
The PCP Theorem by Gap Amplification

Irit Dinur∗

April 22, 2005

Abstract

Let C = {c1, . . . , cn} be a set of constraints over a set of variables. Thesatisfiability-gapof
C is the smallest fraction of unsatisfied constraints, ranging over all possible assignments for the
variables.

We prove a new combinatorial amplification lemma that doubles the satisfiability-gap of a constraint-
system, with only a linear blowup in the size of the system. Iterative application of this lemma yields
a self-contained (combinatorial) proof for the PCP theorem.

The amplification lemma relies on a new notion of “graph powering” that can be applied to
systems of constraints. This powering amplifies the satisfiability-gap of a constraint system provided
that the underlying graph structure is an expander.

We also apply the amplification lemma to construct PCPs and locally-testable codes whose length
is linear up to a polylogfactor, and whose correctness can be probabilistically verified by making a
constantnumber of queries. Namely, we proveSAT ∈ PCP 1

2 ,1[log2(n · poly log n), O(1)]. This
answers an open question of Ben-Sasson et al. (STOC ’04).

1 Introduction

LetC = {c1, . . . , cn} be a set of constraints over a set of variablesV . Thesatisfiability-gapof C, denoted
SAT(C), is the smallest fraction of unsatisfied constraints, over all possible assignments forV . ClearlyC
is satisfiable if and only ifSAT(C) = 0. Also, if C is not satisfiable thenSAT(C) ≥ 1/n.

Background The PCP Theorem is equivalent to stating that gap-3SAT is NP-hard, in the following
sense: for someα > 0, given a setC of constraints such that each is an conjunction of three literals,
it is NP-hard to distinguish betweenSAT(C) = 0 andSAT(C) > α. Historically, the PCP Theorem has
been formulated through interactive proofs and the concept of a probabilistic verifier that can check an
NP witness by randomly probing it at onlyO(1) bit locations. The [FGL+96, ALM +98] connection
between this formulation and inapproximability, as in the gap-3SAT formulation stated above, came as
a big surprise. Together with the proof of the PCP Theorem by [AS98, ALM +98], it brought about a
revolution of the field of inapproximability. The proof of the theorem followed an exciting sequence of
developments in interactive proofs. The proof techniques were mainly algebraic including low-degree
extension, low-degree test, parallelization through curves, a sum-check protocol, and the Hadamard and
quadratic functions encodings.

∗Hebrew University. Email:dinuri@cs.huji.ac.il . Supported by the Israel Science Foundation.

1

Gap Amplification In this paper we take a different approach for proving the PCP Theorem. Our
approach is quite natural in the context of inapproximability. We start with a 3SAT systemC, so it is
NP-hard to decide ifC is satisfiable or not. Namely, it is NP-hard to distinguish between the cases (i)
SAT(C) = 0 and (ii) SAT(C) ≥ 1/n. Now repeatedly apply the amplification lemma toC, doubling the
satisfiability gap at each iteration. The outcomeC′ is a constraint system for which in the first case still
SAT(C′) = 0, and in the second caseSAT(C′) ≥ α for someα > 0. This gives a reduction from3SAT to
gap-3SAT, thus proving the PCP Theorem.

What makes the gap double? Let us restrict ourselves to systems of constraints over two variables.
Satisfiability is still NP-complete for such systems, for some constant-size (non-Boolean) alphabet. A
two-variable constraint system naturally defines an underlying graph, in which the variables are vertices,
and two variables are adjacent iff there is a constraint over them. We call this aconstraint graph. In
order to amplify the gap of a constraint graph we simply raise it to the powert, for somet = O(1).
Thegraph poweringoperation is defined as follows: The new underlying graph is thet-th power of the
original graph (with the same vertex-set, and an edge for each length-t path). Each vertex will hold a
value over a larger alphabet, that describes its own value plus it’s “opinion” about the values of all of
its neighbors at distance≤ t/2. The constraint over two adjacent verticesu, v in the new graph will be
satisfied iff the values and opinions ofu andv are consistent with an assignment that satisfies all of the
constraints induced byu, v and their neighborhoods.

Our main lemma asserts that the gap is multiplied by a factor of roughly
√
t, as long as the initial

underlying graph is sufficiently “well-structured”.
The main advantage of this operation is that itdoes not increasethe number of variables in each

constraint (which stays2 throughout). Moreover, when applied tod-regular graphs ford = O(1), it only
incurs alinear blowup in the size (the number of edges is multiplied bydt−1), and an affordable increase
in the alphabet size (which goes fromΣ to Σdt/2

). Combined with an operation that reduces the alphabet
back toΣ, we get an inductive step that can be repeatedlog n times until a constant gap is attained.

Composition Reducing the alphabet size is an easy task assuming we have at our disposal a PCP re-
ductionP. A PCP reduction is an algorithm that takes as input a single large-alphabet constraint, and
outputs a system of (perhaps many) constraints over a smaller alphabet. Indeed, all we need to do is to
runP on each of the constraints in our system1. This results in a new constraint system with a similar
gap, and over a smaller alphabet. At first read, this argument may appear to be circular, as the reduction
P sounds very much like our end-goal. The point is that since in our setting the input toP always has
constant size, P is allowed to be extremely inefficient. This relaxation makesP significantly easier to
construct, and one can choose their favorite implementation, be it Long-code based or Hadamard-code
based. In fact,P can be found by exhaustive search, provided we have proven its existence in an inde-
pendent fashion. Composition withP is direct and simple, relying on the relatively recent ‘modularized’
notion of composition using “assignment-testers” [DR04] or “PCPs of proximity” [BGH+04].

Thus, our proof of the PCP Theorem roughly takes the following form: LetG encode a SAT instance.
Fix t = O(1), setG0 = G, and repeat the following steplog n times:

Gi+1 = (Gi)t ◦ P

Related Work This construction is inspired by the zig-zag construction of expander graphs due to
[RVW] and by Reingold’s proof forSL = L [Rei05]. Reingold shows how one iteration of powering /

1While ensuring consistency between the many invocations ofP.

2

zigzagging, increases the spectral gap of any graph; so afterlog n iterations the initial graph becomes an
expander.

Our proof has the same overall structure, where each iteration consists of powering and composition.
In this proof it is the satisfiability gap, rather than the spectral gap, that is increased steadily in each step.

The steady increase of the satisfiability gap is inherently different from the original proof of the PCP
Theorem. There, a constant satisfiability gap (using our terminology) is generated by one powerful
transformation, and then a host of additional transformations are incorporated into the final result to take
care of other parameters.

This work follows [GS97, DR04] in the attempt to find an alternative proof for the PCP Theo-
rem that is combinatorial and/or simpler. In [DR04], a quasi-polynomial PCP Theorem was proven
combinatorially. While our proof is different, we do rely on the modular notion of composition due
to [BGH+04, DR04], and in particular on composition with a bounded-input assignment-tester, which
has already served as an ingredient in the constructions of [DR04].

Short PCPs and Locally Testable Codes The goal of achieving extremely-short Probabilistically
Checkable Proofs and Locally-Testable Codes (LTCs) has been the focus of several works [PS94, HS01,
GS02, BSVW03, BGH+04, BS05]. The shortest PCPs/LTCs are due to [BGH+04] and [BS05], each
best in a different parameter setting. For the case where the number of queries is constant, the shortest
construction is due to [BGH+04], and the proof-length isn · 2(log n)ε

. The construction of [BS05]
has shorter proof-length,n · poly log n, but the number of queries it requires ispoly log n. Our result
combines the best parameters from both of these works. Our starting point is the construction [BS05].
We first transform this construction into a two-query constraint systemC whose size isn · poly log n,
such that if the input was a ‘no’ instance, thenSAT(C) ≥ 1

poly log n . Then, by applying our amplification
lemmaO(log log n) times, we raise the gap to a constant, while increasing the size of the system by only
another polylogarithmic factor. Namely, we show thatSAT ∈ PCP 1

2
,1[log2(n · poly log n), O(1)].

Organization Section2contains some preliminaries, including a formal definition of constraint graphs,
and some basic facts about expander graphs. In Section3 we describe the operations on constraint graphs
on which we base our construction. In Section4 we prove the PCP Theorem. The proof of the gap am-
plification lemma is given in Section5. In Section6 we describe a concrete (and inefficient) construction
of an assignment testerP based on the Long-Code, so as to make our result self-contained. In Section7
we proveSAT ∈ PCP 1

2
,1[log2(n · poly log n), O(1)].

2 Preliminaries

2.1 Constraint Graphs

In this paper we are interested in systems of constraints, as well as in the graph structure underlying
them. We restrict our attention to systems of two-variable constraints, whose structure is captured by
‘constraint graphs’, defined as follows:

Definition 2.1 (Constraint Graph) G = 〈(V,E),Σ, C〉 is called a constraint graph, if

1. (V,E) is an undirected graph, called the underlying graph ofG.

2. The setV is also viewed as a set of variables assuming values over alphabetΣ

3. Each edgee ∈ E, carries a constraintce : Σ2 → {T,F}, andC = {ce}e∈E .

3

An assignment is a mappingσ : V → Σ that gives each vertex inV a value fromΣ. For any assignment
σ, define

SATσ(G) = Pr
(u,v)∈E

[ce(σ(u), σ(v)) = T] and SAT(G) = max
σ

SATσ(G) .

Also defineSATσ(G) = 1 − SATσ(G) andSAT(G) = 1 − SAT(G). We callSAT(G) thesatisfiability-
gap of G, or just the gap ofG for short. We denote bysize(G) the size of the description ofG, so
size(G) = θ(|V |+ |E| · |Σ|2).

Proposition 2.1 (Constraint-Graph Satisfiability) Given a constraint graphG = 〈(V,E),Σ, C〉 with
|Σ| ≤ 7, it is NP-hard to decide ifSAT(G) = 1.

Proof: Reduce from3SAT. Put a vertex for each clause and let the alphabet be{1, . . . , 7}, standing for
all possible assignments that satisfy that clause. Put a consistency constraint for every pair of clauses
that share a variable.

We sometimes use the same letterG to denote the constraint graph and the underlying graph. In
particular, we refer to the degree ofG and we writeλ(G) to signify the second largest eigenvalue value
of the adjacency matrix of the graph underlyingG.

2.2 Expander Graphs

Definition 2.2 LetG = (V,E) be ad-regular graph. LetE(S, S̄) =
∣∣(S × S̄) ∩ E

∣∣ equal the number
of edges from a subsetS ⊆ V to its complement. The edge expansion is defined as

h(G) = min
S,|S|<|V |/2

E(S, S̄)
|S|

.

Lemma 2.2 (Expanders)There existd0 ∈ N andh0 > 0, such that there is a polynomial-time con-
structible family{Xn}n∈N of d0-regular graphsXn onn vertices withh(Xn) ≥ h0.

Proof: It is well-known that a random constant-degree graph onn-vertices is an expander. For a deter-
ministic construction, one can get expanders on2k vertices for anyk from the construction of [RVW].
Forn = 2k − n′ (n′ < 2k−1), one can, for example, mergen′ pairs of vertices. To make this graph reg-
ular one can add arbitrary edges to the non-merged vertices. Clearly, the edge expansion is maintained
up to a constant factor.

The following relation between the edge expansion and the second eigenvalue is known, see, e.g.,
[LW03],

Lemma 2.3 LetG be ad-regular graph, and leth(G) denote the edge expansion ofG. Then

λ(G) ≤ d− h(G)2

d
.

Finally, we prove the following (standard) estimate on the random-like behavior of a random-walk on
an expander.

Proposition 2.4 LetG = (V,E) be ad-regular graph with second largest eigenvalueλ. LetF ⊆ E be
a set of edges. The probabilityp that a random walk that starts at a random edge inF takes thei+ 1st

step inF as well, is bounded by|F ||E| +
(
|λ|
d

)i
.

4

Proof: LetK be the distribution on vertices induced by selecting a random edge inF , and then a random
vertex in it2. LetB be the support ofK. LetA be the normalizedn × n adjacency matrix ofG soAij

equalsq/d whereq is the number of edges between verticesi andj. The first and second eigenvalues of
A are1 andλ̃ = λ/d respectively.

Let x be the vector corresponding to the distributionK, i.e.xv = PrK [v] equals the fraction of edges
touchingv that are inF , divided by2. Since the graph isd-regular,PrK [v] ≤ d

2|F | . Let yv be the

probability that a random step fromv is in F , soy = 2|F |
d x. The probabilityp equals the probability of

landing inB afteri steps, and then taking a step inF ,

p =
∑
v∈B

yv(Aix)v =
∑
v∈V

yv(Aix)v = 〈y,Aix〉 .

Let 1 be the all1 vector. Writex = x⊥ + x|| wherex|| = 1
n1, is an eigenvector ofA with eigenvalue

1, andx⊥ = x−x||. The vectorx⊥ is orthogonal tox|| since1 ·x⊥ =
∑

v PrK [v]−
∑

v
1
n = 1−1 = 0.

Denote‖x‖ =
√∑

v x
2
v. Observe that‖x‖2 ≤ (

∑
v |xv|) · (maxv |xv|) ≤ 1 · (maxv |xv|) ≤ d

2|F | .
Clearly,

‖Aix⊥‖2 ≤ |λ̃|i‖x⊥‖2 ≤ |λ̃|i‖x‖2 ≤ |λ̃|i(max
v
xv)1/2 ≤ |λ̃|i

√
d

2 |F |

By Cauchy-Schwartz

〈y,Aix⊥〉 ≤ ‖y‖ · ‖Aix⊥‖ ≤ 2 |F |
d

|λ̃|i‖x‖2 ≤ |λ̃|i

Combining the above we get the claim,

〈y,Aix〉 = 〈y,Aix||〉+ 〈y,Aix⊥〉 ≤ 2 |F |
dn

+ |λ̃|i =
|F |
|E|

+
(
|λ|
d

)i

3 Operations on Constraint Graphs

Our main theorem is proven by performing three operations on constraint graphs:

• Preprocessing: This simple operation preserves both the gap (roughly) and the alphabet size, but
makes the constraint graph more nicely structured.

• Powering: The operation which amplifies the gap, at the expense of increasing the alphabet size.

• Composition: The operation which reduces the alphabet size, while maintaining the gap (roughly).

These operations are described in Sections3.1, 3.2and3.3respectively.

2Let us adopt the convention that a self-loop is “half” an edge, and its probability is of being selected is defined accordingly.
In the applicationF will contain no self-loops so this whole issue can be safely ignored.

5

3.1 Preprocessing

We describe how to (easily) turn any constraint graph into a ‘nicely-structured’ one. By ‘nicely-structured’
we mean regular, constant-degree, and expanding.

Lemma 3.1 (Preprocessing)There exist constants0 < λ < d andβ1 > 0 such that any constraint
graphG can be transformed into a constraint graphG′, denotedG′ = prep(G), such that

• G′ is d-regular with self-loops, andλ(G′) ≤ λ < d.

• G′ has the same alphabet asG, andsize(G′) = O(size(G)).

• β1 · SAT(G) ≤ SAT(G′) ≤ SAT(G).

Note that the third item implies that completeness is maintained, i.e., ifSAT(G) = 1 thenSAT(G′) = 1.
We prove this lemma in two steps, summarized in the next two lemmas.

Lemma 3.2 (Constant degree)Any constraint graphG = 〈(V,E),Σ, C〉 can be transformed into a
(d0 + 1)-regular constraint graphG′ = 〈(V ′, E′),Σ, C′〉 such that|V ′| = 2 |E| and

SAT(G)/c ≤ SAT(G′) ≤ SAT(G)

for some global constantsd0, c > 0.

This lemma is a well-known ‘expander-replacement’ transformation, due to [PY91]. We include a proof
for the sake of completeness. The idea is to split each vertexv into deg(v) new vertices that are intercon-
nected via a constant-degree expander, placing equality constraints on the new edges. Intuitively, this
maintainsSAT(G) because the expander edges “penalize” assignments for the new graph that do not as-
sign the same value to all copies ofv; hence assignments for the new graph behave just like assignments
for G.

Proof: For eachn, letXn be ad0-regular expander onn vertices with edge expansionh(Xn) ≥ h0,
as guaranteed by Lemma2.2. Fix d = d0 + 1. We replace each vertexv with a copy ofXdv wheredv

denotes the degree ofv in G. Denote the vertices ofXdv by [v] and let[V] = ∪v[v]. Denote the union
of the edges ofXdv for all v byE1, and place equality constraints on these edges.

In addition, for every edge(v, w) ∈ E we will put an edge between one vertex in[v] and one vertex
in [w] so that each vertex in[V] sees exactly one such external edge. Denote these edgesE2. Altogether
G′ = ([V],E = E1 ∪ E2) is ad-regular graph, and|E| = d |E|.

We analyzeSAT(G′). The (completeness) upper boundSAT(G′) ≤ SAT(G) is easy: An assignment
σ : V → Σ can be extended to[V] by assigning eachx ∈ [v] the valueσ(v). This will cause the same
number of edges to reject, which can only decrease as a fraction.

For the (soundness) lower bound, letσ′ : [V] → Σ be a ‘best’ assignment, i.e. violating the fewest

constraints,SATσ′(G′) = SAT(G′)
4
= α. Defineσ : V → Σ according to plurality ofσ′, i.e., letσ(v)

be the most popular value among(σ′(x))x∈[v]. LetS ⊆ [V] be the set of vertices whose value disagrees
with the plurality. LetE∗ ⊆ E be the edges that rejectσ, and letE∗ be the edges that rejectσ′. The
external edge corresponding to ane ∈ E∗ either rejectsσ′, or has at least one endpoint inS. So

|E∗|+ |S| ≥ |E∗| = α |E|

If |E∗| ≥ α
2 |E| we are done sinceα2 |E| = α

2d |E| and soSAT(G′) ≥ SAT(G)/2d. So assume that
|S| ≥ α

2 |E|. Focus on one[v], and letSv = [v] ∩ S. We can writeSv as a disjoint union of sets

6

Sa = {x ∈ Sv |σ′(x) = a}. SinceS is the set of vertices disagreeing with the plurality value, we have
|Sa| ≤ 1

|Σ| ≤ 1/2, so by the edge expansion of the appropriate expanderXdv ,E(Sa, S̄a) ≥ h0 · |Sa|. All

of these edges carry equality constraints that rejectσ′. So there are at leasth0
∑

v |S ∩ [v]| = h0 |S| ≥
αh0
2 |E| edges that rejectσ′. Since|E| = |E| /d, we getSAT(G′) ≥ h0

2d SAT(G). We have completed the
proof, withc = min(1

2d ,
h0
2d).

Lemma 3.3 (Expanderizing) Letd0, h0 > 0 be some global constants. Anyd-regular constraint graph
G can be transformed intoG′ such that

• G′ is (d+ d0 + 1)-regular, has self-loops, andλ(G′) ≤ d+ d0 + 1− h0
2

d+d0+1 < deg(G′).

• size(G′) = O(size(G))

• d
d+d0+1 · SAT(G) ≤ SAT(G′) ≤ SAT(G)

Proof: The idea is to add toG self-loops and edges of an expander and put void constraints on these
new edges (i.e., constraints that are satisfied always). By convention, a self loop adds1 to the degree
of a vertex. LetX = (V,E′) be ad0-regular expander on|V | vertices, withh(X) ≥ h0 (again, as
guaranteed by Lemma2.2). LetEloop = {(v, v) | v ∈ V }. LetG′ = (V,E ∪ E′ ∪ Eloop), where the
constraints associated with non-E edges are void constraints (satisfied always). Clearly the degree is
d+ d0 + 1. To boundλ(G′) we rely on the following well-known inequality (see Lemma2.3),

λ(G) ≤ d(G)− h(G)2

d(G)
.

Clearlyh(G′) ≥ h(X) ≥ h0, so pluggingG′ in the above yieldsλ(G′) ≤ d + d0 + 1 − h0
2

d+d0+1 <
d+ d0 + 1.

Finally, since the new edges are always satisfied and since we increased the total number of edges by
factorc′ = d+d0+1

d , the fraction of unsatisfied constraints drops by at mostc′.

Proof:(of Lemma3.1) First apply Lemma3.2 on G, and then apply Lemma3.3 on the result. The
lemma is proven withβ1 = c · d

d+d0+1 .

3.2 Powering

This operation is a new operation on constraint systems, and it is the one that gains us the gap. Let
G = 〈(V,E),Σ, C〉 be a constraint graph , and lett ∈ N. We defineGt = 〈(V,E),Σddt/2e

, Ct〉 to be the
following constraint graph:

• The vertices ofGt are the same as the vertices ofG.

• Edges:u andv are connected byk edges inE if the number oft-step paths fromu to v in G is
exactlyk.

• Alphabet: The alphabet ofGt is Σddt/2e
, where every vertex specifies values for all of its neighbors

reachable int/2 steps. One may think of this value as describingv’s opinion of its neighbors’
values.

• Constraints: The constraint associated with an edgee = (u, v) ∈ E is satisfied iff the assignments
for u andv are consistent with an assignment that satisfies all of the constraints induced by the
t/2 neighborhoods ofu andv.

7

If SAT(G) = 1 then clearlySAT(Gt) = 1. More interestingly,

Lemma 3.4 (Amplification Lemma) Letλ < d, and|Σ| be arbitrary constants. There exists a constant
β2 = β2(λ, d, |Σ|) > 0, such that for everyt ∈ N and for everyd-regular constraint graphG =
〈(V,E),Σ, C〉 with self-loops andλ(G) ≤ λ,

SAT(Gt) ≥ β2

√
t ·min

(
SAT(G) ,

1
t

)
.

This is our main technical lemma, and its proof is given in Section5.

3.3 Composition

In this section we describe a transformation on constraint graphs that reduces the alphabet size, while
roughly maintaining the gap. We rely oncompositionwhich is an essential component in PCP con-
structions, described next. To understand composition let us ignore the underlying graph structure of a
constraint graphG, and view it simply as a system of constraints.

Let us step back for a moment and recall our overall goal of proving the PCP Theorem. What we
seek is a reduction from (say)3SAT to gap-3SAT. Such a reduction is a polynomial-time algorithm that
inputs some3SAT formula onn Boolean variables, and generates a new system of 3CNF clauses with
the following gap property: Satisfiable inputs translate to satisfiable3SAT systems, and unsatisfiable
inputs translate to3SAT systems that are only1 − α satisfiable (i.e. any assignment can satisfy only
1− α of the clauses), for someα > 0.

With these “gap-generating” reductions in mind, one can imagine how to make use of composition.
Suppose we had such a gap-generating reduction whose output size is exponential in the input size3. We
could potentially use it as a subroutine in a (polynomial-time) gap-generating reduction, making sure to
run it on inputs that are sufficiently small (≤ log n). This is the basic idea of composition.

How would this work with constraint graphs? Assume we have a gap-generating reductionP as
above, and letG be a constraint graph. We can put each constraint ofG in 3SAT form, and then feed it
to P. The output would be a system of3SAT clauses, which can be easily viewed as constraints over a
small alphabet≤ 23 = 8. The new system would be the union of the3SAT systems output byP over
all of G’s constraints. Thus we have achieved our goal of reducing the size of the alphabet, fromΣ,
|Σ| = O(1), to |Σ0| ≤ 23. The main point is that as long as|Σ| = O(1), P can be allowed to be as
inefficient as needed, and still this composition would only incur a linear overhead.

There is one subtle point that has been ignored so far. It is well-known that for composition to
work, consistency must be established between the many invocations ofP. This point has been handled
before in a modular fashion by adding additional requirements on the reductionP. Such more-restricted
reductions are called PCPs of Proximity in [BGH+04] or Assignment Testers in [DR04]. We describe
these formally below. For an exposition as to why these objects are well-suited for composition, as well
as a proof of a generic composition theorem, please see [BGH+04, DR04].

The following is a stripped-down version of the definition of [DR04], that suffices for our purposes:

Definition 3.1 (2-Query Assignment Tester) A 2-Query Assignment Tester with parametersδ0,Σ0 is
a reduction algorithmP whose input is a Boolean constraintϕ over a set of Boolean variablesX. P
outputs a system of constraintsΨ over variablesX and auxiliary variablesY such that

• The variables inY take values in an alphabetΣ0.

3The implicit assumption here is that such reductions are significantly easier to construct, see e.g. Section6.

8

• Eachψ ∈ Ψ is over two variables fromX ∪ Y .

• For every assignmenta : X → {0, 1},

1. [Completeness:] Ifa satisfiesϕ then there exists an assignmentb : Y → Σ0 such thata ∪ b
satisfies every constraint inΨ.

2. [Soundness:] For everyδ ≤ δ0, if a is δ-far4 from every satisfying assignment forϕ, then
for every assignmentb : Y → Σ0, at leastΩ(δ) of the constraints inΨ rejecta ∪ b.

Notice that no restriction is imposed on the running time ofP or on |Ψ|. In particular, we ignored the
format of the input toP, which may as well be a truth table. We describe an explicit construction of
such an algorithm in Section6 (see Lemma6.2). As mentioned earlier, such an algorithm (that works
only on inputs of some fixed bounded size) can also be found by exhaustive search, provided we have
proven its existence independently. Our main lemma in this section is the following,

Lemma 3.5 (Composition) Assume the existence of a2-query assignment testerP, with δ0 > 0 and
alphabetΣ0, |Σ0| = O(1). There existsβ3 > 0 that depends only onP, such that any constraint system
G = 〈V,Σ, C〉 can be transformed into a constraint systemG′ = 〈V ′,Σ0, C′〉, denotedG ◦ P, such that
size(G′) = M(|Σ|) · size(G), and

β3 · SAT(G) ≤ SAT(G′) ≤ SAT(G)

Proof: We describe the construction in two steps:

• (Robustization:) Lete : Σ → {0, 1}` be any error-correcting-code with linear rate and relative
distanceρ > 0 , so` = O(log |Σ|). Replace each variablev ∈ V by a set of̀ Boolean variables
denoted[v]. These are supposed to represent the encoding viae of v’s assignment. Replace each
constraintc ∈ C by a constraint̃c over variables[v] ∪ [w]. c̃ is satisfied iff the assignment for
[v] ∪ [w] is the legal encoding viae of an assignment forv andw that would have satisfiedc.

• (Composition:) Run an assignment testerP on each̃c. This makes sense sincẽc is a Boolean
constraint over Boolean variables[v] ∪ [w]. Let Yc be the resulting set of auxiliary variables, and
let Ψc the resulting set of constraints. Define the new constraint systemG′ = 〈(V ′, E′),Σ0, C′〉
as follows:

V ′ =
⋃
v∈V

[v] ∪
⋃
c∈C

Yc , C′ = ∪c∈CΨc

(whereC′ implicitly definesE′).

First, let us verify thatsize(G′) = M(|Σ|) · size(G). The inputs fed intoP are constraints̃c :
{0, 1}O(`) → {T,F}. There is a finite number of these, at most22O(`)

. LetM denote the maximal size
of the output ofP over all such inputs. Clearly,size(G′) ≤ M · size(G) andM is a constant that
depends only onΣ andP.

It remains to be seen thatβ3 · SAT(G) ≤ SAT(G′) ≤ SAT(G). The proof is simple and follows exactly
the proof of the composition theorem in [DR04]. Let us sketch the first inequality (that corresponds
to the soundness argument). Given an assignmentσ′ : V ′ → Σ0, we extract from it an assignment
σ : V → Σ by letting for eachv ∈ V σ(v) to be a value whose encoding viae is closest toσ′([v]).
By definition, a fractionSATσ(G) ≥ SAT(G) of constraints rejectσ. Let c ∈ C be a constraint over
variablesu, v that rejectsσ. We will show that a constant fraction of the constraints inΨc rejectσ′. The

4Two assignmentsa, a′ areδ-far if Prx[a(x) 6= a′(x)] ≥ δ.

9

main observation is that the input tõc (i.e., the restriction ofσ′ to [u] ∪ [v]) is at leastρ/4-far from a
satisfying input (whereρ denotes the code-distance ofe). The reason is that aρ/2 fraction of the bits
in either[u] or [v] (or both) must be changed in order to changeσ′ into an assignment that satisfiesc̃.
Setδ = min(δ0, ρ/4). By the soundness property ofP, at leastΩ(δ) fraction ofΨc reject. Altogether,
SAT(G′) ≥ Ω(δ) · SAT(G) = β3 · SAT(G) for someβ3 > 0.

4 Main Theorem

Based on the constraint graph operations described in the previous section, we are now ready to prove
our main theorem.

Theorem 4.1 (Main) For anyΣ, |Σ| = O(1), there exists constantsC > 0 and0 < α < 1, such that
given a constraint graphG = 〈(V,E),Σ, C〉 one can construct, in polynomial time, a constraint graph
G′ = 〈(V ′, E′),Σ0, C′〉 such that

• size(G′) ≤ C · size(G) and|Σ0| = O(1).

• (Completeness:) IfSAT(G) = 1 thenSAT(G′) = 1

• (Soundness:)SAT(G′) ≥ min(2 · SAT(G), α).

Proof: We constructG′ fromG by
G′ = (prep(G))t ◦ P

for an appropriately selected constantt ∈ N. Let us break this into three steps:

1. (Preprocessing step:) LetH1 = prep(G) be the result of applying Lemma3.1toG.

So there exists some global constantsλ < d andβ1 > 0 such thatH1 is d-regular, has the same
alphabet asG, λ(H1) ≤ λ < d, andβ1 · SAT(G) ≤ SAT(H1) ≤ SAT(G).

2. (Amplification step:) LetH2 = (H1)t, for a large enough constantt > 1 to be specified below.

According to Lemma3.4, there exists some constantβ2 = β(λ, d, |Σ|) > 0 for which SAT(H2) ≥
β2

√
t ·min(SAT(H1), 1

t). However, the alphabet grows toΣddt/2e
.

3. (Composition step:) LetG′ = H2 ◦ P be the result of applying Lemma3.5 to H2 relying on a
2-query assignment testerP, as guaranteed in Lemma6.2.

This reduces the alphabet toΣ0 while still β3 · SAT(H2) ≤ SAT(G′) ≤ SAT(H2), for a constant
β3 > 0.

Let us verify the properties claimed above. The size ofG′ is linear in the size ofG because each step
incurs a linear blowup. Specifically, in step 2, sincedeg(H1) = d andt = O(1), the number of edges
in H2 = (H1)t is equal to the number of edges inH1 times a constant factor ofdt−1. In step 3, the total
size grows by a factorM that depends on the alphabet size ofH2, which equals|Σddt/2e | = O(1), and
onP which is fixed throughout the proof, soM is constant.

10

Completeness is clearly maintained at each step. Choose nowt = d(2
β1β2β3

)2e, and letα = β3β2/
√
t.

Altogether,

SAT(G′) ≥ β3 · SAT(H2) (step 3, Lemma3.5)

≥ β3 · β2

√
t ·min(SAT(H1),

1
t
) (step 2, Lemma3.4)

≥ β3 · β2

√
t ·min(β1SAT(G),

1
t
) (step 1, Lemma3.1)

≥ min(2 · SAT(G), α)

As a corollary of the main theorem we get,

Corollary 4.2 (PCP Theorem) Gap-3SAT is NP-hard. (Alternatively,SAT ∈ PCP 1
2
,1[O(log n), O(1)]).

Proof: We reduce from constraint graph satisfiability. The basic idea is to repeatedly apply the main
theorem until afterlog n iterations the gap is a constant fraction.

According to Proposition2.1 it is NP-hard to decide if for a given constraint graphG0 with |Σ| ≤ 7,
SAT(G0) = 1 or not. Fix such aG0.

Let Gi (i ≥ 1) be the outcome of applying the main theorem onGi−1. Then for i ≥ 1 Gi is a
constraint graph with alphabetΣ0. Let k = log |E(G0)| = O(log n). Observe that the size ofGi for
i ≤ k = O(log n) is bounded byCi · size(G0) = poly(n).

Completeness is easy: ifSAT(G0) = 1 thenSAT(Gi) = 1 for all i. For soundness, assumeSAT(G0) <
1. If for somei∗ < k, SAT(Gi∗) ≥ α/2 then the main theorem implies that for alli > i∗ SAT(Gi) ≥ α.
For all otheri it follows by induction that

SAT(Gi) ≥ min(2i SAT(G0), α) .

If SAT(G0) > 0 thenSAT(G0) ≥ 1
|E(G0)| , so surely2kSAT(G0) > α. ThusSAT(Gk) ≥ α.

Finally, a local gadget reduction takesGk to 3SAT form (by converting each constraint into a constant
number of 3CNF clauses), while maintaining the gap up to some constant. To get to soundness of1

2 , in
theSAT ∈ PCP 1

2
,1[O(log n), O(1)] version, one can apply simple (sequential) repetition.

5 Soundness Amplification Lemma

Lemma 3.4Letλ < d, and|Σ| be arbitrary constants. There exists a constantβ2 = β2(λ, d, |Σ|) > 0,
such that for everyt ∈ N and for everyd-regular constraint graphG = 〈(V,E),Σ, C〉 with self-loops
andλ(G) ≤ λ,

SAT(Gt) ≥ β2

√
t ·min

(
SAT(G) ,

1
t

)
.

Throughout the proof all constants includingO(·) andΩ(·) notation are independent oft but may depend
ond, λ and|Σ|. Let us assume for notation clarity thatt is even.

The idea of the proof is as follows. Let us refer to the edges ofGt aspaths, since they come from
t-step paths inG, and let us refer to the edges ofG as edges. An assignment forGt, is a mapping
~σ : V → Σdt/2

where each vertex specifiesΣ values for itself as well as all of its neighbors at distance
≤ t/2. Let us define a new assignment mappingV into Σ, by assigning each vertex the most popular

11

value among the values assigned to it by its neighbors. The probability that a random edge rejects this
new assignment is, by definition, at leastSAT(G). We will show that the probability that a random path
rejects~σ is Ω(

√
t) times larger (we say that a path rejects~σ if the constraint on it is not satisfied by~σ).

This is done by charging to each rejecting edge, all rejecting paths that pass through it. The main
point is that each rejecting edge is potentially responsible fort · dt−1 rejecting paths, while the total
number of edges inGt is only a factordt−1 larger than that inG.

We first show (Lemma5.1) that paths in which one of the ‘middle’ edges is rejecting, have a con-
stant probability of rejecting themselves. Middle edges are those that are traversed by the path at step
i ∈

{
t/2−

√
t, . . . , t/2 +

√
t
}

. Hence we end up chargingΘ(
√
t) · dt−1 rejecting paths to each reject-

ing edge. We then show (Lemma5.3) that almost all paths are charged no more thanO(1) times. This is
where the expansion property ofG is used, as we prove that a random path is expected to pass through
any (small) fixed set of edges a number of times that is a constant independent oft.

Proof: Denote byE = E(Gt) the edge set ofGt. An edgee = (e1, . . . , et) ∈ E is a path of lengtht
in G. SinceG is d-regular,Gt is dt-regular, and|E| = dt−1 |E|.

Let ~σ : V → Σdt/2
be a ‘best’ assignment forGt, SAT(Gt) = SAT~σ(Gt). For eachv, ~σ(v) assigns

values forv and every vertexw within distance≤ t/2 of v. We denote~σ(v)w ∈ Σ the restriction of
~σ(v) to w. This can be thought of as the opinion ofv aboutw. Define an assignmentσ : V → Σ as
follows. For everyj = 1, . . . , t let Xv,j be a random variable that assumes a valuea with probability
that aj-step random walk fromv ends at a vertexw for which~σ(w)v = a. Defineσ(v) = a for a value
a which maximizesPr[Xv,t/2 = a].

LetF be a subset of edges that rejectσ, so that|F ||E| = min(SATσ(G), 1
t). Let

Γi,e = {e ∈ E | ei = e} , Γi =
⋃
e∈F

Γi,e, Γ =
⋃
i

Γi .

Also denoteΓ∗i = {e ∈ Γi | e rejects~σ} andΓ∗ = ∪Γ∗i . The setΓ∗ contains all rejecting paths that pass

throughF , but there can be other rejecting paths as well, so|Γ∗|
|E| ≤ SAT~σ(Gt) = SAT(Gt). We will show

that for someβ > 0, β
√
t · |F ||E| ≤

|Γ∗|
|E| so

β
√
t ·min(SAT(G),

1
t
) ≤ β

√
t ·min(SATσ(G),

1
t
)

= β
√
t · |F |
|E|

≤ |Γ∗|
|E|

≤ SAT~σ(Gt) = SAT(Gt) .

where the middle equality follows from the definition ofF . We next show that a random path whoseith
step equals some fixede ∈ F has constant probability of rejecting,

Lemma 5.1 Let I =
{

t
2 −

√
t < i ≤ t

2 +
√
t
}
⊂ N. There exists someα > 0 that depends only on|Σ|

andd, such that for everye ∈ F , and everyi ∈ I

Pr
e∈Γi,e

[
e ∈ Γ∗i,e

]
> α .

12

Proof: Fix e = (u, v) ∈ F , and leta = σ(u) andb = σ(v). Sincee ∈ F , the constraint one rejects
the valuesa andb. We show that with constant probability, a random path inΓi,e starts at a vertexu0 for
which ~σ(u0)u = a, and ends at a vertexut for which ~σ(ut)v = b. This implies, by definition, that the
path rejects~σ. The reason is that if the path is randomly chosen inΓi,e, then the endpointsu0 andut are
sufficiently random, and will see the plurality opinion often enough.

Fix i ∈ I. The idea is that every pathe ∈ Γi,e can be written uniquely ase = p1ep2 wherep1,p2

are paths of lengthsi− 1 andt− i:

p1 = ((u1, u2), (u2, u3), . . . , (ui−1, u)) and p2 = ((v, v1), (v1, v2), . . . , (vt−i−1, vt−i))

Moreover, this path clearly rejects if~σ(u1)u = a and~σ(vt−i)v = b. These events areXu,i−1 = a and
Xv,t−i = b respectively. Moreover, since the choice ofp1 is independent of the choice ofp2, we have

PrΓi,e

[
Γ∗i,e

]
≥ Pr[Xu,i−1 = a] · Pr[Xv,t−i = b].

Observe that by definitionPr[Xu,t/2 = a] ≥ 1
|Σ| andPr[Xu,t/2 = b] ≥ 1

|Σ| , sincea, b are the most
popular values foru, v respectively. Had it been possible thati − 1 = t/2 andt − i = t/2, the lemma
would follow immediately from the definition ofσ, takingα = 1

|Σ|2 . We will prove that for all̀

If |`− t/2| ≤
√
t then Pr[Xu,` = a] >

τ

2
· Pr[Xu,t/2 = a] (1)

for someτ > 0 to be determined, and a symmetric argument will hold forPr[Xv,` = b]. The intuition
for (1) is that the self-loops ofG make the distribution of vertices reached by a randomt/2-step walk
from u roughly the same as distribution on vertices reached by an`-step walk fromu, for ` ∈ I.

Mark one self-loop on each vertex, and observe that any length-` path fromu inG can be equivalently
described by (i) specifying in which steps the marked edges were traversed, and then (ii) specifying the
remaining steps conditioned on choosing only non-marked edges. LetX ′

u,k be a random variable that
assumes a valueσ with probability that ak-step random walkconditioned on walking only on non-
marked edgesreaches a vertexw for which ~σ(w)u = σ. In other words, for a binomial variableB`,p

with Pr[B`,p = k] =
(

`
k

)
pk(1− p)`−k andp = 1− 1/d,

Pr[Xu,` = a] =
∑̀
k=0

Pr[B`,p = k] Pr[X ′
u,k = a] . (2)

The point is that if|`1 − `2| is small, then the distributionsB`1,p andB`2,p are similar, as formalized in
the following lemma:

Lemma 5.2 For everyp ∈ [0, 1] andc > 0 there exists some0 < τ < 1 such that ifn−
√
n ≤ m < n,

then

∀k, |k − pn| ≤ c
√
n, τ ≤ Pr[Bn,p = k]

Pr[Bm,p = k]
≤ 1
τ

The proof is a straightforward computation, and can be found in AppendixA. The lemma implies that
the distributions ofXu,`1 andXu,`1 are similar. Indeed let us choosec so thatPr[B t

2
,p 6∈ I] ≤ 1

2|Σ| for

the setI =
{
k

∣∣ |k − p`| ≤ c
√
t
}

; and letτ be the appropriate constant from the lemma. Clearlyc can
be chosen independently oft sincek 6∈ I implies|k − pt/2| ≥ |k − p`| − |p`− pt/2| > (c− 1)

√
t. We

13

now have

Pr[Xu,` = a] ≥
∑
k∈I

Pr[B`,p = k] Pr[X ′
u,k = a]

≥ τ ·
∑
k∈I

Pr[Bt/2,p = k] Pr[X ′
u,k = a]

≥ τ ·
(

Pr[Xu,t/2 = a]− 1
2 |Σ|

)
≥ τ

2
· Pr[Xu,t/2 = a]

where the last inequality holds sincePr[Xu,t/2 = a] ≥ 1
|Σ| . So (1) is established, and the proof of

Lemma5.1 is complete withα =
(

τ
2 ·

1
|Σ|

)2
.

It is easy to verify that|Γi| = |F | · |Γi,e| = |F | dt−1 sinceΓi = ∪e∈F Γi,e and this is a disjoint union.
By Lemma5.1,

∀i ∈ I |Γ∗i | =
∑
e∈F

|Γ∗i,e| ≥ |F |α |Γi,e| = α |Γi|

Summing over alli ∈ I, ∑
i∈I

|Γ∗i | ≥ α
∑
i∈I

|Γi| ≥ α |I| |F | dt−1. (3)

If we divide the right hand side by|E|, we getSAT(G) timesα |I| = Ω(
√
t). Intuitively, the left hand

side should more-or-less equal the number of rejecting paths inGt, which lower boundsSAT(Gt). If that
were so, we would get the desired lower bound. However, a pathe will be over-counted in the left-hand
side if it belongs toΓ∗i for more than onei ∈ I, or in other words, if it steps inF more than once. The
second part of the proof uses the expansion ofG to bound this event.

For any pathe, letNF (e) be the number of stepse takes inF , NF (e) = |{e ∩ F}|. For clarity we
omitF from the notation and writeN(e). FixM > 0 to be specified later, and letBi be the set of paths
that are overcounted in (3),

1 ≤ i ≤ t, Bi = {e ∈ Γi |N(e) ≥M} . (4)

Then ∑
i∈I

|Γ∗i \Bi| ≤
∑

e∈Γ∗\(∪iBi)

N(e) ≤M |Γ∗ \ (∪iBi)| ≤M |Γ∗| (5)

We will show thatBi is a small fraction ofΓi,

Lemma 5.3 There existsM > 0 such that for all1 ≤ i ≤ t, and forBi defined in (4), PrΓi [Bi] ≤ α/2.

This will conclude the proof because∑
i∈I

|Γ∗i \Bi| =
∑
i∈I

(|Γ∗i | − |Bi|) ≥ |I| |F | dt−1(α− α/2) ≥ |F | dt−1 · α
√
t (6)

where the first inequality follows from Equation (3) and Lemma5.3. Combining Equations (5) and (6),

|Γ∗| ≥ α

M
·
√
t |F | dt−1

which proves Lemma3.4 with β = α/M . It remains to prove Lemma5.3. We will first prove that for
all j, the expected value ofN(e) overe ∈ Γj is constant.

14

Lemma 5.4 For every1 ≤ j ≤ t, and everyF ⊆ E, EΓj [N] ≤ 2t |F ||E| +O(1).

Proof: Assume firstj = 1. Define indicator variablesFi(e) to equal1 if ei ∈ F and0 otherwise.
ClearlyN(e) =

∑t
i=1 Fi(e), so by linearity of expectation,

EΓ1 [N] = Ee∈Γ1

[
t∑

i=1

Fi(e)

]
=

t∑
i=1

Pr
e∈Γ1

[Fi(e) = 1] .

We now apply Proposition2.4to deduce that

Pr
e∈Γ1

[Fi(e) = 1] ≤ |F |
|E|

+ λi−1

So

EΓ1 [N] ≤
t∑

i=1

(
|F |
|E|

+ λi−1

)
= t

|F |
|E|

+O(1) .

For j > 1 the estimates onFi are slightly different, but this at most doubles the expectation:EΓj [Fi]
is the probability over random paths whosejth step is a random edge inF , that theith step is inF .
If i ≥ j then we can ignore the part of the path before thejth step, andEΓj [Fi] = EΓ1 [Fi−j+1]. If
i < j think of the reverse path: choose a randome ∈ F and then takej − i random steps from it. So
EΓj [Fi] = EΓ1 [Fj−i+1]. Altogether the expectation at most doubles.

Now it is easy to derive Lemma5.3,
Proof: LetN0 = maxj(EΓj [N]). Since|F | / |E| ≤ 1/t, Lemma5.4 impliesN0 = O(1). Markov’s

inequality yields

Pr
Γj

[Bj] = Pr
e∈Γj

[
N(e) ≥ M

N0
·N0

]
≤ N0/M .

ChoosingM = 2N0
α concludes the proof of Lemma5.3, and thus also the proof of Lemma3.4, with

β = α
M = α2

2N0
.

6 An Explicit 2-Query Assignment Tester

In this section we outline a construction of an assignment tester, as needed in Section3.3. Let ψ be a
Boolean constraint over Boolean variablesx1, . . . , xs. We describe an algorithmP whose input isψ and
whose output will be a system of constraints satisfying the requirements of Definition3.1.

LetL = {f : {0, 1}s → {0, 1}} be the set of all functions ons bits, and define the encoding (via the
Long-Code) of a stringa = (a1, . . . , as) ∈ {0, 1}s to be a table

Aa : L→ {0, 1} such that ∀f, Aa(f) = f(a) .

The table-entries will be the variables. Recall that two tablesA,A′ : L → {0, 1} areδ-far from one
another ifPrf [A(f) 6= A′(f)] ≥ δ.

Theorem 6.1 There exists aLong-Code Testsuch that for anyψ : {0, 1}s → {0, 1},

• The test tosses some random coins, based on which it makes3 queries to a tableA : L→ {0, 1}.

• The test has perfect completeness: Ifa ∈ {0, 1}s such thatψ(a) = T, then the tableAa satisfies
the test with probability1.

15

• For every0 < δ < 1/4, if a tableA : L→ {0, 1} is δ-far fromAa for all a for whichψ(a) = T,
then the test rejects with probability≥ Ω(δ).

For the sake of completeness, we include a proof of this theorem in AppendixB. In order to complete
the construction we take two (rather standard) steps,

1. Add the variablesX = {x1, . . . , xs}. An assignment now is made of two tablesσ : X →
{0, 1} andA : L → {0, 1}. Place two types of constraints as follows: The first type will be
3-variable constraints over variables indexed byL, as specified by the test in Theorem6.1 (one
constraint per outcome of random coin tosses). The second type is comparison constraints, defined
as follows. For each choice ofi ∈ {1, . . . , s} andf ∈ L place a constraint that is satisfied iff
σ(xi) = A(f) ⊕ A(f + ei). Assume wlog that there is an equal number of first-type constraints
and second-type constraints5.

2. Let ψ1, . . . , ψN be the set of constraints defined in the previous step (soN = 2O(2s)). Introduce
a new variablezi perψi, and letZ = {zi}i. These variables will input values in{0, 1}3, and let
B : Z → {0, 1}3 be an assignment for these variables. The final system of constraints will be the
following: there will be a constraint for every possible choice ofzi ∈ Z and a variabley of the
three accessed byψi (soy ∈ X ∪L). This constraint will check thatB(zi) satisfiesψi, and that it
is consistent with the assignment fory.

Lemma 6.2 The constructed constraint system is a two-query assignment tester, withδ0 = 1/4 and
Σ0 = {0, 1}3.

Proof: (sketch) Clearly the new constraints each access two variables fromX ∪ L ∪ Z (the variables
L ∪ Z are the ‘auxiliary’ variables). Perfect completeness is evident. For soundness, assume thatσ :
X → {0, 1} is an assignment which isδ-far from every satisfying assignment forψ. Let us first show
that for everyA : L → {0, 1}, the tablesσ,A cause at leastΩ(δ) of the constraints constructed at the
end of step1 to reject. First assume thatA : L → {0, 1} is δ far from a legal long-code encoding.
Then by Theorem6.1at leastΩ(δ) of the long-code tests reject, and this is anΩ(δ) fraction of all of the
constraints. IfA is notδ far from a legal long-code encoding then it isδ-close to the long-code encoding
of someσ′ : X → {0, 1} which satisfiesψ. By assumption onσ, Pri[σ(xi) 6= σ′(xi)) > δ, so we claim
Ω(δ) fraction of the comparison constraints must reject. Indeed, for eachi we have

Pr
f∈L

[
A(f)⊕A(f + ei) = f(σ′)⊕ (f ⊕ ei)(σ′)

]
≥ 1− 2δ (7)

and if σ(xi) 6= σ′(xi), thenf(σ′) ⊕ (f ⊕ ei)(σ′) = σ′(xi) 6= σ(xi). Hence everyf that satisfies the
equality in (7) causes the corresponding comparison constraint to reject. Altogether at least(1− 2δ)δ ≥
δ/2 fraction of the constraints reject, in this case too.

Now consider the final system, generated in step 2. LetB : Z → {0, 1}3. We have established that
for every tableA, the assignmentsσ,A for X ∪ L must cause at leastΩ(δ) of the constraints to reject.
So the associatedZ variables must be assigned a value inconsistent withσ,A, which will be detected
with probability1/3. Thus at leastΩ(δ)

3 = Ω(δ) fraction of the constraints reject.

5This can be achieved by placing multiple copies of the constraints with appropriate multiplicity for each type.

16

7 Short PCPs and Locally Testable Codes

7.1 Short PCPs

Theorem 7.1 SAT ∈ PCP 1
2
,1[log2(n · poly log n), O(1)].

We prove this theorem by relying on a recent result of Ben-Sasson and Sudan,

Theorem 7.2 ([BS05, Theorem 1]) SAT ∈ PCP 1
2
,1[log2(n · poly log n),poly log n].

This result can be manipulated into the following form,

Lemma 7.3 There exist constantsc1, c2 > 0 and a polynomial-time reduction that transforms any SAT
instanceϕ of sizen into a constraint graphG = 〈(V,E),Σ, C〉 such that

• size(G) ≤ n(log n)c1 and|Σ| = O(1).

• If ϕ is satisfiable, thenSAT(G) = 1.

• If ϕ is not satisfiable, thenSAT(G) ≤ 1− 1
(log n)c2

.

Before proving the lemma, let us see how it implies the theorem,
Proof:(of Theorem7.1) We apply the main theorem (Theorem4.1) iteratively k = c2 · log log n

times. This results in a constraint-graphG′ for which SAT(G′) ≥ min(2k · SAT(G) , α) = α, and such
thatsize(G′) = Cc2 log log n · n · (log n)c1 = n · (log n)c1+c2 log C = n · poly log n.

To get an error-probability of12 one can apply standard techniques for ‘clever’ amplification through
expander neighborhoods.

Proof:(of Lemma7.3) Basically, the idea is to replace each constraint in the constraint system from
Theorem7.2with a new constraint system, using composition.

Theorem7.2 yields some constantsa1, a2 > 0 and a reduction from SAT to a system of at most
m = n · (log n)a1 constraints, each over at most(log n)a2 variables such that satisfiable inputs go to
satisfiable systems, and unsatisfiable inputs result in systems for which any assignment satisfies at most
1
2 of the constraints.

Two-variable Constraints Let us introduce one new variable per constraint, over alphabetΣ =
{0, 1}(log n)a2 . The number of new variables ism = n · (log n)a1 . Introduce(log n)a2 new tests per new
variable: Each test will query the new variable and exactly one of the original variables queried by the
corresponding test. The test will check that the value for the new variable satisfies the original test, and
that it is consistent with the second variable. Call this systemΨ and observe that|Ψ| = n · (log n)a1+a2 .

What isSAT(Ψ)? Given an assignment for the original variables it must cause at leastm/2 (original)
tests to reject. Each new variable that corresponds to a rejecting test must participate in at least one new
rejecting constraint. Indeed, even if it is assigned a value that differs from this assignment, it will be
inconsistent with at least one original variable. Altogether, at leastm/2

m·(log n)a2
≥ (log n)−(a2+1) fraction

of the constraints inΨ must reject.

Composition We next apply composition to reduce the alphabet size fromlog |Σ| = poly log n to
O(1). This is exactly as done in Lemma3.5 except that we use a different assignment tester algorithm
P (or equivalently: a PCP of Proximity). Here are the parameters we need ofP: the error probabilityε
and the output alphabet size are arbitrary constants; the number of queries isq = 2; and the proximity
parameter is any value0 < δ < 1

4 . Most importantly we only require that the size of the output is

17

polynomial(and not quasi-linear) in the input size. Existence of such an algorithmP is an implicit
consequence of the proof of the PCP Theorem of [AS98, ALM +98], and was explicitly described in
[BGH+04, DR04].

Here is a brief summary of the construction of Lemma3.5: We encode each variable via a linear-rate,
linear-distance error-correcting-code, treating the ‘small’ variable in each constraint as if its value lies
in the large alphabet. We then runP on each constraint and let the new systemΨ′ be the union of the
output constraint systems.

The soundness analysis shows thatSAT(Ψ′) ≥ SAT(Ψ) · (1 − ε) = Ω((log n)−(a2+1)) = 1
poly log n

where the middle equality holds sinceε is a constant. Since the input size forP was the size of one
constraint inΨ, i.e., poly log n, it follows that the size of the constraint system output byP is also
poly log n. This means that|Ψ′| = |Ψ| · poly log n = n · poly log n

7.2 Short Locally Testable Codes

A similar construction to Theorem7.1 can be used to obtain quasi-linear locally-testable codes (with
block-lengthn · poly log n) that are testable with a constant number of queries. This calls for more
attention to the difference between a PCP reduction (which is what we have constructed in Theorem4.1)
and a strongerassignment-testerreduction. In the terminology of [BGH+04, BS05] this is the difference
between PCPs andPCPs of Proximity. The latter object, as it turns out, can be easily made into a locally-
testable code with similar block-length, see [BGH+04, Construction 4.3].

hIn order to get locally testable codes, we enhance every step of our construction with ‘proximity’.
The main observation is that our proofs always follows through a “local-decoding” argument: an assign-
ment for the new constraint graph is translated into an assignment for the original constraint graph in a
local way, and so the ‘proximity’ is easy to maintain. We postpone details to the full version.

Acknowledgements

I am thankful to Omer Reingold and Luca Trevisan for many discussions about combinatorial analyses
of graph powering, which were the direct trigger for the amplification lemma. I would also like to thank
David Arnon, Miki Ben-Or, Ehud Friedgut, and Alex Samorodnitsky for helpful comments.

References

[ALM +98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and in-
tractability of approximation problems.J. ACM, 45(3):501–555, 1998.1, 18

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.J.
ACM, 45(1):70–122, 1998.1, 18

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. InProc. 36th ACM Symp. on
Theory of Computing, 2004. 2, 3, 8, 18

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and
nonapproximability—towards tight results.SIAM Journal on Computing, 27(3):804–915,
June 1998.21

18

[BS05] Eli Ben-Sasson and Madhu Sudan. Robust PCPs of proximity, shorter PCPs and applica-
tions to coding. InProc. 37th ACM Symp. on Theory of Computing, 2005. 3, 17, 18

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. InProc. 35th ACM Symp. on Theory
of Computing, pages 612–621, 2003.3

[DR04] Irit Dinur and Omer Reingold. Assignment testers: Towards combinatorial proofs of the
PCP theorem. InProceedings of the 45th Symposium on Foundations of Computer Science
(FOCS), 2004. 2, 3, 8, 9, 18

[FGL+96] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is
almost NP-complete.Journal of the ACM, 43(2):268–292, 1996.1

[FKN02] E. Friedgut, G. Kalai, and A. Naor. Boolean functions whose fourier transform is concen-
trated on the first two levels.Adv. in Applied Math., 29:427–437, 2002.22

[GS97] Goldreich and Safra. A combinatorial consistency lemma with application to proving the
PCP theorem. InRANDOM: International Workshop on Randomization and Approximation
Techniques in Computer Science. LNCS, 1997. 3

[GS02] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
In Proc. 43rd IEEE Symp. on Foundations of Computer Science, pages 13–22, 2002.3

[Hås01] Johan H̊astad. Some optimal inapproximability results.Journal of ACM, 48:798–859, 2001.
20, 22

[HS01] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. InSTACS,
pages 327–338, 2001.3

[LW03] N. Linial and A. Wigderson. Expander graphs and their applications. Lecture notes of a
course: http://www.math.ias.edu/ boaz/ExpanderCourse/, 2003.4

[PS94] A. Polishchuk and D. Spielman. Nearly linear size holographic proofs. InProc. 26th ACM
Symp. on Theory of Computing, pages 194–203, 1994.3

[PY91] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991.6

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. InProc. 37th ACM Symp. on
Theory of Computing, 2005. 2

[RVW] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders and extractors.Annals of Mathematics. 2, 4

A A Lemma about similar binomial distributions

Forn ∈ N andp ∈ [0, 1] letBn,p denote a binomially distributed random variable, i.e.,Pr[Bn,p = k] =(
n
k

)
pk(1− p)n−k. The following lemma asserts that ifn,m are close, then the distributions ofBn,p and

Bm,p are close.

19

Lemma 5.2For everyp ∈ [0, 1] andc > 0 there exists some0 < τ < 1 such that ifn−
√
n ≤ m < n,

then

∀k ∈ N, |k − pn| ≤ c
√
n, τ ≤ Pr[Bn,p = k]

Pr[Bm,p = k]
≤ 1
τ
.

Proof: Write n = m+ r for some0 ≤ r ≤
√
n. We will use the identity

(
m+1

k

)
= m+1

m+1−k

(
m
k

)
,

Pr[Bn,p = k] =
(
m+ r

k

)
pk(1− p)m+r−k

=
m+ 1

m+ 1− k
· m+ 2
m+ 2− k

· · · m+ r

m+ r − k

(
m

k

)
· pk(1− p)m−k(1− p)r

= X · pk(1− p)m−k

(
m

k

)
= X · Pr[Bm,p = k]

whereX = (1− p)r m+1
m+1−k ·

m+2
m+2−k · · ·

m+r
m+r−k is bounded as follows. For alla ≤ r ≤

√
n,

m+ a

m+ a− k
≥ m

(1− p)m+ (c+ 1)
√
n
≥ 1

1− p

(
1− c+ 1

(1− p)
√
n

)
where the first inequality holds sincem− k ≤ m− pn+ c

√
n ≤ (1− p)m+ c

√
n. Also,

m+ a

m+ a− k
≤ m+

√
n

(1− p)m− c
√
n
≤ 1

1− p

(
1 +

4c
(1− p)

√
n

)
The product ofr such terms cancels the(1 − p)r and leaves a factor at leastτ = e

− 4c+1
1−p , and at most

1/τ .

B The Long Code Test

We prove Theorem6.1. This is basically reworking a test of Håstad [Hås01], into our easier setting:

Standard Definitions. We identifyL = {f : [n] → {−1, 1}} with the Boolean hypercube{1,−1}n,
and use lettersf, g for points in the hypercube. We use lettersA,B or χ to denote functions whose
domain is the hypercube6. Forα ⊂ [n], define

χα : {−1, 1}n → {−1, 1}, χα(f)
4
=

∏
i∈α

f(i) .

The characters{χα}α⊆[n] form an orthonormal basis for the space of functions{A : {−1, 1}n → R},
where inner product is defined by〈A,B〉 = Ef [A(f)B(f)] = 2−n

∑
f A(f)B(f). It follows that any

functionA : {−1, 1}n → {−1, 1} can be written asA =
∑

α Âαχα, whereÂα = 〈A,χα〉. We also
have Parseval’s identity,

∑
α |Âα|2 = 〈A,A〉 = 1.

6We consider here functions whose domain is an arbitrary set of sizen, and wlog we take the set[n]. In the application this
set is usually some{0, 1}s but we can safely ignore this structure, and forget thatn = 2s.

20

The Test. Let ψ : [n] → {−1, 1} be some predicate, and fix someτ > 0. Let A : {−1, 1}n →
{−1, 1}. A functionA : {1,−1}n → {1,−1} is the legal encoding of the valuea ∈ [n] iff A(f) = f(a)
for all f ∈ L. The following procedure tests whetherA is close to a legal encoding of some valuea ∈ [n]
that satisfiesψ.

1. Selectf, g ∈ L at random

2. Fix τ = 0.01. Seth = gµ whereµ ∈ L is selected by doing the following independently for every
y ∈ [n]. If f(y) = 1 setµ(y) = −1. If f(y) = −1 set

µ(y) =


1 w. prob.1− τ

−1 w. prob.τ
.

3. Accept unlessA(g) = A(f) = A(h) = 1.

Folding. As usual, we foldA over true and overψ, as done in [BGS98]. This means that whenever
the test needs to readA[f], it readsA[f ∧ ψ] instead. In addition, we fold over true which means for
every pairf,−f we letA specify only one, and access the other through the identityA[f] = −A[−f].
In other words, we assume wlog thatA(f) = A(f ∧ ψ) andA(f) = −A(−f) for all f .

It is well-known thatÂα = 0 whenever (i)|α| is even, or (ii)∃i ∈ α for whichψ(i) = 1 (recall that
1 corresponds to false). The reason is that we can partition{1,−1}n into pairsf, f ′ such that

Âα = 2−n
∑

f

A(f)χα(f) = 2−n · 1
2

∑
f

(A(f)χα(f) +A(f ′)χα(f ′)) = 2−n−1
∑

f

0 = 0 .

In (i) let f ′ = −f , soχα(f) = χα(f ′) butA(f) = −A(f ′). In (ii) let f ′ = f + ei wherei is an index
for whichψ(i) = 1; soχα(f) = −χα(f ′) butA(f) = A(f ′).

Correctness. It is easy to check completeness: We fix somea ∈ [n] and assign for allf ,A(f) = f(a).
Clearly if A(f) = f(a) = −1 then the test accepts. Also, ifA(f) = f(a) = 1 thenA(h) = h(a) =
−g(a) = −A(g) 6= A(g), and again the test accepts.

For soundness, arithmetize the acceptance probability as follows

Pr[Test accepts] = Ef,g,h

[
1− (1 +A(f))(1 +A(g))(1 +A(h))

8

]
=

and note that since the pairs(f, g) and(f, h) are pairs of random independent functions, and sinceA is
folded, this equals,

=
7
8
− 1

8
Eg,h [A(g)A(h)]− 1

8
Ef,g,h [A(f)A(g)A(h)] .

The first expectation can be expanded as

Eg,h

 ∑
α,β⊆[n]

ÂαÂβχα(g)χβ(h)

 =
∑

α⊆[n]

Â2
α(−τ)|α|

21

which is bounded byτ in absolute value, sincêAφ = 0. For the acceptance probability to be above1−ε,
the second expectation (whose value let us nameW) must be≤ −1 + τ + 8ε. We write it as

−1 + τ + 8ε ≥W = Eg,f,µ

 ∑
α,β,γ⊆[n]

ÂαÂβÂγχα(g)χβ(gµ)χγ(f)

 =

=
∑

α,γ⊆[n]

ÂγÂ
2
αEf,µ [χα(µ)χγ(f)]

=
∑

γ⊆α⊆[n]

ÂγÂ
2
α(−1 + τ)|γ|(−τ)|α\γ| .

We now bound the absolute value of this sum, following [Hås01]. First we claim that∑
γ⊆α

((1− τ)|γ|(τ)|α\γ|)2 ≤ (1− τ)|α| .

The left hand side is the probability that tossing2 |α| independentτ -biased coins results in a pattern
γγ whereγ ∈ {0, 1}|α|. This probability is(τ2 + (1 − τ)2)|α| ≤ (1 − τ)|α| sinceτ < 1 − τ . By
Cauchy-Schwartz,∑

γ⊆α

|Âγ |(1− τ)|γ|(τ)|α\γ| ≤
√∑

γ⊆α

|Âγ |2 ·
√∑

γ⊆α

((1− τ)|γ|(τ)|α\γ|)2 ≤ (1− τ)|α|/2

so, splitting the sum into|α| = 1 and|α| > 1,

|W | ≤
∑
|α|=1

|Â2
α|(1− τ) +

∑
|α|>1

|Âα|2(1− τ)|α|/2 .

Denoting byρ =
∑

|α|>1 |Âα|2, we have|W | ≤ (1 − ρ)(1 − τ) + ρ(1 − τ)3/2, sinceÂα = 0 for |α|
even. Thus

1− τ − 8ε ≤ |W | ≤ (1− τ)((1− ρ) + ρ
√

1− τ) ⇒ ρ ≤ 8ε
(1− τ)(1−

√
1− τ)

.

Sinceτ is fixed, we can chooseε = Θ(δ) small enough so that this entire expression isΘ(δ).
At this point we use the following result,

Theorem B.1 ([FKN02]) Letρ > 0 and letA : {1,−1}n → {1,−1} be a Boolean function for which∑
α,|α|>1 |Âα|2 < ρ. Then either|Âφ|2 = 1−O(ρ) or |Â{i}|2 = 1−O(ρ) for somei ∈ [n].

Thus, by folding, there must be somei ∈ [n] for whichψ(i) = −1 anddist(A,χ{i}) ≤ O(ρ). (Note
that TheoremB.1 allows also fordist(A,−χ{i}) = O(ρ) but this would cause the test to have failed
with probability≈ 1/4, contradicting our assumption.)

We have proven that unless the tableA is δ-close to someχ{i} for a value ofi that satisfiesψ, at least
ε = Ω(δ) of the tests must reject.

22

	Introduction
	Preliminaries
	Constraint Graphs
	Expander Graphs

	Operations on Constraint Graphs
	Preprocessing
	Powering
	Composition

	Main Theorem
	Soundness Amplification Lemma
	An Explicit 2-Query Assignment Tester
	Short PCPs and Locally Testable Codes
	Short PCPs
	Short Locally Testable Codes

	A Lemma about similar binomial distributions
	The Long Code Test

