X ≤ ‖F (p) − F (q)‖Y ≤ C‖p − q‖Y for some constant2 C ≥ 1 ? A ubiquitous tool
for constructing such embeddings is the probabilistic method: the mapping is chosen at random
from some distribution, and one shows that it “works” with high probability. Unfortunately, this
approach does not lead to a concrete (or explicit) example of an embedding.

A prototypical problem in the area is that of embedding ln2 into lm1 . It is known [FLM77] that
there exist embeddings with both the distortion and the “dimension blowup” m/n bounded by a
constant. However, the proof of that theorem is probabilistic: one shows that a “random” mapping
preserves the distance between a fixed pair of points with high probability, and concludes that the
same holds for any pair of points if the aforementioned probability is high enough.

The problem of finding an explicit mapping with similar properties has been a subject of several
studies (see Table 1). For constant distortion the best known result, attributed to Rudin [Rud60],
guarantees m = O(n2); see also [LLR94] for an alternative proof. The problem of finding an explicit
embedding with “low” distortion and dimension blowup has been posed, e.g., in [JS01] (Section
2.2), or in [Mil00] (Problem 8), or in [Mat04] (Problem 2.1).

Distortion Dimension Reference Method

1 + η O(n) [FLM77] Probabilistic, uses Ω(n2) random bits
(any constant η > 0)

[Ind00b] Probabilistic, uses O(n log2 n) random bits
[AM06] Probabilistic, uses O(n log n) random bits√

3 O(n2) [Rud60]
(cf. [LLR94]) 4-wise independent sample spaces

1 + 1/n nO(log n) [Ind00b] Nisan’s pseudorandom generator

1 + 1/ log n n2O((log log n)2) this paper

1See [Sza06] for a very recent overview of the area.
2
C is called the distortion of the mapping F .
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In this paper we make progress on this question: for any 1 > η > 1/ log n, we give an explicit 3

construction of an embedding of ln2 into lm1 with distortion 1+η, with m = n2O((log log n)2) = n1+o(1).
Thus, our result matches the parameters of the non-explicit construction up to a sub-linear factor
in the dimension bound.

1.1 Applications

As a consequence of our result we obtain, for any constant ε > 0, a randomized “Las Vegas” (1+ε)-
approximate data structure for the near neighbor problem in R

n under the l2 norm. Our data
structure has query time polynomial in n, and uses space polynomial in the input size. Such result
was known for the l1 norm [Ind00a] (refer to that paper for a detailed description of the problem
and the results). The extension to the l2 norm follows immediately from our embedding.

In a similar fashion, our result implies a deterministic polynomial-time reduction from several
approximate lattice problems under l2 norm to analogous problems under l1 norm, with only 1 + ε
loss in the approximation factor. Previously known reductions incurred a loss of a

√
3 factor. The

reduction applies to problems such as the Shortest Vector Problem and the Closest Vector Problem.
See [RR06] for more on this topic.

1.2 Our techniques

Our embedding is constructed using the recursive “divide and conquer” approach. The main step
is provided by the following theorem (see Preliminaries for the notation).

Theorem 1.1. For any constants ζ, κ > 0, there is an explicit linear mapping F : R
n → R

m,

m = n logO(1) n/ζO(1), a scaling factor S > 0 and an explicit partitioning of the coordinate set

[m] into “block” sets B1 . . . Bb, each of size n1/2+κ2(log log n)O(1)
/ζO(1), such that for any x ∈ R

n,

‖x‖2 = 1, we have

(1 − O(ζ))S ≤
b

∑

j=1

‖(Fx)Bj
‖2 ≤ S

By applying this theorem O(log log n) times we obtain a mapping H : R
n → R

m′

, m′ = n1+o(1),
and blocks B1 . . . Bb′ of constant size, such that for any x as above we have

b′
∑

j=1

‖(Hx)Bj
‖2 = S(1 ± η′)

for some η′ > 0. Since for any y ∈ R
O(1) we have ‖y‖2 ≤ ‖y‖1 ≤ O(1) · ‖y‖2, the mapping

H preserves the norm of any unit vector x up to a constant factor. 4 The constant-distortion
embedding follows in a standard way from the properties of a norm.

How to construct the mapping F ? We proceed in two steps. In the first step, a vector x is
mapped into Dx ∈ R

m′

, m′ = Θ(n), such that (i) the mapping D preserves the l2 norm, and (ii) most
of the “mass” ‖Dx‖2 of Dx is “spread” over a “large” set S of coordinates. That is, for any “small”

3Formally, in this paper, the term “explicit” is defined as “constructible in time that is polynomial in n”. See
Section 1.2 for an overview of the construction.

4Alternatively, one can use the embedding of [Ind00b] within each block, to ensure that the distortion is arbitrarily
close to 1. This is the approach we use to obtain our main result.
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set of coordinates S, we have ‖(Dx)S‖2 < δ‖Dx‖2 for some constant 1 > δ > 0. Such properties
are often called uncertainty principles [DS89]. We note that several probabilistic constructions of
mappings with such properties have been discovered recently, e.g., in [Don06, CRT06] and [AC06]5.
See Section 4 for more information on this topic.

The key parameter of such mappings is the upper bound on the size of “a small set of co-
ordinates”. In particular, if the upper bound was linear, then D itself would have the desired
embedding properties. Indeed, consider a set S consisting of s = cm′ largest (in magnitude) coor-
dinates in Dx, for some constant c > 0. From the hypothetical properties of D, it would follow that
‖(Dx)[m′]−S‖2 ≥

√
1 − δ2‖x‖2 = Ω(‖x‖2). At the same time, for any i ∈ [m′] − S we would have

that |(Dx)i|2 ≤ ‖Dx‖2
2/s = O(‖x‖2

2/n). Therefore at least Ω(n) entries (Dx)i would have absolute
values of Θ(‖x‖2/

√
n), which would imply that ‖Dx‖1 = Ω(

√
n‖x‖2). At the same time, we have

‖Dx‖1 ≤
√

m′‖Dx‖2 = O(
√

n‖x‖2). Therefore, the mapping D would have constant distortion
(after scaling it by a factor of 1/

√
n).

Unfortunately, we do not know how to explicitely construct such a mapping D that works for
sets S of linear size. However, we do know how to handle sets of size up to Θ(

√
n). The existence of

such mappings, together with an explicit construction (for some δ > 0), was discovered by [DS89];
see Section 4 for further discussion. Here, we require this property for any δ > 0. We show that
a certain explicit construction of “highly orthogonal” configuration of vectors in R

n [CS73, WF89]
can be used to construct such mapping D.

In the second step, the coordinates of the vector Dx are duplicated, rearranged, and partitioned
into b “buckets” (note that these operations preserve the l2 norm of a vector up to a scaling factor).
The goal of this step is to ensure that the resulting vector Fx has the property that, for “most”
buckets Bj , we have ‖(Fx)Bj

‖2 ≈ ‖Fx‖2/b. Note that this is possible only if the “mass” ‖Dx‖2 is
“spread” over more than b coordinates, which is achieved using the aforementioned properties of
the mapping D.

The rearrangement is done using an extractor, i.e., an expanding bipartite graph, in which
the left vertex set is much larger than the right vertex set; see Section 3 for more information on
extractors. Many explicit constructions of extractors are known [Sha04]. To use an extractor in
our construction, however, we require that the maximum degree of any right vertex is at most a
constant factor away from the average degree of the right vertices. Although this property does not
have to hold in general, one can “enforce”it by removing a few edges and vertices of an extractor.
This “trimming” procedure is simple and can be performed in time polynomial (in fact, linear) in
the size of the graph.

Combining the “spreading” and “rearranging” steps yields the embedding of Theorem 1.1.

2 Preliminaries

In the paper we use n to denote the dimension of the “guest” space l2. We assume that n = 22l for
an integer l > 0; this can be easily achieved by padding extra dimensions with 0’s.

We use [n] to denote the set {1 . . . n}. For any x ∈ R
n, and S ⊂ [n], we use xS to denote the

projection of x on S; that is, (x1, . . . , xn){i1,...,is} = (xi1 , . . . , xis).
It will be convenient to perform arithmetic operations (such as addition or subtraction) on two

vectors x and y even if their dimensions different. Given vectors x : X → R and y : Y → R, and

5In fact, this work has been inspired by the result of [AC06].
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an operation ⊗, the value of x ⊗ y is equal to x′ ⊗ y′, where x′ : X ∪ Y → R is an extension of x
obtained by padding the dimensions in Y − X with 0’s; y′ is defined analogously.

In a graph G with the set of edges E, we use ΓG(i) to denote the sequence of vertices adjacent
to the vertex i in G (in any fixed order).

Consider any set S ⊂ Σn for some set Σ. We say that the uniform distribution over S (or just
S) is k-wise independent, if for any |K| ≤ k, z ∈ Σk, Prx∈S[xK = z] = |Σ|−k.

3 Extractors

Our construction utilizes extractors. They are defined as follows.

Definition 3.1. A bipartite graph G = (A,B,E), A = [a], B = [b], with each left node having degree

d, is called an (ε, l)-extractor, if it satisfies the following property. Consider any distribution P over

A such that for any i ∈ A, PrP [i] ≤ 1/l. Let j be a random variable over B obtained by choosing

a vertex i from A, choosing t uniformly at random from [d], and setting j = ΓG(i)t. Let G(P) be

the resulting distribution of the random variable j, and let I be the uniform distribution over B.

We require that G(P) and I are ε-close, i.e., that ‖G(P) − I‖1 ≤ ε, where both distributions are

interpreted as vectors in R
b.

It is useful to observe that if P is a uniform distribution over some set A′ ⊂ A, then, for any
j ∈ B, the value of PrG(P)[j] is proportional to the number of neighbors of j that belong to A′.

There exist several explicit constructions of extractors which guarantee the left degree d =
2(log log a)O(1)

/εO(1) (see [Sha04] for an overview). Here we use the construction of [Zuc97], with
parameters l = aλ, b = aλ−κ and d = (log a)O(1), for any constants λ, κ ∈ (0, 1).

In our applications we also need an upper bound on the right degree ∆ of the extractor. To
this end we show6 that one can achieve ∆ = O(ad/b) by taking any extractor G and applying the
following “trimming” procedure. Let avg = ad/b be the average right degree of G, and let t > 1,
δ > 0 be constants determined later.

1. Select B′ ⊂ B containing nodes with degree higher than t · avg.

2. Select A′ ⊂ A containing nodes with more than δd neighbors in B′.

3. Construct an induced subgraph G′ = (A − A′, B − B′, E′) of G.

4. For any node i ∈ A − A′ with di = |ΓG′(i)| < d, add d − di edges incident to i. Let E′′ be
the set of all of those edges. The right endpoints of the edges are chosen such that each right
vertex is incident to at most d|E′′|/|B − B′|e of the edges. For example, we can set the s-th
edge of E′′ to be incident to the node (s mod |B − B′|) + 1.

From the construction it follows that each left node of G′ has degree d, and that the right degree
of G′ is O(ad/b + ad/|B − B′|). The rest is shown in the following claim.

Claim 3.2. Set t = 2 and δ = 4ε. Then the graph G′ has a/2 left vertices, b/2 right vertices, and

is an (δ + ε, l)-extractor.

6This fact was apparently known, but we were unable to locate an appropriate reference. However, the pa-
per [WZ99] provides such a proof for somewhat simpler combinatorial objects called dispersers.
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Proof. First, observe that at most b/t nodes in B have degree higher than t ·avg, so |B−B′| ≥ b/2.
Let F be the set of edges incident to B′, and let P be a uniform distribution over A. In this case
|F |
|E| =

∑

j∈B′ PrG(P)[j]. Moreover, the probability of choosing j ∈ B′ with respect to distribution

G(P) is at least t/b, which exceeds the average 1/b by at least (t − 1)/b. Since
∑

j∈B′

Pr
G(P)

[j](1 − 1/t) ≤
∑

j∈B′

Pr
G(P)

[j] − 1/b ≤ ε

it follows that |F |
|E|(1−1/t) ≤ ε, or |F |

|E| ≤ ε(1+ 1
t−1) = 2ε. Therefore, at most 2ε/δ = 1/2 fraction

of nodes in A have more than δd edges leading to B′, so |A − A′| ≥ a/2. Finally, each node in
A − A′ is incident to at most δd new edges E′′. Thus, for any distribution P over A′, we have
‖G(P) − G′(P)‖1 ≤ δ. It follows that G′ is an (δ + ε, l)-extractor.

4 Uncertainty principles

Let H be a normalized n × n Hadamard matrix. That is, all entries of H are either −1/
√

n or
1/
√

n, and the rows of H are mutually orthogonal. Thus, the rows of H form an orthonormal basis
for R

n. In addition, let I be the n × n identity matrix.
The pair of matrices (I,H) has the following nice property: for each row u of I and row v of

H, we have |u · v| ≤ 1/
√

n. In general, consider any collection H1 ∪ . . . ∪ HL of n× n orthonormal
matrices, and let D be an n · L × n matrix obtained by concatenating the rows of those matrices
(D is often called a dictionary). The coherence of D is defined as the maximum, over all rows u, v
of D, of |u ·v|. In particular, the coherence of the concatenation of matrices I and H has coherence
1/
√

n, while the coherence of any orthonormal matrix is 0.
In [DS89] the authors show a relation between the coherence of D, and the sparsity of the

representation Dx of any vector x ∈ R
n. Specifically, they consider a dictionary D obtained from

the identity matrix I and a Fourier matrix; such a dictionary D has coherence 1/
√

n. They show
that, for any x ∈ R

n, Dx must have at least 2
√

n non-zero elements. They also show a more general
fact: there exists c > 0, such that for any set S of coordinates of Dx of size at most c

√
n, the ratio

‖(Dx)S‖2

‖Dx‖2
is bounded away from 1 (although not arbitrarily close to 0).

This phenomenon is akin to an uncertainty principle: a signal cannot be concentrated in both
the time and the frequency domain.

This result was generalized [DH01] to dictionaries D consisting of two arbitrary orthonormal
matrices H1,H2. They show that, for any x ∈ R

n, the vector Dx must have at least 1/M non-
zero entries, where M is the coherence of D. This theorem was later extended in [GN03] to
concatenations of L orthonormal matrices H1 . . . HL.

In this paper, we exploit a general version of the uncertainty principle phenomenon, stated as
Lemma 4.2 below. We start from the following observation.

Claim 4.1. Consider any N × n dictionary D with coherence M , and a submatrix DS consisting

of at most s rows in D. For any unit vector x ∈ R
n, we have ‖DSx‖2

2 ≤ 1 + Ms.

Proof. We need to upper-bound the 2-norm ‖DS‖2 of DS , which is equal to the square root of the
largest eigenvalue λ(G) of the Gram matrix G = DS × DT

S . Clearly, for i, j ∈ [s], i 6= j, we have
Gii = 1 and |Gij | ≤ M . It follows that |λ(G)| ≤ |λ(I)| + |λ(G − I)| ≤ 1 + Ms, since all entries of
G − I are in the range [−M,M ].
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Note: a related proof has appeared in [Tro04] (Proposition 4.3).
Assume now that D is obtained by concatenating L orthonormal matrices H1 . . . HL. Clearly,

for any unit vector x ∈ R
n, we have ‖Dx‖2

2 = L. At the same time, for any set of coordinates
S ⊂ [Ln], |S| = s, we have ‖(Dx)S‖2

2 ≤ 1 + Ms (Claim 4.1). This shows the following lemma.

Lemma 4.2. Let D be a dictionary obtained by concatenating rows of L orthonormal n×n matrices

H1 . . . HL with coherence M . Then, for any set of coordinates S ⊂ [Ln], |S| = s, and any unit

vector x ∈ R
n, we have

‖(Dx)S‖2
2 ≤ (1 + Ms)‖Dx‖2

2/L

It remains to construct dictionaries with small coherence. Fortunately, if n = 22k for an integer
k > 0, then there exist explicit constructions of a dictionary D consisting of the rows of L = n/2+1
orthonormal matrices H1 . . . HL, such that the coherence of D is 1/

√
n. The constructions appear

in [CS73, WF89, CCKS00]; see [HSP06] for a simplified description of the construction (In a
nutshell: each Hi is either an identity matrix, or is equal to H × Di, where H is the Hadamard
matrix, and Di’s are carefully chosen diagonal matrices.) Therefore, for s =

√
n, we have Ms ≤ 1,

and any s coordinates of Dx can contain at most
√

2/L fraction of the “mass” ‖Dx‖2.

Corollary 4.3. Let n = 22k for an integer k > 0. For any δ > 2/
√

n, there exists an explicit

construction of a dictionary D consisting of the rows of L = 2/δ2 orthonormal n × n matrices

H1 . . . HL, such that for any unit vector x ∈ R
n, and any set S ⊂ [nL], |S| ≤ s =

√
n, we have

‖(Dx)S‖2 ≤ δ‖Dx‖2.

5 The construction

Our construction utilizes the observation of Corollary 4.3. Fix δ > 0 to be some constant, and let
L = O(1/δ2) and s =

√
n be as in the latter corollary. In addition, we use an (ε, l)-extractor G

with A = [Ln] and B = [b] for b = n1/2−κ, κ > 0, l = (1 − δ)2s/L, left degree d = (log a)O(1) and
right degree ∆ = O(nLd/b). The values of δ and ε are set at the end of the following proof of the
the Theorem 1.1. For convenience, we restate the theorem below, using the notation introduced
above.

Theorem 1.1. For any ζ, κ > 0, there is an explicit linear mapping F : R
n → R

m, m = O(nLd) =
n logO(1) n/ζO(1), and a partitioning of the coordinates set [m] into sets B1 . . . Bb, each of size

O(∆) = O(nLd/b) = n1/2+κ2(log log n)O(1)
/ζO(1), such that for any x ∈ R

n, ‖x‖2 = 1, we have

(1 − O(ζ))
√

Ldb ≤
b

∑

j=1

‖(Fx)Bj
‖2 ≤

√
Ldb

Proof. The mapping F is constructed as

Fx = ⊕b
j=1(Dx)ΓG(j)

where ⊕ is the direct sum operator (i.e., concatenation).
Let y = Dx. Observe that ‖y‖2 =

√
L. In the following we show that the mapping has constant

expansion as well as constant contraction, with respect to the norm of the host space.
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Expansion. Let yd = ⊕d
i=1y. Note that ‖yd‖2 =

√
Ld. We can interpret Fx as a vector yd

partitioned into d blocks, and use the following lemma.

Lemma 5.1. For any x ∈ R
n, and any partitioning P1 . . . Pb of [n], we have

b
∑

t=1

‖xPt‖2 ≤
√

b‖x‖2

Proof. Construct a vector y ∈ R
b such that yj = ‖xPt‖2. Observe that ‖y‖1 =

∑b
t=1 ‖xPt‖2 and

‖x‖2
2 =

∑b
t=1 ‖xPt‖2

2 =
∑b

t=1 y2
t = ‖y‖2

2. Since ‖y‖1 ≤
√

b‖y‖2, the lemma follows.

From Lemma 5.1 it follows that

b
∑

i=1

‖yΓG(i)‖2 ≤
√

b‖yd‖2 =
√

Ldb

Contraction. Let S ⊂ [Ln] be the set of indices of the s largest (in magnitude) entries of y.
Consider the vector z = y[Ln]−S interpreted as a vector in R

Ln. Let ρ = ‖z‖2. From Lemma 4.3 we

know that ρ ≥
√

L(1 − δ). At the same time, for each i = 1 . . . Ln, we have z2
i ≤ ‖y‖2

2/s = L/s.
We use z to construct a probability distribution P over [Ln], by defining pi = z2

i /‖z‖2
2 = z2

i /ρ2.

It follows that pi ≤ L/s
ρ2 ≤ 1/l. Therefore, P satisfies the conditions on using the extractor G. This

implies that the distribution Q = G(P) over B is ε-close to the uniform distribution over B.
For any j ∈ B, the probability qj with respect to Q is equal to

qj = 1/d ·
∑

i∈ΓG(j)

pi =
1

ρ2d
·

∑

i∈ΓG(j)

z2
i =

1

ρ2d
‖zΓG(j)‖2

2

Since Q is ε-close to the uniform distribution, we get

b
∑

j=1

∣

∣

∣

∣

1

ρ2d
‖zΓG(j)‖2

2 − 1/b

∣

∣

∣

∣

≤ ε

Therefore, for at least b(1 − α) indices j, we have 1
ρ2d

‖zΓG(j)‖2
2 ≥ (1 − ε/α)/b, or, ‖zΓG(j)‖2 ≥

√

(1 − ε/α)ρ2
√

d/b. Therefore

∑

j

‖yΓG(j)‖2 ≥
∑

j

‖zΓG(j)‖2 ≥ b(1 − α)
√

ρ2(1 − ε/α)
√

d/b ≥ (1 − α)
√

(1 − δ)2(1 − ε/α) ·
√

Ldb

Setting α = δ = ζ, and ε = ζ2 finishes the proof.

Corollary 5.2. For any 1 > η > 0 there is an explicit embedding of ln2 into lm1 ,

m = (logO(1)(n)/ηO(1))O(log log n) · 1/ηO(log 1/η)

with distortion 1 + O(η).
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Proof. Apply Theorem 1.1 O(log log n) times with ζ = η/ log log n to reduce each block size to a
constant n′ = Θ(1/η). Within each block use the embedding of [Ind00b] which embeds ln

′

2 into

ln
′O(log n′)

1 with distortion 1 + η. The total distortion is at most (1 + η)(1 + η/ log log n)O(log log n) =
1 + O(η). The dimension blowup is at most

(logO(1)(n)/ζO(1))O(log log n) · 1/ηO(log 1/η)

Note that the latter bound is at most 2O((log log n)2) for η = 1/ log n.
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