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Abstract
LetC = {c,...,c,} be a set of constraints over a set of variables. Fdusfiability-gapof
C is the smallest fraction of unsatisfied constraints, ranging over all possible assignments for the

variables.

We prove a new combinatorial amplification lemma that doubles the satisfiability-gap of a constraint-
system, with only a linear blowup in the size of the system. Iterative application of this lemma yields
a self-contained (combinatorial) proof for the PCP theorem.

The amplification lemma relies on a new notion of “graph powering” that can be applied to
systems of constraints. This powering amplifies the satisfiability-gap of a constraint system provided
that the underlying graph structure is an expander.

We also apply the amplification lemma to construct PCPs and locally-testable codes whose length
is linear up to a polylogactor, and whose correctness can be probabilistically verified by making a
constantnumber of queries. Namely, we proelT’ € PCP1 4[logy(n - polylogn), O(1)]. This
answers an open question of Ben-Sasson et al. (STOC 04)

1 Introduction

LetC = {ci, ..., c,} be asetof constraints over a set of varialife hesatisfiability-gapof C, denoted
SAT(C), is the smallest fraction of unsatisfied constraints, over all possible assignmeVitsGtearlyC
is satisfiable if and only iBAT(C) = 0. Also, if C is not satisfiable theBAT(C) > 1/n.

Background The PCP Theorem is equivalent to stating that gap-3SAT is NP-hard, in the following
sense: for some > 0, given a set of constraints such that each is an conjunction of three literals,

it is NP-hard to distinguish betwe&aT(C) = 0 andSAT(C) > «. Historically, the PCP Theorem has
been formulated through interactive proofs and the concept of a probabilistic verifier that can check an
NP witness by randomly probing it at onty(1) bit locations. The FGL™96, ALM 98] connection
between this formulation and inapproximability, as in the gap-3SAT formulation stated above, came as
a big surprise. Together with the proof of the PCP TheoremAS9B, ALM 798, it brought about a
revolution of the field of inapproximability. The proof of the theorem followed an exciting sequence of
developments in interactive proofs. The proof techniques were mainly algebraic including low-degree
extension, low-degree test, parallelization through curves, a sum-check protocol, and the Hadamard and
guadratic functions encodings.
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Gap Amplification In this paper we take a different approach for proving the PCP Theorem. Our
approach is quite natural in the context of inapproximability. We start with a 3SAT syGtem it is
NP-hard to decide if is satisfiable or not. Namely, it is NP-hard to distinguish between the cases (i)
SAT(C) = 0 and (ii) SAT(C) > 1/n. Now repeatedly apply the amplification lemmatodoubling the
satisfiability gap at each iteration. The outcofiiés a constraint system for which in the first case still
SAT(C') = 0, and in the second caS&T(C’) > « for somea > 0. This gives a reduction frolBSAT to
gap3SAT, thus proving the PCP Theorem.

What makes the gap double? Let us restrict ourselves to systems of constraints over two variables.
Satisfiability is still NP-complete for such systems, for some constant-size (non-Boolean) alphabet. A
two-variable constraint system naturally defines an underlying graph, in which the variables are vertices,
and two variables are adjacent iff there is a constraint over them. We call duisstraint graph In
order to amplify the gap of a constraint graph we simply raise it to the power somet = O(1).
Thegraph poweringoperation is defined as follows: The new underlying graph ig-epower of the
original graph (with the same vertex-set, and an edge for each lenqgth). Each vertex will hold a
value over a larger alphabet, that describes its own value plus it's “opinion” about the values of all of
its neighbors at distance t/2. The constraint over two adjacent vertiees in the new graph will be
satisfied iff the values and opinions @fandv are consistent with an assignment that satisfies all of the
constraints induced by, v and their neighborhoods.

Our main lemma asserts that the gap is multiplied by a factor of roughjyas long as the initial
underlying graph is sufficiently “well-structured”.

The main advantage of this operation is thatldes not increaséhe number of variables in each
constraint (which stayathroughout). Moreover, when appliedderegular graphs foi = O(1), it only
incurs dinear blowup in the size (the number of edges is multipliedby'), and an affordable increase
in the alphabet size (which goes fraito Ed”z’). Combined with an operation that reduces the alphabet
back to3, we get an inductive step that can be repe&iga: times until a constant gap is attained.

Composition Reducing the alphabet size is an easy task assuming we have at our disposal a PCP re-
duction?. A PCP reduction is an algorithm that takes as input a single large-alphabet constraint, and
outputs a system of (perhaps many) constraints over a smaller alphabet. Indeed, all we need to do is to
run P on each of the constraints in our systerithis results in a new constraint system with a similar

gap, and over a smaller alphabet. At first read, this argument may appear to be circular, as the reduction
‘P sounds very much like our end-goal. The point is that since in our setting the inpuéliways has
constant sizeP is allowed to be extremely inefficient. This relaxation makesignificantly easier to
construct, and one can choose their favorite implementation, be it Long-code based or Hadamard-code
based. In factP can be found by exhaustive search, provided we have proven its existence in an inde-
pendent fashion. Composition wifhis direct and simple, relying on the relatively recent ‘modularized’
notion of composition using “assignment-testef3R04] or “PCPs of proximity” BGH'04].

Thus, our proof of the PCP Theorem roughly takes the following form(€ehcode a SAT instance.
Fix t = O(1), setGy = G, and repeat the following stdpg » times:

Git1=(G)' o P

Related Work This construction is inspired by the zig-zag construction of expander graphs due to
[RVW] and by Reingold’s proof foS L = L [Rei0F. Reingold shows how one iteration of powering /

While ensuring consistency between the many invocation®. of



zigzagging, increases the spectral gap of any graph; saadterterations the initial graph becomes an
expander.

Our proof has the same overall structure, where each iteration consists of powering and composition.
In this proof it is the satisfiability gap, rather than the spectral gap, that is increased steadily in each step.

The steady increase of the satisfiability gap is inherently different from the original proof of the PCP
Theorem. There, a constant satisfiability gap (using our terminology) is generated by one powerful
transformation, and then a host of additional transformations are incorporated into the final result to take
care of other parameters.

This work follows [GS97 DRO04 in the attempt to find an alternative proof for the PCP Theo-
rem that is combinatorial and/or simpler. IBPR04], a quasi-polynomial PCP Theorem was proven
combinatorially. While our proof is different, we do rely on the modular notion of composition due
to [BGH'T04, DR04], and in particular on composition with a bounded-input assignment-tester, which
has already served as an ingredient in the constructiori3R®4.

Short PCPs and Locally Testable Codes The goal of achieving extremely-short Probabilistically
Checkable Proofs and Locally-Testable Codes (LTCs) has been the focus of severaR&@4$1501,

GS02 BSVWO03 BGH™04, BS0F. The shortest PCPs/LTCs are due BHT04] and [BS09, each

best in a different parameter setting. For the case where the number of queries is constant, the shortest
construction is due to§GH'04], and the proof-length is - 2(°8™)°, The construction ofS09

has shorter proof-length, - poly log n, but the number of queries it requirespsly logn. Our result
combines the best parameters from both of these works. Our starting point is the constBS08n [

We first transform this construction into a two-query constraint systesinose size is: - poly log n,

such that if the input was a ‘no’ instance, thear(C) > m. Then, by applying our amplification
lemmaO (log log n) times, we raise the gap to a constant, while increasing the size of the system by only
another polylogarithmic factor. Namely, we show thad7T" < PC’P%J[logQ(n - poly logn), O(1)].

Organization Sectiorn2 contains some preliminaries, including a formal definition of constraint graphs,
and some basic facts about expander graphs. In Settiedescribe the operations on constraint graphs
on which we base our construction. In Sectibwe prove the PCP Theorem. The proof of the gap am-
plification lemma is given in Sectidn In Section we describe a concrete (and inefficient) construction
of an assignment testé based on the Long-Code, so as to make our result self-contained. In Séction
we proveSAT € PCP%J[logz(n - polylogn), O(1)].

2 Preliminaries

2.1 Constraint Graphs

In this paper we are interested in systems of constraints, as well as in the graph structure underlying
them. We restrict our attention to systems of two-variable constraints, whose structure is captured by
‘constraint graphs’, defined as follows:

Definition 2.1 (Constraint Graph) G = ((V, E), X, C) is called a constraint graph, if
1. (V, E) is an undirected graph, called the underlying graphcof
2. The setl/ is also viewed as a set of variables assuming values over alphabet

3. Each edge: € E, carries a constraint® : X2 — {T,F}, andC = {c*} ..



An assignment is a mapping: V' — X that gives each vertex i a value from>. For any assignment
o, define
SAT,(G) = ( P)r . [c®(o(u),o(v)) =T] and SAT(G) = maxSAT,(G).
u,)E o
Also definesSAT,(G) = 1 — SAT,(G) andSAT(G) = 1 — SAT(G). We callSAT(G) the satisfiability-
gap of G, or just the gap of7 for short. We denote byize(G) the size of the description @, so
size(G) = O([V| + | E| - [Z*).

Proposition 2.1 (Constraint-Graph Satisfiability) Given a constraint graplé: = ((V, E), 3, C) with
|X| < 7,itis NP-hard to decide i§AT(G) = 1.

Proof: Reduce fronBSAT. Put a vertex for each clause and let the alphabétibe ., 7}, standing for
all possible assignments that satisfy that clause. Put a consistency constraint for every pair of clauses
that share a variable. ]

We sometimes use the same letterto denote the constraint graph and the underlying graph. In
particular, we refer to the degree Gfand we write\(G) to signify the second largest eigenvalue value
of the adjacency matrix of the graph underlyifig

2.2 Expander Graphs

Definition 2.2 LetG = (V, E) be ad-regular graph. LetE(S, S) = |(S x 5) N E| equal the number
of edges from a subsstC V to its complement. The edge expansion is defined as
E(S,S)
= min
sisi<iviz |8

Lemma 2.2 (Expanders) There existly € N andhg > 0, such that there is a polynomial-time con-
structible family{ X, },, of do-regular graphsX,, onn vertices withh(X,,) > ho. |

Proof: It is well-known that a random constant-degree graph-emrtices is an expander. For a deter-
ministic construction, one can get expander2bwertices for anyk from the construction of fVW].
Forn =2 —n/ (n’ < 2¥~1), one can, for example, mergé pairs of vertices. To make this graph reg-
ular one can add arbitrary edges to the non-merged vertices. Clearly, the edge expansion is maintained
up to a constant factor. |

The following relation between the edge expansion and the second eigenvalue is known, see, e.g.,
[LwO03],

Lemma 2.3 LetG be ad-regular graph, and let,(G) denote the edge expansion®@f Then

h(G)?
ot

AG) < d—
| ]

Finally, we prove the following (standard) estimate on the random-like behavior of a random-walk on
an expander.

Proposition 2.4 LetG = (V, E) be ad-regular graph with second largest eigenvalieLet /' C E be
a set of edges. The probabilitythat a random walk that starts at a random edgefiriakes the + 1st

step inF as well, is bounded b% i <%)1.



Proof: Let K be the distribution on vertices induced by selecting a random edfeand then a random
vertex in if. Let B be the support ofC. Let A be the normalized x n adjacency matrix off so 4;;
equalsy/d whereg is the number of edges between verticesd;. The first and second eigenvalues of
Aarel and\ = \/d respectively.

Let = be the vector corresponding to the distributigni.e. z, = Prx[v] equals the fraction of edges
touchingv that are inF', divided by2. Since the graph ig-regular,Pry[v] < ﬁ. Let y, be the

probability that a random step fromis in I, soy = @x. The probabilityp equals the probability of

landing in B afteri steps, and then taking a stepfih

p=Y y(Az)y = y,(A'w), = (y, Alw).

veEB veV

Let 1 be the alll vector. Writex = 2 + z!l wherez!l = 11, is an eigenvector oft with eigenvalue
n g g

1, andz* = x — zll. The vector:* is orthogonal tarll sincel -zt = 3", Prg[v]->, 2 =1-1=0.

vn

Denote|jz|| = /Y., 22. Observe thafjz||? < (3, |zo]) - (max, |z,]) < 1+ (max, |z,|) < ﬁ.

Clearly,
. - - - - d
1A% 2 < (Al 2 < P[]l < JAF (max ) /2 < me

By Cauchy-Schwartz

i i 2|1F| 5 N
(v Aty < ol - 1A% < 2 g2 < 15
Combining the above we get the claim,
: ; : 20F| s IFL (Y
Alz) = (y, Azl Algty < 2150 x4
{y, A'w) = (y, A'2T) + {y, A'e™) < — = + ]| E| g

3 Operations on Constraint Graphs

Our main theorem is proven by performing three operations on constraint graphs:

e Preprocessing: This simple operation preserves both the gap (roughly) and the alphabet size, but
makes the constraint graph more nicely structured.

e Powering: The operation which amplifies the gap, at the expense of increasing the alphabet size.
e Composition: The operation which reduces the alphabet size, while maintaining the gap (roughly).

These operations are described in Secti®is3.2 and3.3respectively.

2Let us adopt the convention that a self-loop is “half” an edge, and its probability is of being selected is defined accordingly.
In the applicationt" will contain no self-loops so this whole issue can be safely ignored.



3.1 Preprocessing

We describe how to (easily) turn any constraint graph into a ‘nicely-structured’ one. By ‘nicely-structured’
we mean regular, constant-degree, and expanding.

Lemma 3.1 (Preprocessing)There exist constant$ < A < d and ; > 0 such that any constraint
graphG can be transformed into a constraint graph, denoted>’ = prep(G), such that

e (' is d-regular with self-loops, and(G’) < X < d.
e (' has the same alphabet &5 andsize(G') = O(size(Q)).
e (1 -SAT(G) < SAT(G') < SAT(G).

Note that the third item implies that completeness is maintained, i®AT{{G) = 1 thensaAT(G’) = 1.
We prove this lemma in two steps, summarized in the next two lemmas.

Lemma 3.2 (Constant degree)Any constraint graphG = ((V, E), %, C) can be transformed into a
(do + 1)-regular constraint graptG’ = ((V', E'), %, C’) such thafV’| = 2 |E| and

SAT(G)/c < SAT(G') < SAT(G)
for some global constantg), ¢ > 0.

This lemma is a well-known ‘expander-replacement’ transformation, du@¥87]. We include a proof
for the sake of completeness. The idea is to split each veiitew deg(v) new vertices that are intercon-
nected via a constant-degree expander, placing equality constraints on the new edges. Intuitively, this
maintainsSAT(G) because the expander edges “penalize” assignments for the new graph that do not as-
sign the same value to all copieswgfhence assignments for the new graph behave just like assignments
for G.

Proof: For eachn, let X, be ady-regular expander on vertices with edge expansidt X,,) > hy,
as guaranteed by Lemn2a2. Fix d = dy + 1. We replace each vertexwith a copy ofX,;, whered,
denotes the degree ofin G. Denote the vertices of;, by [v] and let[V] = U,[v]. Denote the union
of the edges oX,, for all v by E;, and place equality constraints on these edges.

In addition, for every edgév, w) € E we will put an edge between one vertexifh and one vertex
in [w] so that each vertex ifV] sees exactly one such external edge. Denote these edgédtogether
G' = ([V],E = Ey U Ey) is ad-regular graph, antE| = d |E|.

We analyzesAT(G’). The (completeness) upper bousdT(G’) < SAT(G) is easy: An assignment
o : V — ¥ can be extended /] by assigning each € [v] the values(v). This will cause the same
number of edges to reject, which can only decrease as a fraction.

For the (soundness) lower bound, 4ét: [V] — X be a ‘best’ assignment, i.e. violating the fewest

constraintsSAT,/ (G') = SAT(G') 2 o Defines : V — ¥ according to plurality ob’, i.e., leto(v)

be the most popular value amofigf ()),c[,- Let.S C [V] be the set of vertices whose value disagrees
with the plurality. LetE* C E be the edges that reject and letE* be the edges that rejeet. The
external edge corresponding to@g E* either rejects’, or has at least one endpoint$h So

B[+ S| > [E"| = « | E|

If |[E*| > §|E| we are done sinc§ |E| = 34 |E| and soSAT(G') > SAT(G)/2d. So assume that
|S| > 5 |E|. Focus on ongv], and letS” = [v] N S. We can writeS” as a disjoint union of sets
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Sa = {x € SV |o'(x) = a}. SincesS is the set of vertices disagreeing with the plurality value, we have
[S.| < ‘E‘ < 1/2, so by the edge expansion of the appropriate expalderE(S,, Sqa) > ho - |Sa|. All
of these edges carry equality constraints that rejecSo there are at leasp >, [S N [v]| = ho S| >
O‘Tho |E| edges that rejeet’. Since|E| = |E| /d, we getSAT(G’) > 1SAT(G). We have completed the
proof, withc = min(5, 49). m

Lemma 3.3 (Expanderizing) Letdy, hg > 0 be some global constants. Adyegular constraint graph
G can be transformed int6” such that

e G'is(d+ dy+ 1)-regular, has self-loops, and(G’) < d+dy + 1 — < deg(G").

d+d +1
o size(G') = O(size(@))

o i1 - SAT(G) < SAT(GY) < SAT(G)

Proof: The idea is to add t6- self-loops and edges of an expander and put void constraints on these
new edges (i.e., constraints that are satisfied always). By convention, a self loop tadiie degree

of a vertex. LetX = (V,E’) be ady-regular expander ofl/| vertices, withh(X) > hy (again, as
guaranteed by Lemma?2). Let Ej,p, = {(v,v) |v € V}. LetG' = (V, E U E" U Ej,0p), Where the
constraints associated with ndhedges are void constraints (satisfied always). Clearly the degree is
d + dy + 1. To bound)\(G’) we rely on the following well-known inequality (see Lemra&),

Clearly h(G') > h(X) > hg, so pluggingG’ in the above yields\(G') < d+dp + 1 — d+d02+1 <
d+do+ 1.

Finally, since the new edges are always satisfied and since we increased the total number of edges by
factord = %j“, the fraction of unsatisfied constraints drops by at most ]

Proof: (of Lemma3.1) First apply Lemma3.2 on GG, and then apply Lemma.3 on the result. The
lemma is proven with, = ¢ - TrdoTT- [ ]

3.2 Powering

This operation is a new operation on constraint systems, and it is the one that gains us the gap. Let
G = ((V,E), %, C) be a constraint graph , and ket N. We defineG' = ((V,E), sd!*/1 ,C%) to be the
following constraint graph:

e The vertices of>! are the same as the vertices(af

e Edges:u andv are connected by edges inE if the number oft-step paths from to v in G is
exactlyk.

¢ Alphabet: The alphabet 6 is »d"?1 where every vertex specifies values for all of its neighbors
reachable int/2 steps. One may think of this value as describirgyopinion of its neighbors’
values.

e Constraints: The constraint associated with an edge(u, v) € E is satisfied iff the assignments
for v andv are consistent with an assignment that satisfies all of the constraints induced by the
t/2 neighborhoods ofi andw.



If SAT(G) = 1 then clearlysAaT(G?) = 1. More interestingly,

Lemma 3.4 (Amplification Lemma) Let\ < d, and|X| be arbitrary constants. There exists a constant
B2 = P2(\,d,|X]) > 0, such that for every € N and for everyd-regular constraint graphG =
((V, E),%,C) with self-loops and\(G) < A,

_ _ 1
SAT(G") > 2Vt - min <SAT(G) : t) :
This is our main technical lemma, and its proof is given in Secion

3.3 Composition

In this section we describe a transformation on constraint graphs that reduces the alphabet size, while
roughly maintaining the gap. We rely amompositionwhich is an essential component in PCP con-
structions, described next. To understand composition let us ignore the underlying graph structure of a
constraint grapld-, and view it simply as a system of constraints.

Let us step back for a moment and recall our overall goal of proving the PCP Theorem. What we
seek is a reduction from (sa$pAT to gap3SAT. Such a reduction is a polynomial-time algorithm that
inputs some3SAT formula onn Boolean variables, and generates a new system of 3CNF clauses with
the following gap property: Satisfiable inputs translate to satisfiaBlT systems, and unsatisfiable
inputs translate t8SAT systems that are only — « satisfiable (i.e. any assignment can satisfy only
1 — « of the clauses), for some > 0.

With these “gap-generating” reductions in mind, one can imagine how to make use of composition.
Suppose we had such a gap-generating reduction whose output size is exponential in the ipifesize
could potentially use it as a subroutine in a (polynomial-time) gap-generating reduction, making sure to
run it on inputs that are sufficiently smat (log n). This is the basic idea of composition.

How would this work with constraint graphs? Assume we have a gap-generating redgctisn
above, and le6z be a constraint graph. We can put each constraidt of 3SAT form, and then feed it
to P. The output would be a system 8BAT clauses, which can be easily viewed as constraints over a
small alphabet 23 = 8. The new system would be the union of tB8AT systems output by over
all of G’s constraints. Thus we have achieved our goal of reducing the size of the alphabet;,from
IX] = O(1), to|Xo| < 23. The main point is that as long #&8| = O(1), P can be allowed to be as
inefficient as needed, and still this composition would only incur a linear overhead.

There is one subtle point that has been ignored so far. It is well-known that for composition to
work, consistency must be established between the many invocatighsltifis point has been handled
before in a modular fashion by adding additional requirements on the red@®ti8ach more-restricted
reductions are called PCPs of Proximity BGH™04] or Assignment Testers irDjR04]. We describe
these formally below. For an exposition as to why these objects are well-suited for composition, as well
as a proof of a generic composition theorem, pleaseB@éif 04, DR04].

The following is a stripped-down version of the definition BH04, that suffices for our purposes:

Definition 3.1 (2-Query Assignment Tester) A 2-Query Assignment Tester with parametégsX is
a reduction algorithnmP whose input is a Boolean constraiptover a set of Boolean variables. P
outputs a system of constrainksover variablesX and auxiliary variables” such that

e The variables irt” take values in an alphabét,.

3The implicit assumption here is that such reductions are significantly easier to construct, see e.g6Section



e Eachy € V¥ is over two variables fronk U Y.
e For every assignment: X — {0,1},

1. [Completeness:] It satisfiesp then there exists an assignmeéntY — 3, such thata U b
satisfies every constraint ii.

2. [Soundness:] For every < &, if a is -far* from every satisfying assignment for then
for every assignmerdt: Y — X, at least)(d) of the constraints inV rejecta U b.

Notice that no restriction is imposed on the running timéPoér on |¥|. In particular, we ignored the
format of the input tgP, which may as well be a truth table. We describe an explicit construction of
such an algorithm in Sectiodi(see Lemmd.2). As mentioned earlier, such an algorithm (that works
only on inputs of some fixed bounded size) can also be found by exhaustive search, provided we have
proven its existence independently. Our main lemma in this section is the following,

Lemma 3.5 (Composition) Assume the existence oRaquery assignment testé, with 6o > 0 and
alphabet®, |3| = O(1). There exist®; > 0 that depends only oR, such that any constraint system
G = (V,X,C) can be transformed into a constraint systéh= (", £, ('), denoted o P, such that
size(G') = M(|X]) - size(G), and

(3 - SAT(G) < SAT(G') < SAT(G)
Proof: We describe the construction in two steps:

¢ (Robustization:) Let : ¥ — {0, 1}Z be any error-correcting-code with linear rate and relative
distancep > 0, sol = O(log|X|). Replace each variablec V by a set of¢ Boolean variables
denotedwv]. These are supposed to represent the encodingafia’s assignment. Replace each
constraintc € C by a constraint over variablegv| U [w]. ¢ is satisfied iff the assignment for
[v] U [w] is the legal encoding viaof an assignment far andw that would have satisfied

e (Composition:) Run an assignment testeon eaché. This makes sense sinéds a Boolean
constraint over Boolean variabl@g U [w]. LetY, be the resulting set of auxiliary variables, and
let ¥, the resulting set of constraints. Define the new constraint sy&term ((V', E’), ¥, C’)
as follows:

V= JbulJYe, ¢ =Ucct.
veV ceC

(whereC’ implicitly definesE’).

First, let us verify thatsize(G') = M(|X]) - size(G). The inputs fed intdP are constraintg :

{0, 1}0“) — {T,F}. There is a finite number of these, at m2&t"” . Let M denote the maximal size
of the output ofP over all such inputs. Clearlyize(G') < M - size(G) and M is a constant that
depends only o andP.

It remains to be seen thég - SAT(G) < SAT(G’) < SAT(G). The proof is simple and follows exactly
the proof of the composition theorem iDIRO4. Let us sketch the first inequality (that corresponds
to the soundness argument). Given an assignmentV’ — X, we extract from it an assignment
o : V — X by letting for eachv € V o(v) to be a value whose encoding wds closest tar’([v]).

By definition, a fractionsAT,(G) > SAT(G) of constraints reject. Letc € C be a constraint over
variablesu, v that rejectsr. We will show that a constant fraction of the constraint@jnrejects’. The

“Two assignments, o’ ared-far if Pr.[a(z) # o' (z)] > 0.
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main observation is that the input &i.e., the restriction o’ to [u] U [v]) is at leastp/4-far from a
satisfying input (wherg» denotes the code-distancee)f The reason is that a/2 fraction of the bits
in either[u] or [v] (or both) must be changed in order to chamgénto an assignment that satisfies
Setd = min(dp, p/4). By the soundness property B at least2(d) fraction of .. reject. Altogether,
SAT(G") > Q(0) - SAT(G) = B3 - SAT(G) for somess > 0.

[ |

4 Main Theorem

Based on the constraint graph operations described in the previous section, we are now ready to prove
our main theorem.

Theorem 4.1 (Main) For any X, || = O(1), there exists constants > 0 and0 < « < 1, such that
given a constraint graplds = ((V, E'), X, C) one can construct, in polynomial time, a constraint graph
G' = {((V',E"),%,C’) such that

o size(G') < C - size(G) and|Xy| = O(1).
e (Completeness:) BAT(G) = 1 thensaT(G') =1
e (SoundnessFAT(G’) > min(2 - SAT(G), «).
Proof: We constructz’ from G by
G' = (prep(G)) o P
for an appropriately selected constart N. Let us break this into three steps:

1. (Preprocessing step:) Léf; = prep(G) be the result of applying Lemnialto G.

So there exists some global constahts d andg; > 0 such thatH is d-regular, has the same
alphabet a&/, \(H;) < A < d, andp; - SAT(G) < SAT(H;) < SAT(QG).

2. (Amplification step:) LetH, = (H;)!, for a large enough constaht> 1 to be specified below.

According to Lemma3.4, there exists some constait= 3(\, d, [X|) > 0 for whichSAT(H;) >
f2v/t - min(SAT(H,), 1). However, the alphabet grows &5

3. (Composition step:) Le&’’ = H, o P be the result of applying Lemnia5to H, relying on a
2-query assignment test@Y, as guaranteed in Lemn@a2.

This reduces the alphabet ¥t while still 55 - SAT(H,) < SAT(G') < SAT(H,), for a constant
B3 > 0.

Let us verify the properties claimed above. The siz&bfs linear in the size o7 because each step
incurs a linear blowup. Specifically, in step 2, sinkg(H;) = d andt = O(1), the number of edges
in Hy = (H;)! is equal to the number of edgesfh times a constant factor af ~!. In step 3, the total
size grows by a factol/ that depends on the alphabet sizehf, which equalszd“m | =0(1), and
onP which is fixed throughout the proof, 9@ is constant.
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Completeness is clearly maintained at each step. Choose ﬁowm)ﬂ, and leto = 3332 /.
Altogether,

SAT(G') > 33 - SAT(Hz) (step 3, Lemm3&.5)
> (3 - B2/t - min(SAT(H,), %) (step 2, Lemma&.4)
> B3 - B2/t - min(B1SAT(G), %) (step 1, Lemm&.1)

> min(2 - SAT(G), o)

As a corollary of the main theorem we get,
Corollary 4.2 (PCP Theorem) Gap-3SAT is NP-hard. (Alternativelyy AT € PCP%’I[O(log n),0(1)]).

Proof: We reduce from constraint graph satisfiability. The basic idea is to repeatedly apply the main
theorem until aftetog n iterations the gap is a constant fraction.

According to Propositior2.1it is NP-hard to decide if for a given constraint gra@h with |X| < 7,
SAT(Gp) = 1 or not. Fix such &.

Let G; (i > 1) be the outcome of applying the main theorem@®n ;. Then fori > 1 G; is a
constraint graph with alphab&ly. Letk = log |E(Gp)| = O(logn). Observe that the size ¢f; for
i <k = O(logn) is bounded by? - size(Gy) = poly(n).

Completeness is easy:SAT(Gy) = 1 thensaT(G;) = 1 for all i. For soundness, aSSUISET(Go) <
1. If for somei* < k, SAT(G;+) > «/2 then the main theorem implies that for alb i* SAT(G;) > «.
For all other: it follows by induction that

SAT(G;) > min(2' SAT(Gp), ) .

If SAT(Go) > 0thensAT(Gy) > so surely2*SAT(Gy) > . ThusSAT(Gy) > a.

Finally, a local gadget reductlon taL to 3SAT form (by converting each constraint into a constant
number of 3CNF clauses), while maintaining the gap up to some constant. To get to soundg]ées of
the SAT € PCP%J[O(log n), O(1)] version, one can apply simple (sequential) repetition.

[ |

5 Soundness Amplification Lemma

Lemma 3.4Let\ < d, and|X| be arbitrary constants. There exists a constént= G2(\, d, |X|) > 0,
such that for every € N and for everyd-regular constraint graptG = ((V, E), £, C) with self-loops
and\(G) < A,

SAT(G!) > Ao/t - min (SAT(G) , 1) |

Throughout the proof all constants includi@g-) andS2(-) notation are independent bbut may depend
ond, A and|X|. Let us assume for notation clarity thtas even.

The idea of the proof is as follows. Let us refer to the edgeS‘oais paths since they come from
t-step paths inG, and let us refer to the edges 6fas edges. An assignment f6¥, is a mapping
& :V — ¥4? where each vertex specifigsvalues for itself as well as all of its neighbors at distance
< t/2. Let us define a new assignment mappingnto X, by assigning each vertex the most popular
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value among the values assigned to it by its neighbors. The probability that a random edge rejects this
new assignment is, by definition, at le&tr(G). We will show that the probability that a random path
rejectss is Q(v/t) times larger (we say that a path rejegti the constraint on it is not satisfied ).

This is done by charging to each rejecting edge, all rejecting paths that pass through it. The main
point is that each rejecting edge is potentially responsible faf'~! rejecting paths, while the total
number of edges it is only a factord’~! larger than that irG.

We first show (Lemm.1) that paths in which one of the ‘middle’ edges is rejecting, have a con-
stant probability of rejecting themselves. Middle edges are those that are traversed by the path at step
i€ {t/2—1,...,t/2+/t}. Hence we end up chargir®y(v/t) - d'~! rejecting paths to each reject-
ing edge. We then show (Lemmad) that almost all paths are charged no more thgh) times. This is
where the expansion property Gfis used, as we prove that a random path is expected to pass through
any (small) fixed set of edges a number of times that is a constant independent of

Proof: Denote byE = E(G?) the edge set ofi*. An edgee = (e, ...,e;) € Eis a path of length
in G. SinceG is d-regular,GG? is d*-regular, andE| = d'~! |E]|.

Lets : V — %47 be a ‘best’ assignment fa&!, SAT(G!) = sATz(G!). For eachy, (v) assigns
values forv and every vertexv within distance< t¢/2 of v. We denote5(v),, € X the restriction of
&(v) tow. This can be thought of as the opinionwaboutw. Define an assignment: V' — ¥ as
follows. For everyj = 1,...,t let X, ; be a random variable that assumes a valwéth probability
that aj-step random walk fromr ends at a vertex for which &(w),, = a. Defines(v) = a for a value
a which maximizePr[X, ;o = al.

Let F' be a subset of edges that rejectso that% = min(SAT,(G), }). Let

Fi,e:{GEE‘eize}, FZ: UFLE’ F:UFz
ecF %

Also denotd™s = {e € I'; | e rejectss} andI™ = UI'}. The sef™ contains all rejecting paths that pass
throughF', but there can be other rejecting paths as wel%bg SATz(GY) = SAT(G"). We will show
that for somes > 0, 8v/t - % < % o)

BVt - min(SAT(G), %) < BVt min(SAT,(G), %)

7|
svi- 1l
2]

I

= El

< SAT#(G!) = SAT(GY).

where the middle equality follows from the definition Bf We next show that a random path whaete
step equals some fixede F' has constant probability of rejecting,

Lemmab.1Letl = {L -/t <i<L++/t} CN. There exists some > 0 that depends only oft|
andd, such that for every € F', and everyi €

eGPFl;e [eeTi.]>a.
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Proof: Fix e = (u,v) € F, and leta = o(u) andb = o(v). Sincee € F, the constraint om rejects
the values: andb. We show that with constant probability, a random path;ip starts at a vertex for
which &(ug), = a, and ends at a vertey, for which &(u;), = b. This implies, by definition, that the
path rejects’. The reason is that if the path is randomly choselj;in then the endpoints, andw; are
sufficiently random, and will see the plurality opinion often enough.

Fix < € I. The idea is that every pathe I'; . can be written uniquely as = piep2 wherepi, p2
are paths of lengths— 1 andt — i:

P1 = ((ul,uQ), (uQ,u;),), ey (ui_l, u)) and P2 = ((’U,’Ul), (1)1, 1)2), ceey (Ut—i—lyvt—i))

Moreover, this path clearly rejectsdf(u, ), = a andé'(v,—;), = b. These events at&,, ;_; = a and
Xv,—i = brespectively. Moreover, since the choicepafis independent of the choice pb, we have

Prr,, [T5,] > Pr{Xui1 = a] - Pr{Xo = 1]
Observe that by definitioRr[X,, ;o = a] > IE\ andPr[X, /o = b] > \2\’ sincea, b are the most

popular values for, v respectively. Had it been possible that 1 = t/2 andt — i = t/2, the lemma
would follow immediately from the definition of, takinga = ﬁ We will prove that for alll

It |(—t/2| <Vt then Pr[X,,=ad > % Pr[X,,2 = d 1)

for somer > 0 to be determined, and a symmetric argument will holdHetX,, , = b]. The intuition
for (1) is that the self-loops off make the distribution of vertices reached by a randgfastep walk
from » roughly the same as distribution on vertices reached biysiap walk fromu, for ¢ € 1.

Mark one self-loop on each vertex, and observe that any lefygéth fromu in G can be equivalently
described by (i) specifying in which steps the marked edges were traversed, and then (ii) specifying the
remaining steps conditioned on choosing only non-marked edgeng_gibe a random variable that
assumes a value with probability that ak-step random wallconditioned on walking only on non-
marked edgeseaches a vertew for which ¢(w), = o. In other words, for a binomial variablB, ,

with Pr[B,, = k] = (i)pk(l —p)~*andp=1-1/d,

l
Pr(X,¢=a] =Y Pr[By, =k Pr[X], =a. 2)
k=0

The point is that ifi¢; — ¢5| is small, then the distribution8,, ,, and By, , are similar, as formalized in
the following lemma:

Lemma 5.2 For everyp € [0, 1] andc > 0 there exists som@é < 7 < 1 such that ifn — \/n <m <n,
then Pi(B N
T =
k, |k — < < —LZmp = N~
Vh, [k —pn| < ev/n, T_PI‘[Bm,p:/{Z]_T
The proof is a straightforward computation, and can be found in Appehdikhe lemma implies that

the distributions ofX,, ,, and X, ,, are similar. Indeed let us choosso thatPr[Bévp g1 < 2|2| for
the setl = {k | |k — p{| < ¢/t }; and letr be the appropriate constant from the lemma. Cleadgn

be chosen independently béincek ¢ I implies|k — pt/2| > |k — pl| — |pl — pt/2| > (c—1)V/t. We
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now have

Pr[X,¢c=a] > Y Pr[By,=k|Pr[X,, =ad
kel
> 73 Pr[Bys, =k Pr[X], = d
kel
1 T

> T Pr[Xu,t/Q = a] — m > 5 . Pr[Xu,t/Q = a]

where the last inequality holds sin€&[X,,;/» = a] > ﬁ So () is established, and the proof of
2

Lemmab5.1is complete withn = (g : ‘%') . n

It is easy to verify thafl’;| = |F| - |T; .| = |F|d'~! sincel’; = U.crl; . and this is a disjoint union.
By Lemmab5.1,

viel |j[=) |2 |FlaTi] = ally|

eck
Summing over alf € I,
Z|F;‘k|2a2|ri|2a|f\ |F|di—t, A3)
el i€l

If we divide the right hand side bjE|, we getSAT(G) timesa || = Q(v/t). Intuitively, the left hand
side should more-or-less equal the number of rejecting paifi iwhich lower boundsAT(G?). If that
were so, we would get the desired lower bound. However, a¢uath be over-counted in the left-hand
side if it belongs td"; for more than oné < I, or in other words, if it steps i’ more than once. The
second part of the proof uses the expansio& b bound this event.

For any patte, let Nr(e) be the number of stepstakes inF', Nr(e) = [{e N F'}|. For clarity we
omit F' from the notation and writé(e). Fix M > 0 to be specified later, and I1&; be the set of paths
that are overcounted ir3),

Then
Z T3\ Bi| < Z N(e) < M|T™\ (UiBy)| < M || (5)
= ecl™\(U;B;)

We will show thatB; is a small fraction of’;,
Lemma 5.3 There exists\/ > 0 such that for alll < < ¢, and forB; defined in §), Prr,[B;] < a/2.

This will conclude the proof because

YOI\ Bil =) (5= |Bil) = [1]|[F|d" (@ = a/2) 2 |[F|d" - avi (6)

icl icl
where the first inequality follows from EquatioB)@nd Lemmégb.3. Combining Equationss) and ©),
[0
F* > . F t—1
7 = - - VEIF|d

which proves Lemm&.4with 3 = «/M. It remains to prove Lemma.3. We will first prove that for
all j, the expected value d¥ (e) overe € I'; is constant.
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Lemma 5.4 For everyl < j <t,andeveryl' C E, Er, [N] < Qt}g + O(1).
Proof: Assume firstj = 1. Define indicator variable#;(e) to equall if e; € F and0 otherwise.
Clearly N(e) = >_'_, Fi(e), so by linearity of expectation,

t

DBl

=1

EFI [N] = EeEFl

We now apply Propositiofi.4 to deduce that

|F| 1
Pr [Fi(e) = 1] < 1= + AT
eEII;l[ (e) ] |E’ +

So
Er, | <Z —+)\’1 —@JrO()
' |E| |E|

Forj > 1 the estimates o#; are sllghtly different, but this at most doubles the expectafin:[F;]
is the probability over random paths whogé step is a random edge i, that theith step is inF.
If i > j then we can ignore the part of the path before jthestep, andir; [Fi] = Er, [Fi—j1]. If
1 < j think of the reverse path: choose a randem F' and then takg — i random steps from it. So
Er, [F;] = Er, [Fj—i+1]. Altogether the expectation at most doubles. |

Now it is easy to derive Lemma. 3,

Proof: Let No = max;(Er, [N]). Since|F| / |E| < 1/t, Lemma5.4implies No = O(1). Markov’s
inequality yields

PI‘[B]'} = Pr [N(e) > ]J\%NO:| < No/M

Fj eEFj
n
ChoosingM = 22 concludes the proof of Lemnfa3, and thus also the proof of Lemn3a4, with
(6] a2
/8 = M = m. .

6 An Explicit 2-Query Assignment Tester

In this section we outline a construction of an assignment tester, as needed in Settibet ¢ be a
Boolean constraint over Boolean variablgs. . . , 5. We describe an algorith whose input is) and
whose output will be a system of constraints satisfying the requirements of Defiifion

LetL = {f:{0,1}° — {0,1}} be the set of all functions onbits, and define the encoding (via the
Long-Code) of a string = (ay,...,as) € {0,1}° to be a table

A, L —{0,1} suchthat Vf, A.(f) = f(a).

The table-entries will be the variables. Recall that two tabled’ : L — {0, 1} ared-far from one
another ifPr[A(f) # A'(f)] > 0.

Theorem 6.1 There exists &ong-Code Tessuch that for any) : {0,1}* — {0,1},
e The test tosses some random coins, based on which it rBakesies to a tabled : L — {0, 1}.

e The test has perfect completeness: i {0,1}" such thaty)(a) = T, then the tabled, satisfies
the test with probabilityl.

15



e Foreveryd < § < 1/4,ifatableA: L — {0, 1} is §-far from A, for all a for which(a) =T,
then the test rejects with probability ©(9).

For the sake of completeness, we include a proof of this theorem in AppBndixorder to complete
the construction we take two (rather standard) steps,

1. Add the variablesX = {zj,...,xs}. An assignment now is made of two tables: X —
{0,1} andA : L — {0,1}. Place two types of constraints as follows: The first type will be
3-variable constraints over variables indexed/hyas specified by the test in Theoréii (one
constraint per outcome of random coin tosses). The second type is comparison constraints, defined
as follows. For each choice ofc {1,...,s} andf € L place a constraint that is satisfied iff
o(x;) = A(f) ® A(f + e;). Assume wlog that there is an equal number of first-type constraints
and second-type constraiits

2. Lete)y, ..., ¥ be the set of constraints defined in the previous step\(se 2°(2")). Introduce
a new variable;; pery;, and letZ = {z;},. These variables will input values i0, 1}, and let
B: Z — {0,1}* be an assignment for these variables. The final system of constraints will be the
following: there will be a constraint for every possible choicezpE 7 and a variable; of the
three accessed hy; (soy € X U L). This constraint will check thaB( z;) satisfieg);, and that it
is consistent with the assignment far

Lemma 6.2 The constructed constraint system is a two-query assignment testegowith1/4 and
Yo = {0,1}°.

Proof: (sketch) Clearly the new constraints each access two variablesXroni U Z (the variables

L U Z are the ‘auxiliary’ variables). Perfect completeness is evident. For soundness, assusne that
X — {0,1} is an assignment which isfar from every satisfying assignment fgr Let us first show
that for everyA : L — {0, 1}, the tablesr, A cause at leas2(0) of the constraints constructed at the
end of stepl to reject. First assume that : L — {0,1} is ¢ far from a legal long-code encoding.
Then by Theoreng.1at least(d) of the long-code tests reject, and this is(a) fraction of all of the
constraints. IfA is noto far from a legal long-code encoding then ibiglose to the long-code encoding
of someo’ : X — {0, 1} which satisfies). By assumption ow, Pr;[o(z;) # o'(x;)) > J, SO we claim
Q(0) fraction of the comparison constraints must reject. Indeed, for @aehhave

Pr A @ A(f +e) = () & (f @ e)(@)] 21-2 @)

and ifo(x;) # o'(x;), thenf(o') @ (f ® e;)(0') = o'(x;) # o(x;). Hence everyf that satisfies the
equality in (/) causes the corresponding comparison constraint to reject. Altogether dflleast)s >
/2 fraction of the constraints reject, in this case too.

Now consider the final system, generated in step 2.BetZ — {0, 1}3. We have established that
for every tableA, the assignments, A for X U L must cause at lea$k(¢) of the constraints to reject.
So the associated variables must be assigned a value inconsistent with, which will be detected
with probability1/3. Thus at Ieas@ = Q(0) fraction of the constraints reject. |

5This can be achieved by placing multiple copies of the constraints with appropriate multiplicity for each type.
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7 Short PCPs and Locally Testable Codes

7.1 Short PCPs
Theorem 7.1 SAT € PCP%,l[logQ(n - poly logn), O(1)].

We prove this theorem by relying on a recent result of Ben-Sasson and Sudan,

Theorem 7.2 (BS05 Theorem 1]) SAT € PCP%’I[logQ(n - poly logn), poly log n].
This result can be manipulated into the following form,

Lemma 7.3 There exist constants, co > 0 and a polynomial-time reduction that transforms any SAT
instancey of sizen into a constraint graplG = ((V, E), ¥, C) such that

o size(G) < n(logn)* and|X| = O(1).
o If ¢ is satisfiable, thesAT(G) = 1.

e If s not satisfiable, theBAT(G) < 1 — W

Before proving the lemma, let us see how it implies the theorem,

Proof:( of Theorem7.1) We apply the main theorem (Theorefl) iterativelyk = ¢ - loglogn
times. This results in a constraint-gragh for which SAT(G’) > min(2* - SAT(G), «) = «a, and such
thatsize(G’) = C219818™ . . (logn)®t = n - (logn)c1+e218C = p . poly log n.

To get an error-probability o% one can apply standard techniques for ‘clever’ amplification through
expander neighborhoods. [ ]

Proof:( of Lemma7.3) Basically, the idea is to replace each constraint in the constraint system from
Theorem7.2with a new constraint system, using composition.

Theorem?7.2 yields some constanis,as > 0 and a reduction from SAT to a system of at most
m = n - (logn)® constraints, each over at mdsbdg n)*? variables such that satisfiable inputs go to
satisfiable systems, and unsatisfiable inputs result in systems for which any assignment satisfies at most
3 of the constraints.

Two-variable Constraints Let us introduce one new variable per constraint, over alphabet
{0,1}1°¢™* ‘The number of new variablesis = n - (logn)® . Introduce(log n)?2 new tests per new
variable: Each test will query the new variable and exactly one of the original variables queried by the
corresponding test. The test will check that the value for the new variable satisfies the original test, and
that it is consistent with the second variable. Call this systeand observe that| = n - (logn)% %2,

What isSAT(¥)? Given an assignment for the original variables it must cause atte@sforiginal)
tests to reject. Each new variable that corresponds to a rejecting test must participate in at least one new
rejecting constraint. Indeed, even if it is assigned a value that differs from this assignment, it will be
inconsistent with at least one original variable. Altogether, at I%ﬁ%ﬁw > (log n)—(“2+1) fraction
of the constraints il must reject.

Composition We next apply composition to reduce the alphabet size fiam>| = poly logn to
O(1). This is exactly as done in Lemn3a5 except that we use a different assignment tester algorithm
P (or equivalently: a PCP of Proximity). Here are the parameters we neBdtbie error probabilitye

and the output alphabet size are arbitrary constants; the number of queriesdsand the proximity

parameter is any valueé < § < % Most importantly we only require that the size of the output is
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polynomial (and not quasi-linear) in the input size. Existence of such an algorRhis an implicit
consequence of the proof of the PCP TheoremA898 ALM 98], and was explicitly described in
[BGHT04, DR0O4.

Here is a brief summary of the construction of LemBia We encode each variable via a linear-rate,
linear-distance error-correcting-code, treating the ‘small’ variable in each constraint as if its value lies
in the large alphabet. We then r@hon each constraint and let the new syst&frbe the union of the
output constraint systems.

The soundness analysis shows BaT(¥’) > SAT(D) - (1 — &) = Q((logn)~(2tV)) = A
where the middle equality holds sineds a constant. Since the input size fBrwas the size of one
constraint inV, i.e., poly logn, it follows that the size of the constraint system output/ys also
poly log n. This means thgW’| = |¥| - polylogn = n - poly logn [ |

7.2 Short Locally Testable Codes

A similar construction to Theorem.1 can be used to obtain quasi-linear locally-testable codes (with
block-lengthn - poly log n) that are testable with a constant number of queries. This calls for more
attention to the difference between a PCP reduction (which is what we have constructed in Thédprem
and a strongeassignment-testeeduction. In the terminology o§GH™ 04, BS09 this is the difference
between PCPs arRICPs of Proximity The latter object, as it turns out, can be easily made into a locally-
testable code with similar block-length, s&JH" 04, Construction 4.3].

hin order to get locally testable codes, we enhance every step of our construction with ‘proximity’.
The main observation is that our proofs always follows through a “local-decoding” argument: an assign-
ment for the new constraint graph is translated into an assignment for the original constraint graph in a
local way, and so the ‘proximity’ is easy to maintain. We postpone details to the full version.
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A A Lemma about similar binomial distributions
Forn € Nandp € [0, 1] let B, ;, denote a binomially distributed random variable, iRx[B,, , = k] =

(})p* (1 — p)"~*. The following lemma asserts thatif m are close, then the distributions Bf, , and
B, are close.
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Lemma5.2For everyp € [0,1] andc > 0 there exists som@ < 7 < 1 such thatifn — /n < m <n,
then

Pr[B,,=k] 1
k k — < <P o
Vk e N, | pn| < eyv/n, T < BBy — K = 7

Proof: Write n = m + r for some0 < r < /n. We will use the identity”; ") = -2+L ("),

m+1—-k\k
m+r m4+r—
P, = = (" )t
m+1 m+ 2 m+r [(m k —k
— . (1 = )R (L — )T
m+l—k m+2—k m+r—k<k>p( )" =p)

= X () = X PrlB, = 4

_ r_m+1 m+2 m+r
whereX = (1 —p)" =7 - wio—r " mir—5 IS bounded as follows. For all < r < \/n,

m+a m o 1 (1_ c+1 >
m+a—k -~ 1—-pm+(c+1)yn  1—p (1—p)v/n
where the first inequality holds sinee — k£ < m — pn + ¢y/n < (1 — p)m + ¢y/n. Also,

m+a m++/n 1 de
< < 1
m+a—k = (1—pm—cyn — 1—p< +(1—p)\/ﬁ>

det1
The product of- such terms cancels th{ié — p)” and leaves a factor at least= ¢~ -, and at most

1/7. |

B The Long Code Test

We prove Theorers. 1. This is basically reworking a test ofddtad Has01, into our easier setting:

Standard Definitions. We identify L = {f : [n] — {—1, 1}} with the Boolean hypercubgl, —1}",
and use letterg, g for points in the hypercube. We use lettetsB or x to denote functions whose
domain is the hypercubeFor o C [n], define

n A .
Xa i {-L1" = {-L1},  xa()=]] /6.
i€
The character$xa}agn] form an orthonormal basis for the space of functi¢ds: {—1,1}" — R},
where inner product is defined by, B) = E; [A(f)B(f)] = 27" >_; A(f)B(f). It follows that any

function A : {~1,1}" — {—1,1} can be written asl = 3__ A,xa, WhereA, = (A, x,). We also
have Parseval’s identity,,, [A.|> = (A, A) = 1.

®We consider here functions whose domain is an arbitrary set ofisized wlog we take the sgt]. In the application this
set is usually somg0, 1}° but we can safely ignore this structure, and forget that 2°.
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The Test. Letw : [n] — {—1,1} be some predicate, and fix some> 0. LetA : {-1,1}" —
{-1,1}. AfunctionA : {1, -1}" — {1, —1} is the legal encoding of the valuec [n]iff A(f) = f(a)
forall f € L. The following procedure tests whethéiis close to a legal encoding of some value [n]
that satisfieg).

1. Selectf,g € L at random

2. FixT = 0.01. Seth = gu wherey, € L is selected by doing the following independently for every
€ [n]. If f(y) =1setu(y) =—1.If f(y) = —1 set

{ 1 w.prob.1 -7

—1 w. prob.7
3. AcceptunlessA(g) = A(f) = A(h) = 1.

Folding. As usual, we foldA over true and ovetp, as done inBGS9§. This means that whenever
the test needs to readlf], it readsA[f A ] instead. In addition, we fold over true which means for
every pairf, — f we let A specify only one, and access the other through the ideAfify = —A[—f].
In other words, we assume wlog th&tf) = A(f A¢) andA(f) = —A(—f) forall f.

It is well-known thatA, = 0 whenever ()| is even, or (ii)3i € a for which(i) = 1 (recall that
1 corresponds to false). The reason is that we can partftior1}" into pairsf, f' such that

Aa =2 Y APl =27 L S ADXa () + Al =27 0 =0,
f f f

In (i) let f/ = —f, soxa(f) = xa(f) but A(f) = —A(Sf"). In (i) let f' = f + e; wherei is an index
for which (i) = 1; soxa(f) = —xa(f’) but A(f) = A(f").

Correctness. ltis easy to check completeness: We fix same [n] and assign for alf, A(f) = f(a).
Clearly if A(f) = f(a) = —1 then the test accepts. Also, 4(f) = f(a) = 1 thenA(h) = h(a) =
—g(a) = —A(g) # A(g), and again the test accepts.

For soundness, arithmetize the acceptance probability as follows

Pr[Test accepis= Es 5 |1 — (1+A(f)( +;4(9))(1 +AMR)| _

and note that since the pait$, g) and(f, h) are pairs of random independent functions, and sifice

folded, this equals, . 1
= L By [AW)A®R)] — SEp g [AG)Alg) AR

The first expectation can be expanded as

IEg,h { Z A AﬂXa ] Z A2 la‘

a,6C[n] aCln]

21



which is bounded by in absolute value, sinoé¢ = 0. For the acceptance probability to be abdves,
the second expectation (whose value let us ndMenust be< —1 + 7 + 8. We write it as

14748 >W = Egpu| Y. AadgAixa(g)xslon)x,(f)| =
a,B,7C[n]

= Z AVA?XEL,M [Xa(#)x~(f)]

a,vC[n]

= Z A A% (=1 4 )P (=7l

vCaCln]

We now bound the absolute value of this sum, followik@§01]. First we claim that
Z((l —)M()leh2 < (1 — 7)lel |
7Ca

The left hand side is the probability that tossidgy| independent-biased coins results in a pattern
vy wherey € {0,1}°. This probability is(r2 + (1 — 7)2)l®l < (1 — 7)lel sincer < 1 — 7. By
Cauchy-Schwartz,

Z A, (1 = )P ()l < \/Z A2 Z (1 = 7))l < (1 — 7)lel/2

vCa 7Ca 7Ca

so, splitting the sum intt| = 1 and|a| > 1,

Wi< Y 1AAA -+ D AP —n)ll2.

lal=1 |a|>1
Denoting byp = 3"~ [Aa|?, we havelW| < (1 — p)(1 — 7) + p(1 — 7)*/2, sinceA, = 0 for |a|
even. Thus

8¢
1-7)(1—-V1I=7)

L7 8 <[W|<(1-7)A-p)+p/I-7) = p<

Sincer is fixed, we can choose= ©(4) small enough so that this entire expressiof(s).
At this point we use the following result,

Theorem B.1 (FKNO2]) Letp > 0 and letA : {1, —1}? — {1, —1} be a Boolean function for which
> aja>1 [Aal® < p. Then eithef Ay|> = 1 — O(p) or [Agy > = 1 — O(p) for somei € [n].

Thus, by folding, there must be somes [n] for which (i) = —1 anddist(4, x;;3) < O(p). (Note
that TheorenB.1 allows also fordist(A4, —x(;3) = O(p) but this would cause the test to have failed
with probability~ 1/4, contradicting our assumption.)

We have proven that unless the taldiés 5-close to some;; for a value ofi that satisfieg), at least
e = Q(6) of the tests must reject. ]
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