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ABSTRACT. We prove that the number of vertices of a polytope of a particular kind
is exponentially large in the dimension of the polytope. As a corollary, we prove that
an n-dimensional centrally symmetric polytope with O(n) facets has 29(") vertices
and that the number of r-factors in a k-regular graph is exponentially large in the
number of vertices of the graph provided k > 2r 4+ 1 and every cut in the graph with
at least two vertices on each side has more than k/r edges.

1. INTRODUCTION AND MAIN RESULTS

Let R™ be Euclidean space with the standard scalar product (-,-) and the as-
sociated Euclidean norm || - ||. A polytope P C R™ is the convex hull of a finite
set of points. We say that P is n-dimensional if P has a non-empty interior. The
intersection of P with a supporting affine hyperplane is called a face of P. Faces of

P of dimension 0 are called vertices and faces of codimension 1 are called facets of
P.

In this paper we prove the following result.

(1.1) Theorem. For every o > 1 there is v = y(«) > 0 such that the following
holds.

Suppose that P C R™ is a polytope containing the set
{x eR": |(z,u)| < 1 for 1=1,... ,m}
where ||u;]] < 1 fori=1,... ,m and m < an. Suppose further that P lies inside

the ball
{:UGR": |zl < a\/ﬁ}.

Then P has at least 27" vertices.
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Our first corollary is a lower bound for the number of vertices of a centrally
symmetric polytope P, that is, a polytope P satisfying P = —P.

(1.2) Corollary. For every a > 1 there exists v = y(a) > 0 such that if P is an
n-dimensional centrally symmetric polytope with not more than an facets then P
has at least 27™ vertices.

By duality, an n-dimensional centrally symmetric polytope with O(n) vertices
has 29(") facets. Figiel, Lindenstrauss and Milman proved [F+77] that for an n-
dimensional centrally symmetric polytope with v vertices and f facets one has

(1.2.1) (logv) - (log f) > n

for some absolute constant v > 0. In particular, if f = O(n) then inequality (1.2.1)
implies that v = 22("/1087) and hence the estimate of Corollary 1.2 is sharper than
(1.2.1) in this case.

Our second application is combinatorial.

Let G be a k-regular graph with a finite set V' of vertices and a set E of edges.
Thus every vertex v € V is incident to precisely k edges of G (we do not allow
multiple edges or loops). An r-regular subgraph H of G with the same set V' of
vertices is called an r-factor of G. In particular, a 1-factor is also known as a
perfect matching in G. For a set U C V of vertices, we denote by §(U) C E the cut
associated with U, that is, the set of edges of G with exactly one endpoint in U.
We denote by | X| the cardinality of a finite set X.

We prove that the number of r-factors in a k-regular graph without cuts of small
size is exponentially large in the number of vertices of the graph.

(1.3) Corollary. Let us fix positive integers k and r such that k > 2r + 1. Then
there exists v = ~y(k,r) > 0 such that the following holds.
Suppose that G is a k-reqular graph with a set V of vertices such that

for every U C V' such that 2 < |U| < |V| — 2. Then the number of r-factors of G
is at least 271V,

Note that the complement to an r-factor is a (k — r)-factor, so our result also
produces an estimate for the number of factors of degree greater than one half of
the degree of the graph.

The most tantalizing situation is that of £ = 3 and r = 1, when Corollary 1.3
asserts that the number of perfect matchings of a 3-regular (also known as cubic)
graph is exponentially large in the number |V| of vertices of the graph, provided
|6(U)| > 4 as long as 2 < |U| < |V|—2. This falls short of the recent result
of [E+10], where it is proven that it suffices to have |§(U)| > 2, and hereby the
Lovasz-Plummer conjecture is confirmed. We hope, however, that our method
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can be sharpened to provide an alternative (and, perhaps, simpler) proof of the
conjecture.

We prove Theorem 1.1 and Corollary 1.2 in Section 2 and Corollary 1.3 in Section
3.

The idea of the proof of Theorem 1.1 is, roughly, as follows. We consider the
maximum of a random linear function on P. We argue that if the number of vertices
of P is small, then the maximum is also small. We then argue that if we go from
the origin along a random direction then we stay long enough inside P. This proves
that the maximum of a random linear function on P is large enough and hence P
has sufficiently many vertices. A similar argument is used in Section VI.8 of [Ba02]
in the proof of the Figiel-Lindenstrauss-Milman inequality (1.2.1).

To prove Corollary 1.2, we apply a linear transformation so that the image of
P satisfies the conditions of Theorem 1.1. To prove Corollary 1.3, we consider a
polytope P,.(G) whose vertices correspond to r-factors of G and then apply Theorem
1.1.

Paper [BS07] describes a general method of asymptotic counting of combinatorial
structures through optimization of a random linear function.

2. PROOFS OF THEOREM 1.1 AND OF COROLLARY 1.2

Let us fix the standard Gaussian probability measure in R™ with the density

1 2
CORE exp{—”é” } for = € R".
T n

(2.1) Lemma.
(1) We have

Pr(yeR": yI* < 7) < exp{—1c}:
(2) Let a € R™ be a point. Then

7_2

1
Pr(yE]R": <y,a> > 7') < §exp{—w} forany 12>0.

(3) For any B > 0 and any vectors uy,...,u, € R™ such that |Ju;|| < 1 for
i1=1,...,m, we have

Pr(yGRni ui, y)| < B for z'zl,...,m> > (1—exp{_%2})m.



Proof. The inequality of Part (1) can be found, for example, in Corollary V.5.5 of
[Ba02].

The function y — (y, a) is a centered Gaussian random variable with variance
|al|? and Part (2) follows by the standard Gaussian tail estimate.

By the Sidak Lemma, see, for example, [Ba01], we have

Pr(yeR": |(us,y)| < B for izl,...,m) > ﬁPr(yER”: |<ui,y>]§5>.
i=1

Since y — (u;,y) is a centered Gaussian random variable of variance |ju;||? < 1,
the proof of Part (3) follows from Part (2). O

(2.2) Proof of Theorem 1.1.
Without loss of generality we assume that n > 16.

We choose a sufficiently large 8 = 5(«) > 0 such that the following two inequal-
ities hold:

2. - —— > - >
(2.2.1) (1 exp{ 5 > 2exp{ 16} for all n > 16
and
1 32
2. — - _2 ) >
(2.2.2) a7 -l—aln(l exp{ 5 }) > v >0

for some v = y(a) > 0.
Let us consider the polyhedron

Q:{yER”: {y,u;)| < B for izl,...,m}.

By Part (3) of Lemma 2.1 we have

Pr(y: yeQ> > (1—exp{—%2}>om.

We consider the maximum value of the linear function x — (z,y) on P. Since for
every y € Q we have 7'y € P we conclude that

1 1
(2.2.3) max(z,y) > <y, By>:gnyu2 for all y € Q.

By Part (1) of Lemma 2.1, by (2.2.3) and by (2.2.1), we have

) n 1 B2\
(2.2.4) Pr (y~ max(z,y) > ﬁ) > 3 (1—eXp{—7}>
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provided n > 16.

On the other hand, the maximum value of a linear function on a polytope is
attained, in particular, at a vertex of P. Therefore, taking W to be the set of
vertices of P, from Part (2) of Lemma 2.1, we conclude that

2

Pr (y: max(z,y) > T) <D Pr(y: (ya) = 7) < %Zexp{—zHTT”z}

€T

aceW acW
w7
—_— X —_—
- 2 P 2a2n
Substituting
n
T=—,
28
we obtain

Pr (y: max(z,y) > 7 <Mex -
y: max(@,y) > 1) < S5

Comparing the last inequality with (2.2.4) and using (2.2.2), we conclude that

2 an
W > exp{gogﬁg} (1—exp{—%}> > exp{yn}

as desired. O

(2.3) Proof of Corollary 1.2.
We can write

P:{xER”: ((ui,z)| < oy for i:1,...,m},

where u1,... ,u, are the unit normals to the facets of P and a; > 0. Applying to
P an invertible linear transformation, we may assume, additionally, that P contains
the unit ball and is contained in the ball of radius y/n, both balls centered at the
origin (see, for example, Sections V.2 and V1.8 of [Ba02]). Since P contains the unit
ball, we must have o; > 1 for all © = 1,... ,m and the proof follows by Theorem
1.1. OJ

3. Proor or COROLLARY 1.3

(3.1) The polytope. Let G be a graph with a set V' of vertices and a set E of
edges. We denote by R¥ the Euclidean space of all real-valued functions = : B —
R. We use the standard scalar product

(x,y) = Z z(e)y(e) forall z,yecRF
eck
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and the corresponding Euclidean norm ||z| = /(z, x).
For a subset H C E we consider a vector (indicator function) [H] € RE defined

as follows:
1 if e is an edge of H

0 otherwise.

e = {
We define the r-factor polytope P.(G) as the convex hull
P.(G) = COHV([H] :  H is an r-factor of G).
We will need the following description of P,.(G) by a system of linear inequalities

(3.1.1)—(3.1.3), see Corollary 33.2a of [Sc03] (recall that 6(U) denotes the set of
edges of G with precisely one endpoint in a set U C V of vertices):

(3.1.1) 0 < z(e) <1 forall ecE,
(3.1.2) Z z(e)=r forall veV,
e€d(v)

and

Z :U(e)—z:c(e) >1—|F| forall UcCV,Fcd{)
(3.1.3) e€S(U)\F ecF
such that r|U|+ |F| is odd.

Our first goal is to show that if G is k-regular graph without small cuts then the
vector a € R with a(e) = r/k for all e € E lies sufficiently deep inside polytope
P.(G).

(3.2) Lemma. Suppose that G is k-regular, that k > 2r + 1 and that

5(U)| > k

r

for all U C V such that 2 < |U| < |V| — 2. Let us choose an € = e(k,r) > 0 as
follows:

if k/r is integer, we let

G:min{

if k/r is not integer, we let

| 3
|
—_
+ |~
|7
)
?r|’—‘
—
=)
S
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Let a € RE be the vector such that

ale) = % forall ee E

and let y € RF be a vector such that

Z yle) =0 forall veV

e€d(v)

and
ly(e)] < € forall ec€E.

Then for x = a +y we have z € P.(G).
Proof. Clearly, vector x satisfies (3.1.1) and (3.1.2). Moreover,

2r —1 2r+1
< < f 11 E.
T z(e) < ok orall eée

If in (3.1.3) we increase |F| by 1 then the left hand side decreases at most by
(2r + 1)/k while the right hand side decreases by 1. Therefore, it suffices to check
(3.1.3) when |F| = 0. Furthermore, if |[U| =1 or if |V \ U| = 1, inequality (3.1.3)
follows by (3.1.2).

If |F| = 0 then the left hand side of (3.1.3) is at least

‘5(U)’<E—e> > 1

and (3.1.3) holds. O

(3.3) Proof of Corollary 1.3.
All implied constants in O(-) and €(-) notation below may depend on k and r
only.
Since G is k-regular, we have |E| = k|V|/2. Let L C R¥ be the subspace defined
by the equations
Z z(e)=0 forall veV.
e€d(v)

Hence

n=dimL > |E|-|V|= (§—1) V| =Q(V).

We identify L with R™. Let P = P,.(G) — a, where a is the vector of Lemma 3.2.
Then P C R™ by (3.1.2). Since

Tyl

2
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for any r-factor H of G and

r [k|V|

Jall = T4/ T5

we conclude that P lies in a ball of radius O (y/n) centered at the origin.
Moreover, by Lemma 3.2, polytope P contains the set

{xER“: [(te,z)| < e forall eEE},

where u, is the orthogonal projection of [e] onto L. In particular, ||u.|| < 1 for all
e € E. Since |E| = O(n) and € = Q(1), the proof is obtained by applying Theorem
1.1 to the dilated polytope e ! P. Il
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