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ABSTRACT
In this paper, we show that any n point metric space can
be embedded into a distribution over dominating tree met-
rics such that the expected stretch of any edge is O(log n).
This improves upon the result of Bartal who gave a bound
of O(log n log log n). Moreover, our result is existentially
tight; there exist metric spaces where any tree embedding
must have distortion Ω(log n)-distortion. This problem lies
at the heart of numerous approximation and online algo-
rithms including ones for group Steiner tree, metric labeling,
buy-at-bulk network design and metrical task system. Our
result improves the performance guarantees for all of these
problems.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph
Algorithms

General Terms
Algorithms, Theory

Keywords
Metrics, Embeddings, Tree metrics

1. INTRODUCTION
1.1 Metric approximations
The problem of approximating a given graph metric by a
“simpler” metric has been a subject of extensive research,
motivated from several different perspectives. A particularly
simple metric of choice, also favored from the algorithmic

‡Supported by NSF grants CCR-0105533 and CCR-
9820897.∗Supported in part by a DPST scholarship and NSF grant
CCR-0105533.†Supported by NSF grant CCR-0105533.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

point of view, is a tree metric, i.e. a metric arising from
shortest path distance on a tree containing the given points.
Ideally we would like that distances in the tree metric are no
smaller than those in the original metric and we would like
to bound the distortion or the maximum increase. However,
there are simple graphs (e.g. the n-cycle) for which the
distortion must be Ω(n) [41, 7, 25].

To circumvent this, Karp [30] considered approximating the
cycle by a probability distribution over paths, and showed
a simple distribution such that the expected length of each
edge is no more than twice its original length. This gave a
competitive ratio of 2 for the k-server problem (on a cycle)
that had motivated this approach. Alon, Karp, Peleg and
West [1] looked at approximating arbitrary graph metrics by
(a distribution over) spanning trees, and showed an upper

bound of 2O(
√

log n log log n) on the distortion.

Bartal [7] formally defined probabilistic embeddings and im-
proved on the previous result by showing how to probabilis-
tically approximate metrics by tree metrics with distortion
O(log2 n). Unlike the result of Alon et.al. [1], Bartal’s trees
were not spanning trees of the original graph, and had ad-
ditional Steiner points. He however showed that this proba-
bilistic approximation leads to approximation algorithms for
several problems, as well as the first polylogarithmic com-
petitive ratios for a number of on-line problems. We should
note that the trees that Bartal used have a special struc-
ture which he termed hierarchically well separated. This
meant that weights on successive levels of the tree differed
by a constant factor. This was important for several of his
applications.

Konjevod, Ravi and Salman [34] showed how Bartal’s re-
sult improves to O(log n) for planar graphs, and Charikar
et.al. [17] showed similar bounds for low dimensional normed
spaces. Inspired by ideas from Seymour’s work on feed-
back arc set [45], Bartal [8] improved his earlier result to
O(log n log log n). This of course led to improved bounds on
the performance ratios of several applications. Bartal also
observed that any probabilistic embedding of an expander
graph into a tree has distortion at least Ω(log n).

In this paper, we show that an arbitrary metic space can be
approximated by a distribution over dominating tree metrics
with distortion O(log n), thus closing the gap between the
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lower and the upper bounds. Our result is constructive and
we give a simple algorithm to sample a tree from this distri-
bution. Our trees are also heirarchically well separated, like
Bartal’s. This gives improved approximation algorithms for
various problems including group Steiner tree [24], metric la-
beling [19, 32], buy-at-bulk network design [4], and vehicle
routing [16]. We give a more comprehensive list in section 3.

1.2 Related Work
Divide and conquer methods have been used to provide
polylogarithmic-factor approximation algorithms for numer-
ous graph problems since the discovery of an O(log n) ap-
proximation algorithm for finding a graph separator [36].
The algorithms proceeded by recursively dividing a prob-
lem using the above approximation algorithm, and then us-
ing the decomposition to find a solution. Typically, the
approximation factor was O(log2 n): a logarithmic factor
came from the O(log n) separator approximation, another
O(log n) factor came from the recursion. Using this frame-
work, polynomial-time approximation algorithms for many
problems are given in [36], for example: crossing number,
VLSI layout, minimum feedback arc set, and search num-
ber.

Independently, Seymour [45] gave an O(log n log log n) bound
on the integrality gap for a linear programming relaxation of
the feedback arc set problem (for which the above techniques
had given an O(log2 n) bound). In doing so, he developed
a technique that balanced the approximation factor of his
separator based procedure against the cost of the recursion
to significantly improve the bounds.

Even et al.[20] introduced linear programming relaxations
for a number of problems and combined them with Sey-
mour’s techniques to give O(log n log log n)-approximation
algorithms for many of the problems that previously had
O(log2 n) approximation algorithms, e.g., linear arrange-
ment, embedding a graph in d-dimensional mesh, interval
graph completion, minimizing storage-time product, and (sub-
set) feedback sets in directed graphs.

Bartal’s results [8] implied O(log n log log n)-approximations
for still more problems. Moreover, he used probabilistic
techniques so as to bound the expected stretch of each edge,
not just the average. This led to polylogarithmic com-
petitive ratio algorithms for a number of online problems
(against oblivious adversaries) such as metrical task sys-
tem [10]. Charikar et.al. [16, 17] showed how to derandomize
the approximation algorithms that follow from Bartal’s em-
beddings.

This work also follows the line of research on embeddings,
with low distortion, graphs into other “nice” metric spaces,
which have good structural properties, such as Euclidean
and �1 spaces [37, 26, 18, 43, 23].

The work of Bourgain [14] showed that any finite metric
on n nodes can be embedded into �2 with logarithmic dis-
tortion with the number of dimensions exponential in n.
Linial, London, and Rabinovich [37] modified Bourgain’s
result to apply for �1 metrics and to use O(log2 n) dimen-
sions. Aumann and Rabani [3] and Linial, London and Ra-
binovich [37] gave several applications, including a proof of

a logarithmic bound on max-flow min-cut gap for multi-
commodity flow problems. They also gave a lower bound
on the distortion of any embeddings of general graphs into
�1. For more details, we point the reader to Chapter 15 in
Matousek [38].

Embeddings of special graphs have also been considered by
many researchers. Gupta et al. [26] considered embeddings
or series-parallel graphs and outerplanar graphs into �1 with
constant distortion; Chekuri et al. [18] show a constant-
distortion embedding for k-outerplanar graphs. For pla-
nar graph, Rao [43] gave an O(

√
log n)-distortion embedding

into �2, which matched the lower bound given by Newman
and Rabinovich [39].

Graph decomposition techniques for many interesting classes
of graphs have also been extensively studied. For example,
Klein, Plotkin, and Rao’s [31] result provided a constant fac-
tor approximation for graphs that exclude fixed sized minors
(which includes planar graphs). Similar results were given
by Charikar et al. [17] for geometric graphs.

1.3 Our techniques
The algorithm relies on techniques from the algorithm for
0-extension given by Calinescu, Karloff and Rabani [15],
and improved by Fakcharoenphol, Harrelson, Rao and Tal-
war [21]. The CKR procedure implies a randomized algo-
rithm that outputs clusters of diameter about ∆ such that
the probability of an edge e being cut is (de/∆) log n, where
de is the length of the edge e. The analysis can in fact be
improved to replace the log n by the logarithm of the ratio
of number of vertices within distance ∆ of e to the no. of
vertices within distance ∆/2; i.e. the number of times the
size of a neighbourhood of e doubles between ∆/2 and ∆.
Our algorithm runs a CKR like procedure for diameters 2i,
i = 0, 1, 2, . . . to get a decomposition of the graph (which
can then be converted to a tree). Since the total number of
doublings over all these levels is bounded by log n.

2. THE ALGORITHM
In this section, we outline the algorithm for probabilistically
embedding an n point metric into a tree, and show that the
expected distortion of any distance is O(log n). Like previ-
ous algorithms, we first decompose the graph hierarchically
and then convert the resulting laminar family to a tree.

2.1 Preliminaries
We define some notation first. Let the input metric be (V, d).
We shall refer to the elements of V as vertices or points. We
shall refer to a pair of vertices (u, v) as an edge. Without
loss of generality, the smallest distance is strictly more than
1. Let ∆ denote the diameter of the metric (V, d). Without
loss of generality, ∆ = 2δ .

A metric (V ′, d′) is said to dominate (V, d) if for all u, v ∈ V ,
it is the case that d′(u, v) ≥ d(u, v). We shall be looking for
tree metrics that dominate the given metric.

Let S be a family of metrics over V , and let D be a distribu-
tion over S . We say that (S ,D) α-probabilistically approxi-
mates a metric (V, d) if every metric in S dominates d and
for every pair of vertices (u, v) ∈ V , Ed′∈(S,D)[d

′(u, v)] ≤
α · d(u, v).
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We shall be interested in α-probabilistically approximating
an arbitrary metric (V, d) by a distribution over tree metrics.

For a parameter r, an r-cut decomposition of (V, d) is a par-
titioning of V into clusters, each centered around a vertex
and having radius at most r. Thus each cluster will have
diameter at most 2r.

A hierarchical cut decomposition of (V, d) is a sequence of
δ + 1 nested cut decompositions D0, D1, . . . , Dδ such that

• Dδ = {V }, i.e. the trivial partition (that puts all
vertices in a single cluster).

• Di is a 2i-cut decomposition, and a refinement of Di+1.

Note that each cluster in D0 has radius at most 1 and hence
must be a singleton vertex.

2.2 Decompositions to trees
A hierarchical cut decomposition defines a laminar family1,
and naturally corresponds to a rooted tree as follows. Each
set in the laminar family is a node in the tree and the chil-
dren of a node corresponding to a set S are the nodes cor-
responding to maximal subsets of S in the family. Thus the
node corresponding to V is the root and the singletons are
the leaves. Also note that the children of a set in Di+1 are
sets in Di. (See figure 1).

We define a distance function on this tree as follows. The
links from a node S in Di to each of its children in the tree
have length equal to the 2i (which is an upper bound on the
radius of S). This induces a distance function dT (·, ·) on V
where dT (u, v) is equal to the length of the shortest path
distance in T from node {u} to node {v}. Given the length
function, it is easy to see that dT (u, v) ≥ d(u, v) for all u
and v.

We shall also like to place upper bounds on dT (u, v). We
say an edge (u, v) is at level i if u and v are first separated in
the decomposition Di. Note that if (u, v) is at level i, then

dT (u, v) = 2
∑i

j=0 2j ≤ 2i+2.

2.3 Decomposing the graph
We shall describe a random process to define a hierarchical
cut decomposition of (V, d), such that the probability that
an edge (u, v) is at level i decreases geometrically with i.

We first pick a random permutation π of {v1, v2, . . . , vn},
which will be used throughout the process. We also pick a
β uniformly at random in the interval [1, 2]. For each i, we
compute Di from Di+1 as follows. First set βi to be 2i−1β.
Let S be a cluster in Di+1. We assign a vertex u ∈ S to the
first (according to π) vertex v ∈ V closer than βi to u. Each
child cluster of S in Di then consists of the set of vertices in
S assigned to a single center v. Note that the center v itself
need not be in S. Thus one center v may correspond to more
than one cluster, each inside a different level (i + 1) cluster

1Recall that a laminar family F ⊆ 2V is a family of subsets
of V such that for any A, B ∈ F , it is the case that A ⊆ B
or B ⊆ A or A ∩ B = φ.

(2)

(3)

(8)

(10)

 (11) (7)

(6)(5)
(4)

(9)
(1)

Figure 2: A possible hierarchical cut decomposition
output by the algorithm. The varying thicknesses
indicate cuts at different levels.

(see for example, the center π(8) in figure 2). Note that
since βi ≤ 2i, the radius of each cluster is at most 2i and
thus we indeed get a 2i-cut decomposition. More formally,

Algorithm Partition (V, d)
1. Choose a random permutation π of v1, v2, . . . , vn.
2. Choose β uniformly at random in [1, 2].
3. Dδ ← {V }; i← δ − 1.
4. while Di+1 has non-singleton clusters do
4.1 βi ← 2i−1β.
4.2 For l = 1, 2, . . . , n do
4.2.1 For every cluster S in Di+1.
4.2.1.1 Create a new cluster consisting of all unassigned

vertices in S closer than βi to π(l).
4.3 i← i− 1.

It is easy to see that the algorithm can be implemented in
time O(n3). A more careful implementation can actually
be made to run in time O(n2) (i.e. linear in the size of the
input).

We now fix an arbitrary edge (u, v), and show that the ex-
pected value of dT (u, v) is bounded by O(log n) ·d(u, v). We
shall make no attempts to optimize the constants in this
analysis. From the discussion above, it follows that

E[dT (u, v)] ≤
δ∑

i=0

Pr[(u, v) is at level i] · 2i+2 (1)

We shall show that the right hand side of this equation is
bounded by O(log n) · d(u, v).

If vertices u and v are in separate clusters in Di, we say that
Di separates (u, v). Now note that (u, v) is at level i if

(a) Di separates (u, v).

(b) Dj does not separate (u, v) for any j > i.
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S0

S1

S2 S3

S4

Dia(S0)/2

Dia(S0)/2
Dia(S0)/2

Dia(S0)/2

Dia(S1)/2
Dia(S2)/2 ...

Figure 1: Converting a laminar family into a tree. Note that the values we put on the links ensure that the
embedding is an expansion.

Clearly if d(u, v) > 2i+2, then u and v cannot be in the
same cluster in Di+1, i.e., Di+1 separates (u, v). From (b)
above, (u, v) cannot be at level i. Let j∗ be the smallest i
such that d(u, v) ≤ 2i+2. Thus Pr[(u, v) is at level i] = 0 for
any i < j∗. For i ≥ j∗, we shall bound the probability that
(u, v) is at level i.

From (a) and (b) above, for any i ≥ j∗,

Pr[(u, v) is at level i]

= Pr[Di separates (u, v)] ·
Pr[	 ∃j > i :Dj separates (u, v) | Di separates (u, v)]

≤ Pr[Di separates (u, v)]

For any j∗ ≤ j ≤ δ, let Ku
j be the set of vertices in V closer

than 2j to vertex u, and let ku
j = |Ku

j |. We define Kv
j and

kv
j similarly. For j < j∗, we let ku

j = 0.2

Now consider the clustering step at level i ≥ j∗. In each
iteration, all unassigned vertices v such that d(v, π(l)) ≤ βi

assign themselves to π(l). For some initial iterations of this
procedure, both u and v remain unassigned. Then at some
step l, at least one of u and v gets assigned to the center π(l).
We say that center π(l) settles the edge (u, v) at level i if it is
the first center to which at least one of u and v get assigned.
Note that exactly one center settles any edge (u, v) at any
particular level. Further, we say that center π(l) cuts the
edge e = (u, v) at level i if it settles e at this level, but exactly
one of u and v is assigned to π(l) at level i. Clearly, Di

separates (u, v) iff some center w cuts it at this level. Hence
Pr[Di separates (u, v)] =

∑
w Pr[w cuts (u, v) at level i].

We say that center w cuts u out of (u, v) at level i if w
cuts (u, v) at this level and u is assigned to w (and v is not
assigned to w) at this level. For each center w, we shall
bound the probability that w cuts u out of (u, v) at level
i. Let us arrange the centers in Ku

i in increasing order of

2Though the notation does not explicitly suggest so, these
ku

j , etc. are then defined with respect to the edge (u, v).

distance from u, say w1, w2, . . . , wku
i
. For a center ws to cut

(u, v) such that only u is assigned to ws, it must be the case
that

(a) d(u, ws) ≤ βi.

(b) d(v, ws) > βi.

(c) ws settles e.

Thus βi must lie in [d(u, ws), d(v, ws)] (see figure 3). By
triangle inequality, d(v, ws) ≤ d(v, u) + d(u, ws), and hence
the interval [d(u, ws), d(v, ws)] is of length at most d(u, v).
Since βi is distributed uniformly in [2i−1, 2i], the probability
that βi falls in the bad interval is at most (d(u, v)/2i−1).
Moreover for such a value of βi, any of w1, w2, . . . , ws can
settle (u, v) at level i and hence the first amongst these in
the permutation π will. Since π is a random permutation,
the probability that ws is the one to settle (u, v) at level i
is at most 1/s.

At this point, it is then easy to see that the probability that
Di separates (u, v) is at most

Pr[Di separates (u, v)]

≤
ku

i∑

s=1

(d(u, v)/2i−1) · 1
s

+

kv
i∑

s=1

(d(u, v)/2i−1) · 1
s

≤ (d(u, v)/2i−1)(ln ku
i + ln kv

i ).

Thus each i contributes at most O(log n) to the expected
value of dT (u, v) (equation 1) and hence the expected length
is bounded by O(log n log ∆).

We however promised to show an improved bound of O(log n).
We shall do so by observing that the total number of centers
over all δ levels is n. A more careful analysis of the above
procedure will yield the result.

Let us first consider some i ≥ j∗ +4. Since the radius of the
cluster at level i is at least 2i−1, centers very close to both u
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center w  can cut (u,v)

d(v,w)

d(u,w)

Centers that can settle
(u,v) for this value of β

2
i

β
i i

s

2
(i−3)

2
(i−1)

2
(i−2)

Figure 3: Bounding the probability of an edge being cut. Each shaded rectangle represents a center; arrow
marks indicate distances from u and v. Width of each shaded rectangle is at most d(u, v)

and v can never cut the edge (u, v). More precisely, for any
w in Ku

i−2, if u is assigned to w, it must be the case that v
gets assigned to w also, because d(v, w) ≤ d(v, u)+d(u,w) ≤
2i−2+2i−2 ≤ 2i−1 ≤ βi (since i ≥ j∗+4). Thus, no center in
w1, w2, . . . , wku

i−2
can ever cut u out of (u, v). This implies

that the probability that u gets cut out of edge e is in fact
bounded by

ku
i∑

s=ku
(i−2)+1

1

s
(d(u, v)/2i−1)

= (d(u, v)/2i−1) · (Hku
i
−Hku

(i−2)
)

Since (u, v) can be cut when either u or v is cut out by
some vertex, the overall probability that Di separates (u, v)
is then at most (d(u, v)/2i−1)·[Hku

i
+Hkv

i
−Hku

(i−2)
−Hkv

(i−2)
].

For i = j∗, j∗+1, j∗+2, j∗+3, we just bound this probability
by (d(u, v)/2i−1) · (Hku

i
+ Hkv

i
) ≤ (d(u, v)/2i−1) · 2Hn.

The expected value of dT (u, v) is therefore.

E[dT (u, v)]

≤
δ∑

i=0

Pr[(u, v) is at level i] · 2i+2

≤
δ∑

i=j∗
Pr[Di separates (u, v)] · 2i+2

≤
j∗+3∑

i=j∗
·2Hn · d(u, v)

2i−1
· 2i+2 +

δ∑

i=j∗+4

(Hku
i

+ Hkv
i
−Hku

(i−2)
−Hkv

(i−2)
) · d(u, v)

2i−1
· 2i+2

≤ 8d(u, v)(4 · 2Hn + Hku
δ

+ Hku
δ

+ Hku
(δ−1)

+ Hkv
(δ−1)

)

≤ 8d(u, v)(12Hn)

= 96 ln n · d(u, v)

The third to last inequality follows because alternate terms
of the summation

∑
i(Hku

i
−Hku

(i−2)
) telescope. Thus, we

have shown that for any edge (u, v), the expected value of
dT (u, v) is O(log n) · d(u, v). Hence,

Theorem 1. The distribution over tree metrics resulting
from our algorithm O(log n)-probabilistically approximates
the metric d.

We note that by choosing a slightly different distribution
for β, we can ensure that for any x (not just in [1, 2]), the
probability that there is some βi in [x, x + dx) is ( 1

x ln 2
)dx.

This then makes the analysis simpler3, and we do not have
to deal with the corner cases above. We omit the details
from this extended abstract.

2.4 HSTs
A tree T is said to be k-hierarchically well separated if on
any root to leaf path the edge lengths decrease by a fac-
tor of k in each step. Bartal [7, 8] constructed distribu-
tions over trees which were hierarchically well separated,
and such trees are more conducive to design of divide-and-
conquer type algorithms. The fact that the trees are well
separated has been used in applications such as metrical
task system[10] and metric labeling [32]. We note that the
trees we construct are 2-HSTs. Bartal [8] also observed that
a 2-HST can be converted to a k-HST with distortion O(k),
later improved to O(k/ log k) [11]. This combined with our
result implies a probabilistic embedding into k-HSTs with
distortion O(k log n/ log k). In fact, a slight modification of
our technique (details omitted) can be used to directly get
k-HSTs for any k, with distortion O( k log n

log k
). This can be

useful in some applications, e.g. min-sum k-clustering.

2.5 Derandomization
The problem of probabilistic approximation by tree metrics
asks for a distribution over tree metrics such that the ex-
pected stretch of each edge is small. A dual problem is find

3But somewhat less intuitive.
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a single tree such that the (weighted) average stretch of the
edges is small. More precisely, given weights wuv on edges,
find a tree metric dT such that for all u, v in V ,

• dT (u, v) ≥ d(u, v).

• ∑
u,v∈V wuv · dT (u, v) ≤ α

∑
u,v∈V wuv · d(u, v).

Charikar et.al.[17] showed that solving this problem is enough
for most applications, and moreover can give deterministic
algorithms. The algorithm of the previous section clearly
gives a randomized algorithm that solves the dual problem
for α = O(log n). We were however looking for deterministic
algorithms. The above algorithm can actually be derandom-
ized by the method of conditional expectation as follows.

The algorithm described above tosses coins to choose β ∈
[1, 2] and a permutation π. Since there are only n2 distinct
distances, there are only that many values of β that mat-
ter. For each of them, suppose we can compute exactly the
expected cost of the tree when π is chosen randomly. Then
we can find one for which this expectation is smaller than
the average (which is O(log n)). We then choose the per-
mutation π one vertex at a time. To use the method of
conditional expectation again, we need to be able to com-
pute, having fixed β and a prefix of the permutation π, the
expected cost of the tree, where the expectation is taken
over random choices of the rest of π. Assuming we could do
this in polynomial time, we simply try all possible choices
for the next vertex in the permutation, and pick the one
which maximizes the conditional expectation.

It remains to show how to compute the conditional expec-
tations. Given β and some (possibly empty) prefix of π,
each edge, at each level is either settled or not. In the for-
mer case, the cost at that level is already determined. In
the latter case, we know the set of vertices that can settle
the edge and the set of vertices that can cut the edge at a
particular level. Thus we can compute exactly the expected
cost of a particular edge at a particular level. By linear-
ity of expectation then, we can compute the total expected
cost. Hence we can solve the dual problem in determinis-
tic polynomial time. In fact, the computation above can
be simplified, replacing the exact value of the expected cost
above by the upper bounds used in the analysis (and thus
using the method of pessimistic estimators [42]).

3. APPLICATIONS
Many problems are easy on trees. The partitioning algo-
rithm we give produces a tree such that the expected stretch
of each edge is at most O(log n). By using our result, the
approximation ratios of various problems can be improved.
The following is a list of some our favorite applications.

The metric labeling problem : The previous result of Klein-
berg and Tardos [32] gives an O(log k log log k)-approximation
algorithm based on a constant factor approximation for the
case that the terminal metric is an HST. Our result improves
this to O(log n).

We also note that Archer, Talwar and Tardos [2] show that
the earthmover linear program of Chekuri et.al.[19] is inte-

gral when the input graph is a tree. Using this result, the ap-
proximation ratio can be improved to O(min(log k, log n)).

Buy-at-bulk network design : Awerbuch and Azar [4] give a
O(1)-approximation algorithm on trees. Thus, we can get
an O(log n)-approximation algorithm.

Minimum cost communication network problem : This prob-
lem [28, 40, 46] is essentially the dual problem defined in
section 2.5 and hence we get an O(log n) approximation.

The group Steiner tree problem : Garg, Konjevod, and Ravi [24]
give an O(log k log n)-approximation algorithm for trees; thus,
we obtain an O(log2 n log k)-approximation algorithm, im-
proving on the O(λ log n log k) result by Bartal and Mendel [12],
where λ = O(min{log n log log log n, log ∆ log log ∆}).

Metrical Task system : Improving on the result of Bartal,
Blum, Burch and Tomkins [10], Fiat and Mendel [22] gave
an O(log n log log n)-competitive algorithms on HSTs. Bar-
tal and Mendel’s [12] multiembedding result thus gives an
O(λ log n log log n)-competitive ratio, where λ is as defined
above. Our result improves this to an O(log2 n log log n)-
competitive ratio against oblivious adversaries.

The result also improves the performance guarantees of sev-
eral other problems such as vehicle routing [16], min sum
clustering [11, 9], covering steiner tree [33], hierarchical place-
ment [35], topology aggregation [6, 44], mirror placement [29],
distributed K-server [13], distributed queueing [27] and mo-
bile user [5]. We refer the reader to to [8] and [17] for more
detailed descriptions of these problems.
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