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Abstract. We prove that the number of vertices of a polytope of a particular kind

is exponentially large in the dimension of the polytope. As a corollary, we prove that
an n-dimensional centrally symmetric polytope with O(n) facets has 2Ω(n) vertices

and that the number of r-factors in a k-regular graph is exponentially large in the

number of vertices of the graph provided k ≥ 2r+1 and every cut in the graph with
at least two vertices on each side has more than k/r edges.

1. Introduction and main results

Let Rn be Euclidean space with the standard scalar product 〈·, ·〉 and the as-
sociated Euclidean norm ‖ · ‖. A polytope P ⊂ Rn is the convex hull of a finite
set of points. We say that P is n-dimensional if P has a non-empty interior. The
intersection of P with a supporting affine hyperplane is called a face of P . Faces of
P of dimension 0 are called vertices and faces of codimension 1 are called facets of
P .

In this paper we prove the following result.

(1.1) Theorem. For every α ≥ 1 there is γ = γ(α) > 0 such that the following
holds.

Suppose that P ⊂ Rn is a polytope containing the set{
x ∈ Rn : |〈x, ui〉| ≤ 1 for i = 1, . . . ,m

}
where ‖ui‖ ≤ 1 for i = 1, . . . ,m and m ≤ αn. Suppose further that P lies inside
the ball {

x ∈ Rn : ‖x‖ ≤ α
√
n
}
.

Then P has at least 2γn vertices.
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Our first corollary is a lower bound for the number of vertices of a centrally
symmetric polytope P , that is, a polytope P satisfying P = −P .

(1.2) Corollary. For every α ≥ 1 there exists γ = γ(α) > 0 such that if P is an
n-dimensional centrally symmetric polytope with not more than αn facets then P
has at least 2γn vertices.

By duality, an n-dimensional centrally symmetric polytope with O(n) vertices
has 2Ω(n) facets. Figiel, Lindenstrauss and Milman proved [F+77] that for an n-
dimensional centrally symmetric polytope with v vertices and f facets one has

(1.2.1) (log v) · (log f) ≥ γn

for some absolute constant γ > 0. In particular, if f = O(n) then inequality (1.2.1)
implies that v = 2Ω(n/ logn) and hence the estimate of Corollary 1.2 is sharper than
(1.2.1) in this case.

Our second application is combinatorial.
Let G be a k-regular graph with a finite set V of vertices and a set E of edges.

Thus every vertex v ∈ V is incident to precisely k edges of G (we do not allow
multiple edges or loops). An r-regular subgraph H of G with the same set V of
vertices is called an r-factor of G. In particular, a 1-factor is also known as a
perfect matching in G. For a set U ⊂ V of vertices, we denote by δ(U) ⊂ E the cut
associated with U , that is, the set of edges of G with exactly one endpoint in U .
We denote by |X| the cardinality of a finite set X.

We prove that the number of r-factors in a k-regular graph without cuts of small
size is exponentially large in the number of vertices of the graph.

(1.3) Corollary. Let us fix positive integers k and r such that k ≥ 2r + 1. Then
there exists γ = γ(k, r) > 0 such that the following holds.

Suppose that G is a k-regular graph with a set V of vertices such that

∣∣δ(U)
∣∣ > k

r

for every U ⊂ V such that 2 ≤ |U | ≤ |V | − 2. Then the number of r-factors of G
is at least 2γ|V |.

Note that the complement to an r-factor is a (k − r)-factor, so our result also
produces an estimate for the number of factors of degree greater than one half of
the degree of the graph.

The most tantalizing situation is that of k = 3 and r = 1, when Corollary 1.3
asserts that the number of perfect matchings of a 3-regular (also known as cubic)
graph is exponentially large in the number |V | of vertices of the graph, provided∣∣δ(U)

∣∣ ≥ 4 as long as 2 ≤ |U | ≤ |V | − 2. This falls short of the recent result

of [E+10], where it is proven that it suffices to have
∣∣δ(U)

∣∣ ≥ 2, and hereby the
Lovász-Plummer conjecture is confirmed. We hope, however, that our method
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can be sharpened to provide an alternative (and, perhaps, simpler) proof of the
conjecture.

We prove Theorem 1.1 and Corollary 1.2 in Section 2 and Corollary 1.3 in Section
3.

The idea of the proof of Theorem 1.1 is, roughly, as follows. We consider the
maximum of a random linear function on P . We argue that if the number of vertices
of P is small, then the maximum is also small. We then argue that if we go from
the origin along a random direction then we stay long enough inside P . This proves
that the maximum of a random linear function on P is large enough and hence P
has sufficiently many vertices. A similar argument is used in Section VI.8 of [Ba02]
in the proof of the Figiel-Lindenstrauss-Milman inequality (1.2.1).

To prove Corollary 1.2, we apply a linear transformation so that the image of
P satisfies the conditions of Theorem 1.1. To prove Corollary 1.3, we consider a
polytope Pr(G) whose vertices correspond to r-factors of G and then apply Theorem
1.1.

Paper [BS07] describes a general method of asymptotic counting of combinatorial
structures through optimization of a random linear function.

2. Proofs of Theorem 1.1 and of Corollary 1.2

Let us fix the standard Gaussian probability measure in Rn with the density

1

(2π)n/2
exp

{
−‖x‖

2

2

}
for x ∈ Rn.

(2.1) Lemma.

(1) We have

Pr
(
y ∈ Rn : ‖y‖2 ≤ n

2

)
≤ exp

{
− n

16

}
.

(2) Let a ∈ Rn be a point. Then

Pr
(
y ∈ Rn :

〈
y, a
〉
≥ τ

)
≤ 1

2
exp

{
− τ2

2‖a‖2

}
for any τ ≥ 0.

(3) For any β ≥ 0 and any vectors u1, . . . , um ∈ Rn such that ‖ui‖ ≤ 1 for
i = 1, . . . ,m, we have

Pr
(
y ∈ Rn : |〈ui, y〉| ≤ β for i = 1, . . . ,m

)
≥
(

1− exp

{
−β

2

2

})m
.
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Proof. The inequality of Part (1) can be found, for example, in Corollary V.5.5 of
[Ba02].

The function y 7−→ 〈y, a〉 is a centered Gaussian random variable with variance
‖a‖2 and Part (2) follows by the standard Gaussian tail estimate.

By the Sidak Lemma, see, for example, [Ba01], we have

Pr
(
y ∈ Rn : |〈ui, y〉| ≤ β for i = 1, . . . ,m

)
≥

m∏
i=1

Pr
(
y ∈ Rn : |〈ui, y〉| ≤ β

)
.

Since y 7−→ 〈ui, y〉 is a centered Gaussian random variable of variance ‖ui‖2 ≤ 1,
the proof of Part (3) follows from Part (2). �

(2.2) Proof of Theorem 1.1.
Without loss of generality we assume that n ≥ 16.
We choose a sufficiently large β = β(α) > 0 such that the following two inequal-

ities hold:

(2.2.1)

(
1− exp

{
−β

2

2

})αn
≥ 2 exp

{
− n

16

}
for all n ≥ 16

and

(2.2.2)
1

8α2β2
+ α ln

(
1− exp

{
−β

2

2

})
≥ γ > 0

for some γ = γ(α) > 0.
Let us consider the polyhedron

Q =
{
y ∈ Rn : |〈y, ui〉| ≤ β for i = 1, . . . ,m

}
.

By Part (3) of Lemma 2.1 we have

Pr
(
y : y ∈ Q

)
≥
(

1− exp

{
−β

2

2

})αn
.

We consider the maximum value of the linear function x 7−→ 〈x, y〉 on P . Since for
every y ∈ Q we have β−1y ∈ P we conclude that

(2.2.3) max
x∈P
〈x, y〉 ≥

〈
y,

1

β
y

〉
=

1

β
‖y‖2 for all y ∈ Q.

By Part (1) of Lemma 2.1, by (2.2.3) and by (2.2.1), we have

(2.2.4) Pr

(
y : max

x∈P
〈x, y〉 ≥ n

2β

)
≥ 1

2

(
1− exp

{
−β

2

2

})αn
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provided n ≥ 16.
On the other hand, the maximum value of a linear function on a polytope is

attained, in particular, at a vertex of P . Therefore, taking W to be the set of
vertices of P , from Part (2) of Lemma 2.1, we conclude that

Pr

(
y : max

x∈P
〈x, y〉 ≥ τ

)
≤
∑
a∈W

Pr (y : 〈y, a〉 ≥ τ) ≤ 1

2

∑
a∈W

exp

{
− τ2

2‖a‖2

}
≤ |W |

2
exp

{
− τ2

2α2n

}
.

Substituting

τ =
n

2β
,

we obtain

Pr

(
y : max

x∈P
〈x, y〉 ≥ τ

)
≤ |W |

2
exp

{
− n

8α2β2

}
.

Comparing the last inequality with (2.2.4) and using (2.2.2), we conclude that

|W | ≥ exp

{
n

8α2β2

}(
1− exp

{
−β

2

2

})αn
≥ exp {γn}

as desired. �

(2.3) Proof of Corollary 1.2.
We can write

P =
{
x ∈ Rn : |〈ui, x〉| ≤ αi for i = 1, . . . ,m

}
,

where u1, . . . , um are the unit normals to the facets of P and αi > 0. Applying to
P an invertible linear transformation, we may assume, additionally, that P contains
the unit ball and is contained in the ball of radius

√
n, both balls centered at the

origin (see, for example, Sections V.2 and VI.8 of [Ba02]). Since P contains the unit
ball, we must have αi ≥ 1 for all i = 1, . . . ,m and the proof follows by Theorem
1.1. �

3. Proof of Corollary 1.3

(3.1) The polytope. Let G be a graph with a set V of vertices and a set E of
edges. We denote by RE the Euclidean space of all real-valued functions x : E −→
R. We use the standard scalar product

〈x, y〉 =
∑
e∈E

x(e)y(e) for all x, y ∈ RE
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and the corresponding Euclidean norm ‖x‖ =
√
〈x, x〉.

For a subset H ⊂ E we consider a vector (indicator function) [H] ∈ RE defined
as follows:

[H](e) =

{
1 if e is an edge of H

0 otherwise.

We define the r-factor polytope Pr(G) as the convex hull

Pr(G) = conv
(

[H] : H is an r-factor of G
)
.

We will need the following description of Pr(G) by a system of linear inequalities
(3.1.1)–(3.1.3), see Corollary 33.2a of [Sc03] (recall that δ(U) denotes the set of
edges of G with precisely one endpoint in a set U ⊂ V of vertices):

(3.1.1) 0 ≤ x(e) ≤ 1 for all e ∈ E,

(3.1.2)
∑
e∈δ(v)

x(e) = r for all v ∈ V,

and

(3.1.3)

∑
e∈δ(U)\F

x(e)−
∑
e∈F

x(e) ≥ 1− |F | for all U ⊂ V, F ⊂ δ(U)

such that r|U |+ |F | is odd.

Our first goal is to show that if G is k-regular graph without small cuts then the
vector a ∈ RE with a(e) = r/k for all e ∈ E lies sufficiently deep inside polytope
Pr(G).

(3.2) Lemma. Suppose that G is k-regular, that k ≥ 2r + 1 and that∣∣δ(U)
∣∣ > k

r

for all U ⊂ V such that 2 ≤ |U | ≤ |V | − 2. Let us choose an ε = ε(k, r) > 0 as
follows:

if k/r is integer, we let

ε = min

{
r

k
− 1

1 + k
r

,
1

2k

}
and

if k/r is not integer, we let

ε = min

{
r

k
− 1

dkr e
,

1

2k

}
.

6



Let a ∈ RE be the vector such that

a(e) =
r

k
for all e ∈ E

and let y ∈ RE be a vector such that∑
e∈δ(v)

y(e) = 0 for all v ∈ V

and
|y(e)| ≤ ε for all e ∈ E.

Then for x = a+ y we have x ∈ Pr(G).

Proof. Clearly, vector x satisfies (3.1.1) and (3.1.2). Moreover,

2r − 1

2k
≤ x(e) ≤ 2r + 1

2k
for all e ∈ E.

If in (3.1.3) we increase |F | by 1 then the left hand side decreases at most by
(2r + 1)/k while the right hand side decreases by 1. Therefore, it suffices to check
(3.1.3) when |F | = 0. Furthermore, if |U | = 1 or if |V \ U | = 1, inequality (3.1.3)
follows by (3.1.2).

If |F | = 0 then the left hand side of (3.1.3) is at least∣∣δ(U)
∣∣( r
k
− ε
)
≥ 1

and (3.1.3) holds. �

(3.3) Proof of Corollary 1.3.
All implied constants in O(·) and Ω(·) notation below may depend on k and r

only.
Since G is k-regular, we have |E| = k|V |/2. Let L ⊂ RE be the subspace defined

by the equations ∑
e∈δ(v)

x(e) = 0 for all v ∈ V.

Hence

n = dimL ≥ |E| − |V | =
(
k

2
− 1

)
|V | = Ω(V ).

We identify L with Rn. Let P = Pr(G) − a, where a is the vector of Lemma 3.2.
Then P ⊂ Rn by (3.1.2). Since

‖[H]‖ =

√
r|V |

2
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for any r-factor H of G and

‖a‖ =
r

k

√
k|V |

2
,

we conclude that P lies in a ball of radius O (
√
n) centered at the origin.

Moreover, by Lemma 3.2, polytope P contains the set{
x ∈ Rn : |〈ue, x〉| ≤ ε for all e ∈ E

}
,

where ue is the orthogonal projection of [e] onto L. In particular, ‖ue‖ ≤ 1 for all
e ∈ E. Since |E| = O(n) and ε = Ω(1), the proof is obtained by applying Theorem
1.1 to the dilated polytope ε−1P . �
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