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ABSTRACT
Linear programming decoding for low-density parity check
codes (and related domains such as compressed sensing) has
received increased attention over recent years because of its
practical performance —coming close to that of iterative de-
coding algorithms— and its amenability to finite-blocklength
analysis. Several works starting with the work of Feldman
et al. showed how to analyze LP decoding using properties
of expander graphs. This line of analysis works for only low
error rates, about a couple of orders of magnitude lower than
the empirically observed performance. It is possible to do
better for the case of random noise, as shown by Daskalakis
et al. and Koetter and Vontobel.

Building on work of Koetter and Vontobel, we obtain a
novel understanding of LP decoding, which allows us to
establish a 0.05-fraction of correctable errors for rate-1/2
codes; this comes very close to the performance of iterative
decoders and is significantly higher than the best previously
noted correctable bit error rate for LP decoding. Unlike
other techniques, our analysis directly works with the primal
linear program and exploits an explicit connection between
LP decoding and message passing algorithms.

An interesting byproduct of our method is a notion of a
“locally optimal” solution that we show to always be globally
optimal (i.e., it is the nearest codeword). Such a solution
can in fact be found in near-linear time by a “re-weighted”
version of the min-sum algorithm, obviating the need for
linear programming. Our analysis implies, in particular, that
this re-weighted version of the min-sum decoder corrects up
to a 0.05-fraction of errors.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity
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1. INTRODUCTION
Low density parity-check (LDPC) codes are linear codes

over GF (2) whose constraint graph is sparse. They were
introduced and analyzed by Gallager [10] in a paper that was
forgotten for several decades and recalled again only in the
1990s. Sipser and Spielman [17] studied a subclass of these
codes in which the constraint graph has good expansion
properties. For these expander codes, they showed that
a very simple bit-flipping strategy, originally suggested by
Gallager, corrects efficiently an Ω(1) fraction of (worst-case)
errors, though the actual constants were quite weak. (Myriad
extensions of expander codes have been studied but will not
be relevant here.)

Meanwhile, researchers in information theory rediscovered
Gallager’s idea and began to view the decoding problem for
LDPC codes as an example of Maximum a posteriori (MAP)
estimation in factor graphs (a notion that also became popu-
lar in machine learning). Various iterative message-passing
algorithms—two popular ones being belief propagation (BP)
and the min-sum algorithm—were found to empirically yield
excellent decoding performance. A survey of LDPC codes
and decoding algorithms appears in [16, 14].

In a seminal paper [14], Richardson and Urbanke, aided
with some computer calculations, were able to establish that a
BP-like algorithm can decode with high probability a (3, 6)-
regular LDPC code on a binary symmetric channel with
noise rate up to 0.084. This is the best bound known for
any decoding algorithm, and is not far from the empirically
observed performance of BP and the information theoretic
limit of roughly 0.11.

Our paper concerns the linear programming (LP) decoding
method. This method was introduced by Feldman, Wain-
wright and Karger [8], in a paper that only establishes a
sub-linear number of correctable errors, but also notes that
the empirical performance of LP decoding is similar to that of
message-passing algorithms. A subsequent paper of Feldman
et al. [7] showed that the method corrects Ω(1)-fraction of
(worst-case) errors for expander codes. The proof consists
of constructing a dual solution, inspired by Sipser and Spiel-
man’s analysis, and yields similar bounds: a tolerance of



adversarial noise rate up to 0.00017. Note that the advan-
tage of LP decoding over message-passing decoders is that
in the case of decoding success, the linear program provides
a certificate that the output is indeed the nearest codeword.

Unfortunately, it has remained difficult to improve the
analysis of LP decoding to establish bounds closer to the
empirically observed performance. Daskalakis et al. [5] were
able to show a tolerance of noise up to 0.002 —an order of
magnitude better than the bounds of Feldman et al. [7] but
still 40 times lower than the Richardson–Urbanke [14] bound
of 0.084 for belief propagation. Their proof constructs a
more intricate dual LP solution than Feldman et al.’s, but it
is still based on expansion arguments. (Note: All the bounds
in the paper are quoted for (regular) rate 1/2 codes.)

Intuitively, the main reason for the small bit error rates in
the above analyses of LP decoding was that these analyses
were close in spirit to the Sipser and Spielman expansion-
based approach. By contrast the Richardson–Urbanke style
analysis of message passing algorithms relies upon the high
girth of the graph defining the code (specifically, the fact
that high-girth graphs look locally like trees).

Nevertheless, it remained unclear how to bring girth-based
arguments into the context of LP decoding. In a recent
paper, Koetter and Vontobel [13] achieved this. Their key
idea was to use the min-sum algorithm rather than Belief-
Propagation (which uses highly nonlinear operations). They
showed how to transform the messages exchanged in the
min-sum algorithm into an intricate dual solution. (Their
construction was inspired by the Gauss–Seidel method to
solve convex programs.) Though they did not report any
numbers in their paper, our calculations show that their
analysis of LP decoding allows (3, 6)-regular codes to tolerate
random noise rate 0.01 —a factor of 5 improvement over
Daskalakis et al. [5].

In this paper we present an improvement of the noise rate
by another factor of 5 to 0.05, coming very close to the per-
formance of BP. The key ingredient in our proof is a new
approach to analyzing LP decoding. Instead of trying to
construct a dual solution as in all the previous papers, we
give a direct analysis of the primal linear program. (This
also answers an open question of Feldman et al. regarding
whether a primal-only analysis is possible.) At its heart, the
proof relies on the fact that the LP relaxation is tight for
trees. We use this to show that an LP solution can be decom-
posed into a distribution over codewords for every tree-like
neighborhood of G so that these distributions are consistent
in overlapping neighborhoods; the type of consistency that
we use is inspired by hierarchies of LP relaxations, such as
the Sherali–Adams hierarchy [15]. We use our decomposi-
tion to define a criterion for certifying the optimality of a
codeword in the right circumstances (Theorem 2), which is
quite interesting on its own right. If the certificate exists, it
can be found by a simple message-passing algorithm, and
if it exists, then LP decoding works (Theorem 4). The first
such certificate was described in [13]; ours is more general
and therefore occurs with high probability for much larger
noise rates (Theorems 1, 5). We note that prior to [13] no
other analyses led to message-passing algorithms that certify
the correctness of their answer.

As for the probability with which such a certificate exists,
our calculation consists of reducing the whole problem to the
study of a min-sum process on a finite tree (Definition 4),
which is even amenable to analytic calculation by hand, as

done for error rate up to 0.0247 (see Section 6.1). This
consists of tracing the Laplace transform of the messages
exchanged by the min-sum process, as these messages move
upwards on the tree. We believe that this idea of recursing the
Laplace transform, rather than the density functions, of the
messages is interesting on its own right and could be useful in
other settings. In our setting it is rather effective in handling
the min operators, which we cannot handle analytically if
we trace the density functions of the messages.

Combining our analytic bounds with a MATLAB calcu-
lation, we can accommodate noise rate up to 0.05 (see Sec-
tion 6.1). The method seems to break down beyond 0.05,
suggesting that getting to 0.084 would require new ideas. We
note that our analysis does not require expansion, only high
enough girth (a lower bound of Ω(log logn) on the girth is
sufficient to make the probability of decoding error inverse
polynomial in the blocklength n). Perhaps the right idea to
go beyond 0.05 is to marry high-girth and expansion-based
arguments, an avenue worth exploring.

An interesting byproduct of our technique is establishing
that a certain re-weighted version of the min-sum decoder
corrects up to a 0.05-fraction of errors with high probability
over the binary symmetric channel for code-rate 1/2. To the
best of our knowledge, the bound of 0.05 is the best known for
re-weighted min-sum decoders over BSC for codes of rate 1/2
(c.f. [18, 9, 3, 4, 2]). As compared to the 0.084 bound for
BP, ours has the advantage that with high probability the
nearest codeword can be certified to be correct.

We note that our method, being primal-only, is relatively
clean —and in our opinion, easier to understand (apart maybe
from the probabilistic calculation) than previous analyses.
We also suspect that the idea of expressing primal solutions
in terms of local tree assignments may be of wider use in
applications that use LP decoding techniques and random
graphs. We are currently exploring connections to compressed
sensing. Candès and Tao [1] (independently of Feldman et
al. though somewhat later), as part of work on compressed
sensing, arrived at linear programming as a promising tool for
a variety of reconstruction problems in compressed sensing,
which include decoding random linear codes over the reals
(these are not LDPC since the constraint graph is non-sparse).
Recent work such as [11, 12] makes explicit the connection
between Sipser–Spielman type decoding of LDPC codes and
compressed sensing using sparse matrices.

Our Main Result.

Theorem 1. Let p 6 0.05 and let x ∈ {0, 1}n be a code-
word of the low-density parity check code defined by a (3, 6)-
regular bipartite graph with Ω(logn) girth. Suppose that
y ∈ {0, 1}n is obtained from x by flipping every bit inde-
pendently with probability p. Then, with probability at least
1− exp(−nγ) for some constant γ > 0,

1. the codeword x is the unique optimal solution to the LP
decoder of Feldman et al. [8] (see LP (2) in Section 2),

2. a simple message-passing (dynamic programming) algo-
rithm running in time O(n logn) can find x and certify
that it is the nearest codeword to y.

For LDPC codes defined by general (dL, dR)-regular graphs,
we have the same conclusion whenever dL, dR, and p satisfy



the condition

√
p
“

1− (1− p)dR−1
” dL−2

2
(1− p)

(dR−1)(dL−2)
2 + 1

2

<
1

(dR − 1) · 2dL−1
. (1)

Remark 1. If we are content with a decoding success prob-
ability of 1− 1/poly(n), then Ω(log logn) girth is sufficient
for the results in the previous theorem. The running time is
reduced to O(n log logn).

2. PRELIMINARIES
Low-density parity check codes.

Let G be a simple bipartite graph with bipartition (VL, VR),
left degree dL, and right degree dR. Let n be the number of
left vertices, and m be the number of right vertices. We will

assume that VL is the set [n]
def
= {1, . . . , n}. For two vertices

u and v of G, we let d(u, v) be the distance of u and v in
G. We denote by N(u) the set of neighbors of u. Similarly,
N t(u) is the set of vertices at distance t from u. We denote
by N6t(u) or B(u, t) the set of vertices at distance at most
t from u.

The parity-check code defined by G is the set of all 0/1
assignments to the left vertices such that every right vertex
has an even number of neighbors with value 1,

C(G)
def
= {x ∈ {0, 1}n |

P
i∈N(j)xi ≡ 0 mod 2, for all j ∈ VR} .

The elements of C(G) are called codewords. Note that if we
allow general graphs then any linear code can be realized as
parity check code C(G) for some graph G. In this paper, we
will only deal with sparse (low-density) graphs, that is, the
degrees dL and dR will be constants.

In the following, we refer to the vertices in VL and VR as
variable nodes and check nodes, respectively.

LP Decoding.
In the nearest codeword problem for the code C(G), we are

given a vector y ∈ {0, 1}n and the goal is to find a codeword
x ∈ C(G) so as to minimize the Hamming distance ‖x− y‖1.

In [6, 8], Feldman et al. introduced the following LP
relaxation for this problem:

Minimize ‖x− y‖1 (2)

subject to x ∈
\
j∈VR

Conv Cj , (3)

where ConvX denotes the convex hull of a set X of bit
vectors, and Cj is the set of bit vectors satisfying constraint
j ∈ VR,

Cj
def
=
n
x ∈ {0, 1}n |

P
i∈N(j)xi ≡ 0 mod 2

o
.

We call x ∈ [0, 1]n an LP solution if it satisfies (3). We say
x is an optimal LP solution given y if x is an LP solution
that achieves the minimum distance (2) to y. An optimal
LP solution can be computed in time polynomial in n. In
this paper, we are interested to find conditions under which
the solution of this LP coincides with the nearest codeword
to y.

Before concluding this section, we note that ‖x− y‖1 is an
affine linear function of x ∈ [0, 1]n for any fixed y ∈ {0, 1}n,
since ‖x− y‖1 = ‖y‖1 +

Pn
i=1(−1)yixi, for all x ∈ [0, 1]n.

3. CERTIFYING THE NEAREST CODE-
WORD

This section considers the following question: Given a
codeword x ∈ C(G) and a vector y ∈ {0, 1}n, how can we
certify efficiently that x is the nearest codeword to y? We
present a certificate based on local checks that is inspired
by and generalizes the key idea in the calculation of Koetter
and Vontobel [13]. The motivation for this generalization is
that it allows certification/decoding in the presence of much
higher noise. Our proof that this certificate works is also
quite different. It is designed to easily carry over to prove
that x is also the unique fractional solution to the LP.

Throughout this section and the next, y is the received
word and x is a codeword which we are trying to certify as the
nearest codeword to y. We will be considering assignments to
neighborhoods N62T (i0) where i0 ∈ VL and T < 1

4
girth(G).

Thus the induced graph on N62T (i0) is a tree with degrees
dL, dR respectively at even and odd levels (the level of a
node is its distance to i0). Note that the variable nodes in
N62T (i0) have even distance to i0 and the check nodes have
odd distance.

The motivation for considering local neighborhoods comes
from known analyses of message-passing algorithms. Such al-
gorithms are local in the following sense: after t < 1

4
girth(G)

iterations, the value computed for the variable i is a “guess”
for xi given the information in the neighborhood N(i, 2t); in
this sense, after t rounds message passing algorithms com-
pute a “locally optimal” solution. Several notions of “local
optimality” were implicit in the algorithms of [18, 9, 3, 4, 2].
Our notion of local optimality generalizes the notions used
in all of these papers, and our interest centers in showing
that local optimality implies global optimality.

Our notion of local optimality is given in Definition 2 and
requires the following definition generalizing Wiberg [18].

Definition 1. (Minimal Local Deviation) An assignment
β ∈ {0, 1}n is a valid deviation of depth T at i0 ∈ VL or, in
short, a T -local deviation at i0, if βi0 = 1 and β satisfies all
parity checks in B(i0, 2T ),

∀j ∈ VR ∩B(i0, 2T ) :
X

i∈N(j)

βi ≡ 0 mod 2 .

(Notice that β need not be a codeword since we do not insist
that the check nodes beyond level 2T from i0 are satisfied.)

A T -local deviation β at i0 is minimal if βi = 0 for every
i 6∈ B(i0, 2T ), and every check node j in B(i0, 2T ) has at
most two neighbors with value 1 in β. Note that a minimal
T -local deviation at i0 can be seen as a subtree of B(i0, 2T )
of height 2T rooted at i0, where every variable node has full
degree and every check node has degree 2. We will refer to
such trees as skinny trees.

An assignment β ∈ {0, 1}n is a minimal T -local deviation
if it is a minimal T -local deviation at some i0. Note that

given β there is a unique such i0
def
= root(β).

If w = (w1, . . . , wT ) ∈ [0, 1]T is a weight vector and β is a

minimal T -local deviation, then β(w) denotes the w-weighted
deviation

β
(w)
i =

(
wtβi if d(root(β), i) = 2t and 1 6 t 6 T ,

0 otherwise .

(End of Definition 1.)



For two vectors u, v ∈ {0, 1}n, we denote by u ⊕ v the
coordinate-wise sum of u and v modulo 2. We extend this
notation to fractional vectors in the following way: If u ∈
{0, 1}n and v̄ ∈ [0, 1]n, then u ⊕ v̄ ∈ [0, 1]n denotes the
vector with ith coordinate |ui − v̄i|. Note that, for a fixed
vector u ∈ {0, 1}n, u⊕ v̄ is affine linear in v̄. Hence, for any
distribution over vectors v ∈ {0, 1}n and a fixed bit vector
u, we have Eu⊕ v = u⊕ (E v).

Definition 2. (Local optimality) A codeword x ∈ {0, 1}n
is (T,w)-locally optimal for y ∈ {0, 1}n if for all minimal
T -local deviations β,

‖x⊕ β(w) − y‖1 > ‖x− y‖1 .

Since the local neighborhood at node i0 is tree-like, the min-
imal T -local deviation β at i0 that minimizes ‖x⊕β(w)−y‖1
can be computed by a simple dynamic programing algorithm
in time proportional to the size of the neighborhood. In fact,
we can do the computations for all the i0’s simultaneously
with dynamic programming to achieve a total running time
of O(T ·n) (which is nearly linear since we are going to choose
T = O(logn) or T = O(log logn) later in the proof).

Note that if x is locally optimal then this is some intuitive
evidence that x is the nearest codeword, since changing x
in just one variable i0 seems to cause the distance from y
to increase in the immediate neighborhood of i0. Koetter
and Vontobel [13] make this intuition precise for w = 1, in
which case they show that a locally optimal x is also globally
optimal, that is, the nearest codeword to y. (In fact, all
previous theoretical analyses of message passing algorithms
have some notion of local optimality but none of them were
known to imply global optimality.) Our proof works for
general w.

Theorem 2. Let T < 1
4

girth(G) and w = (w1, . . . , wT )
be a non-negative weight vector. If x is a (T,w)-locally
optimal codeword for y ∈ {0, 1}n, then x is also the unique
nearest codeword for y.

Theorem 2 implies that we can certify that x is the nearest
codeword for y by verifying the local optimality condition.
It raises two questions:

1. How can we find a locally optimal codeword if it exists?

2. What is the chance that the nearest codeword satisfies
the local optimality condition?

The first question has been studied in the context of message-
passing algorithms. For w = 1, Wiberg [18] showed that
the well-known min-sum decoding algorithm can find locally
optimal codewords. Other specific weight functions were
suggested and analyzed in several works [9, 3, 4, 2]. We
show how to to make min-sum decoding work for arbitrary
weight vectors (which allows much more freedom in deriving
analytic error bounds). We refer to the full version of this
paper for further details.

Theorem 3. Let T < 1
4

girth(G) and w = (w1, . . . , wT )
be a non-negative weight vector. Suppose that x is a (T,w)-
locally optimal codeword for y ∈ {0, 1}n. Then the w-
reweighted min-sum algorithm on input y computes x in
T iterations.

Since the focus of this paper is on LP decoding, we next ad-
dress whether LP decoding can find locally optimal solutions.
To this end we extend Theorem 2 in order to show that a
locally optimal solution is not only the nearest codeword
to y but also the unique optimal LP solution given y. For
the case w = 1, this was also established by Koetter and
Vontobel [13].

Theorem 4. Let T < 1
4

girth(G) and w = (w1, . . . , wT )
be a non-negative weight vector. Suppose that x is a (T,w)-
locally optimal codeword for y ∈ {0, 1}n. Then x is also the
unique optimal LP solution given y.

The proof for w = 1 in [13] proceeded by constructing an
appropriate dual solution in an iterative manner. Our proof
in Section 5 yields a more general result, and is completely
different, since it only looks at the primal LP.

Now we address the second question regarding the proba-
bility that the nearest codeword is locally optimal. (Showing
higher probabilities for this event was the main motivation
for introducing general weight vectors w.) We prove the
following theorem in Section 6.

Theorem 5. Let G be a (dL, dR)-regular bipartite graph
and T < 1

4
girth(G). Let also p ∈ (0, 1) and x ∈ {0, 1}n be

a codeword in C(G). Suppose that y is obtained from x by
flipping every bit independently with probability p.

1. If dL, dR, and p satisfy the condition

min
t>0

n`
(1− p) e−t + p et

´
·
“

(1− p)dR−1 e−t + (1− (1− p)dR−1) et
”dL−2 o

<
1

dR − 1
, (4)

then x is (T,1)-locally optimal with probability at least

1−n · c−(dL−1)T

for some c > 1. For (dL, dR) = (3, 6),
Condition (4) is satisfied whenever p 6 0.02.

2. If dL, dR, and p satisfy the condition

√
p
“

1− (1− p)dR−1
” dL−2

2
(1− p)

(dR−1)(dL−2)
2 + 1

2

<
1

(dR − 1) · 2dL−1
, (5)

then there exists a weight vector w ∈ [0, 1]T such that
x is (T,w)-locally optimal with probability at least 1−
n · c−(dL−1)T

for some constant c > 1. For (dL, dR) =
(3, 6), Condition (5) is satisfied whenever p 6 0.0247.

3. If (dL, dR) = (3, 6) and p 6 0.05, then x is (T,w)-

locally optimal with probability at least 1− n · c−2T

for
some weight vector w and some constant c > 1.

Given Theorems 2, 3, 4, and 5 we can obtain the proof
of Theorem 1 as follows: take T = Θ(logn) < 1

4
girth(G);

from Theorem 5, there exists a weight vector w such that,
with probability at least 1 − exp(−nγ) (for some constant
γ depending on the leading constant in front of logn in
the choice of T ), the codeword x is (T,w)-locally optimal.
From Theorem 4 it follows then that x is the unique opti-
mal LP solution given y. Also, from Theorem 3, it follows



that x can be found by the w-reweighted min-sum algorithm
in T = O(logn) iterations, so time O(n logn) overall, and
by Theorem 2 it can be certified that x is the nearest code-
word to y. (If the girth is Ω(log logn) then decoding still
succeeds with probability 1− 1/poly(n).)

4. LOCAL OPTIMALITY IMPLIES
GLOBAL OPTIMALITY

Proof of Theorem 2.
In this section y ∈ {0, 1}n is the received word, x ∈ {0, 1}n

is a locally optimal codeword in C(G), and x′ ∈ {0, 1}n is
a codeword different from x. We wish to show ‖x′ − y‖1 >
‖x− y‖1.

The following lemma is the key to our proof of Theorem 2.

Lemma 1. Let T < 1
4
girth(G). Then, for every codeword

z 6= 0, there exists a distribution over minimal T -local devia-
tions β such that for every weight vector w ∈ [0, 1]T ,

Eβ(w) = αz ,

where α ∈ [0, 1] is some scaling factor.

Before proving the lemma, let us first see how we can
finish the proof of Theorem 2 using such a distribution over
minimal local deviations.

Proof of Theorem 2. Let x be a (T,w)-locally optimal
codeword for y ∈ {0, 1}n. We want to show that for every
codeword x′ 6= x, the distance to y increases, that is, ‖x−
y‖1 < ‖x′ − y‖1. The main idea is to observe that z =
x ⊕ x′ is also a codeword, and hence by Lemma 1, there
exists a distribution over minimal T -local deviations β such
that Eβ(w) = αz for the codeword z = x ⊕ x′. Now it
is easy to complete the proof using local optimality of x.
Let f : [0, 1]n → R be the affine linear function f(u) =
‖x⊕ u− y‖1 = ‖x− y‖1 +

Pn
i=1(−1)xi+yiui. Now,

‖x− y‖1 < E‖x⊕ β(w) − y‖1 (by local optimality of x)

= ‖x⊕ (αz)− y‖1 (affine linearity of f)

= α‖x′ − y‖1 + (1− α)‖x− y‖1 (aff. lin. of f) ,

which implies ‖x− y‖1 < ‖x′ − y‖1 as desired.

4.1 Proof of Lemma 1
Constructing Distributions over Minimal Local Devi-

ations for Codewords.
Let z ∈ {0, 1}n be a codeword. We want to construct

a distribution over minimal local deviations such that the
mean of the distribution is proportional to z.

For every variable node i ∈ VL with zi 6= 0, we define a
distribution over subtrees τi of G of height 2T rooted at i:
The idea is that we grow τi minimally and randomly inside
the non-zeros of z starting from the variable node i. Consider
the neighborhood N62T (i) and direct the edges away from
the root i. Remove all variable nodes in this neighborhood
with value 0 in z. Remove now the vertices that are no longer
reachable from i. In the remaining tree (rooted at i), pick
a random subtree τi with full out-degree at variable nodes
and out-degree 1 at check nodes.

Suppose now that we choose such a tree τi for all i with
zi 6= 0, such that these trees are mutually independent.
Independently from the choices of the trees, we also choose

i0 uniformly at random from the support of z (that is, we
pick i0 with probability zi0/‖z‖1), and define β as

βi =

(
1 if i ∈ τi0 ,
0 otherwise.

We denote by P the joint probability measure over the
trees {τi}i:zi 6=0, the variable node i0 and the assignment
β. Before concluding the proof of Lemma 1, we make a
few observations about the random subtrees τi. First, the
number of nodes at level 2t 6 2T of any tree τi is always
exactly dL(dL − 1)t−1 (the root has out-degree dL). Second,
for any two variable nodes i, i′ with zi = zi′ = 1 the above
process treats them symmetrically:

P
˘
i′ ∈ τi

¯
= P {i ∈ τi′} . (6)

If d(i, i′) > 2T , then both of the probabilities are 0 (since
the height of the trees is 2T ). Otherwise, the nodes
i, i′ are connected by a unique path of length 6 2T , say
(i, j0, i1, j1, . . . , it−1, jt−1, i

′). If there exists some variable
node i`, ` ∈ {1, . . . , t−1}, in this path with zi` = 0 then both
of the probabilities are zero. Otherwise, let dr =

P
i∈N(jr) zj

be the number of neighbors of jr that are in the support of
z. Then both of the probabilities in (6) are equal to

1

(d0 − 1) · · · (dt−1 − 1)
.

Armed with these observations, we can analyze our distribu-
tion over minimal local deviations β: If zi = 0, then βi = 0
with probability 1. Hence, we may assume zi = 1. Then,

Eβ(w)
i =

TX
t=1

wt
X

i′∈N2t(i)
zi′=1

P
˘
i0 = i′

¯
P {i ∈ τi′}

(6)
=

TX
t=1

wt
X

i′∈N2t(i)
zi′=1

1
‖z‖1

P
˘
i′ ∈ τi

¯

= 1
‖z‖1

TX
t=1

wt E
˛̨
τi ∩N2t(i)

˛̨
= 1
‖z‖1

TX
t=1

wt · dL(dL − 1)t−1

Therefore, we have the desired conclusion Eβ(w) = αz with
α =

PT
t=1 wt · dL(dL − 1)t−1/‖z‖1.

5. LOCAL OPTIMALITY IMPLIES LP OP-
TIMALITY

Proof of Theorem 4.
Let x ∈ {0, 1}n be a codeword in C(G) and let y ∈ {0, 1}n.

The following lemma is completely analogous to Lemma 1,
and follows from the fact that LP solutions look locally like
distributions over codewords.

Lemma 2. Let T < 1
4

girth(G) and w ∈ [0, 1]T . Then
for every non-zero LP solution z ∈ [0, 1]n, there exists a
distribution over minimal T -local deviations β such that

Eβ(w) = αz ,

where αt
def
= dL(dL−1)t−1

‖x−x′‖1
.



Using a distribution over minimal local deviations from
Lemma 2, we can prove Theorem 4 in almost the same way
as Theorem 2 in the previous section. The only additional
ingredient is the following simple property of LP solutions.
Recall that for x ∈ {0, 1}n and x′ ∈ [0, 1]n, we denote by
x ⊕ x′ the vector whose ith coordinate is |xi − x′i|. The
next lemma is straightforward using the observation that the
defining property of an LP solution (specifically, (3)) is that
locally (for every check node) it can be viewed as convex
combinations of even-parity vectors.

Lemma 3. Let x be a codeword and x′ be LP solutions
(i.e., satisfy (3)). Then x⊕ x′ is also an LP solution.

Now we can prove the main theorem.

Proof of Theorem 4. Let x be a (T,w)-locally optimal
codeword for y ∈ {0, 1}n. We want to show that for every LP
solution x′ 6= x, the distance to y increases, that is, ‖x−y‖1 <
‖x′ − y‖1. By Lemma 2, there exists a distribution over

minimal T -local deviations β such that Eβ(w) = αz for the
LP solution z = x⊕x′. Let f : [0, 1]n → R be the affine linear
function f(u) = ‖x⊕u−y‖1 = ‖x−y‖1 +

Pn
i=1(−1)xi+yiui.

Now,

‖x− y‖1 < E‖x⊕ β(w) − y‖1 (by local optimality of x)

= ‖x⊕ (αz)− y‖1 (affine linearity of f)

= α‖x′ − y‖1 + (1− α)‖x− y‖1 (aff. lin. of f) ,

which implies ‖x− y‖1 < ‖x′ − y‖1 as desired.

5.1 Proof of Lemma 2
Constructing Distributions over Minimal Local Devi-

ations for LP Solutions.
Let z ∈ [0, 1]n be a non-zero LP solution. The proof of

the current lemma is very similar to the proof of Lemma 1
(the integral case). The following lemma is essentially the
only additional ingredient of the proof.

Lemma 4. For every j ∈ VR, we can find a function
ρj : VL × VL → R+ such that

1. for every neighbor i ∈ N(j)

zi =
X

i′∈N(j)\{i}

ρj(i, i
′) ,

2. for any two neighbors i, i′ ∈ N(j),

ρj(i, i
′) = ρj(i

′, i) .

Proof. Since z is an LP solution, it is a convex combina-
tion of assignments in Cj = {γ ∈ {0, 1}n |

P
i∈N(j) γi ≡

0 mod 2}. Hence, there are multipliers αγ > 0 withP
γ∈Cj

αγ = 1 such that z =
P
γ∈{0,1}n αγγ. Now we can

define ρj(i, i
′) as

ρj(i, i
′) =

X
γ∈Cj

γi=1,γi′=1

αγ
γiγi′P

i′′∈N(j)\{i} γi′′
.

The second property (symmetry) follows from the factP
i′′∈N(j)\{i} γi′′ =

P
i′′∈N(j)\{i′} γi′′ for γi = γi′ = 1. The

first property (marginalization) can be verified directly.

Remark 2. The function ρj has a natural probabilistic
interpretation. As in the proof, we can think of z as the
mean of a distribution over assignments γ ∈ Cj . For a variable
node i ∈ N(j) with zi > 0, we sample an assignment γ from
this distribution conditioned on the event γi = 1. Now we
output a random variable node i′ ∈ N(j) \ {i} with γi′ = 1.
The probability that we output i′ is exactly ρj(i, i

′)/zi. Note
that the function ρj is not fully determined by z, since we
could realize z as mean of very different distributions.

The distribution over minimal T -local deviations β we
construct for the LP solution z is very similar to the distri-
bution used in Lemma 1 (especially taking into account the
probabilistic interpretation of the functions ρj). As before,
we first define for every variable node i with zi > 0, a distri-
bution over height-2T skinny trees τi rooted at i: we start
by choosing i as the root. From any chosen variable node,
we branch to all its neighbors in the next level. From any
chosen check node j, we go to a random neighbor, chosen ac-
cording to the transition probabilities ρj(·, ·). More precisely,
if we reached j from a variable node iin, then we select the
next variable node iout at random from N(j) \ {iin}, with
probability ρj(iin, iout)/ziin .

We can now define the distribution over minimal local
deviations β: For every variable node i with zi > 0, we inde-
pendently choose a tree τi as described above. Independently
from the choices of the trees, we also choose a variable node
i0 at random according to the probabilities zi0/‖z‖1. Finally,
we output the minimal T -local deviation β defined by

βi =

(
1 if i ∈ τi0 ,
0 otherwise .

We make a few observations. First, the number of nodes
at level 2t of τi0 is exactly dL(dL − 1)t−1. Second, for any
two variable nodes i, i′ that lie in the support of z and
have distance 6 2T to each other, the above process for
constructing a random skinny tree treats them symmetrically:

ziP
˘
i′ ∈ τi

¯
= zi′P {i ∈ τi′} (7)

The reason is that i, i′ are connected by a single path of
length 6 2T , say (i, j0, i1, j1, . . . , it−1, jt−1, i

′). If zi` = 0
for some variable node i` on this path, both sides of (7) are
naught. Otherwise, both sides of (7) are equal to

ρj0(i, i1) · · · ρjt−1(i, i′)

zi1 · · · zit−1

.

Armed with these observations, we can compute the mean of
our distribution over (w-weighted) minimal local deviations:



For every i with zi > 0, we have

Eβ(w)
i =

TX
t=1

wt
X

i′∈N2t(i)
zi′>0

P
˘
i0 = i′

¯
P {i ∈ τi′}

=

TX
t=1

wt
X

i′∈N2t(i)
zi′>0

zi′
‖z‖1

P {i ∈ τi′}

(7)
=

TX
t=1

wt
X

i′∈N2t(i)
zi′>0

zi
‖z‖1

P
˘
i′ ∈ τi

¯

= zi · 1
‖z‖1

TX
t=1

wt E
˛̨
τi ∩N2t(i)

˛̨
= zi · 1

‖z‖1

TX
t=1

wt · dL(dL − 1)t−1

Therefore, we have the desired conclusion Eβ(w) = αz
with α =

PT
t=1 wt · dL(dL − 1)t−1/‖z‖1.

6. PROBABILISTIC ANALYSIS OF LO-
CAL OPTIMALITY ON TREES

For the purposes of this section, let us define a notion of
optimality of a codeword in the immediate neighborhood
of a variable node i0 ∈ VL, by appropriately restricting
Definition 2 of Section 3.

Definition 3. (Single Neighborhood Optimality) A code-
word x ∈ {0, 1}n is (i0, T, w)-locally optimal for y ∈ {0, 1}n
if for all minimal T -local deviations β at i0,

‖x⊕ β(w) − y‖1 > ‖x− y‖1 .

Now, for a fixed weight vector w, variable node i0 ∈ VL,
and codeword x ∈ C(G), we are interested in the probability

Py∼px


x is (i0, T, w)-locally

optimal for y

ff
, (8)

where Py∼px is the measure defined by flipping every bit of
x independently with probability p to obtain y.

We show that, if T < 1
4

girth(G), the symmetry of the code
and the channel imply that the probability in (8) does not
depend on x and i0. Therefore, estimating this probability
becomes a very concrete question about a random process in
a fixed regular tree (Definition 4 in box).

The following lemma makes the connection of this random
process to local optimality precise.

Lemma 5. Let T < 1
4
girth(G).

Py∼px


x is (i0, T, w)-locally

optimal for y

ff
= Pp

n
min
τ

valω(τ ; η) > 0
o
,

where ω` = wT−`.

Proof. The subgraph of G in B(i0, 2T ) is isomorphic
to the tree T . Let ϕ : B(i0, 2T ) → V (T ) be one of the
isomorphisms between the two graphs.

First, we observe that x is (i0, T, w)-locally optimal for y
if and only if

min
β

TX
t=1

X
i∈N2t(i0)

wt · (−1)xi+yiβi > 0 ,

Definition 4. (T, ω)-Process on a (dL, dR)-Tree: Let T
be a directed tree of height 2T , rooted at a vertex v0. The
root has out-degree dL and the vertices in level 2T have
out-degree 0. The vertices in any other even level have out-
degree dL − 1. The vertices in odd levels have out-degree
dR−1. The vertices in even levels are called variable nodes
and the vertices in odd levels are called check nodes. For
` ∈ {0, . . . , 2T}, let us denote by V` the set of vertices of
T at height ` (the leaves have height 0 and the root has
height 2T ).
A skinny subtree of T is a vertex set τ ⊆ V (T ) such that
the induced subgraph is a connected tree containing the
root v0 where each variable node in τ has full out-degree
and each check node in τ has out-degree exactly 1. For a
{1,−1}-assignment η to the variable nodes of T , we define
the ω-weighted value of a skinny subtree τ as

valω(τ ; η)
def
=

T−1X
`=0

X
v∈τ∩V2`

ω` · ηv .

(In words, we sum the values of the variable nodes in τ
weighted according to their height.)
For p ∈ (0, 1), we are interested in the probability

Pp
n

min
τ

valω(τ ; η) > 0
o
,

where the minimum is over all skinny subtrees τ and the
measure Pp on η is defined by choosing ηv = 1 with proba-
bility 1− p, and ηv = −1 with probability p.

where the minimum is over all minimal T -local deviations β
at i0. The reason is that ‖x⊕ β(w) − y‖1 − ‖x− y‖1 can be

expanded as
Pn
i=1 β

(w)
i (−1)xi+yi .

We also note that the isomorphism ϕ gives rise to a bijec-
tion between the minimal deviations β in B(i0, 2T ) and the
skinny subtrees τ of T . We define ϕ(β) to be the skinny tree
that contains all variable nodes v with βϕ−1(v) = 1.

We can finish the proof by coupling the random variables
y and η in such a way that ‖x ⊕ β(w) − y‖1 − ‖x − y‖1 =
valω(ϕ(β); η). We use the following coupling

ηv = (−1)xi+yi , where i = ϕ−1(v) .

We verify that for all β and τ = ϕ(β)

‖x⊕ β(w) − y‖1 − ‖x− y‖1

=

TX
t=1

X
i∈N2t(i0)

wt · (−1)xi+yiβi =

TX
t=1

X
i∈N2t(i0)

wt · ηϕ(i)βi

=

TX
t=1

X
v∈τ∩V2T−2t

wt · ηv =

T−1X
`=0

X
v∈τ∩V2`

ω` · ηv

= valω(φ(β); η)

Let us define

Πp,dL,dR(T, ω)
def
= Pp

n
min
τ

valω(τ ; η) 6 0
o
,

With this notation, Lemma 5 together with Theorem 4
(Local optimality implies LP optimality) has the following
consequence.

Lemma 6. Let p ∈ (0, 1), G be a (dL, dR)-regular bipartite
graph, x ∈ C(G) be a codeword, and w ∈ [0, 1]T be a weight



vector with T < 1
4
girth(G). Suppose y be obtained from x

by flipping every bit independently with probability p. Then,
codeword x is (T,w)-locally optimal with probability at least

1− n ·Πp,dL,dR(T, ω) , where ω` = wT−` .

And with at least the same probability, x is also the unique
optimal LP solution given y.

By virtue of Lemma 6, to understand the probability of LP
decoding success, it is sufficient to estimate the probability
Πp,dL,dR(T, ω), for a given weight vector w, bit error rate
p ∈ (0, 1), and degrees (dL, dR). We give such estimates in
the following subsection.

6.1 Bounding Processes on Trees by
Evolving Laplace Transforms

We are going to study the probability of the existence of
a negative value skinny subgraph in the (T, ω)-process in a
recursive fashion, starting from the leaves of the tree T .

We define the following correlated random variables Zu for
the vertices u of T : The variable Zu is equal to the minimum
value of a skinny tree in the subtree Tu below the vertex u,

Zu
def
= min

τ

T−1X
`=0

X
v∈τ∩V2`∩Tu

ω` · ηv .

Here, τ ranges over all skinny subtrees of T .
Let N+(u) denote the set of neighbors of u that can be

reached by one of its outgoing edges. The variables Zu satisfy
the following recurrence relations:

Zv0 =
X

v∈N+(v0)

Zv

Zu = ω`ηu +
X

v∈N+(u)

Zv (u ∈ V2`, 0 6 ` < T )

Zu = min
v∈N+(u)

Zv (u ∈ V2`+1, 0 6 ` < T )

Note that Zv0 is just the minimum value of a skinny tree in
the tree T . Hence, Πp,dL,dR(T, ω) = P {Zv0 6 0}.

By symmetry, the distribution of a variable Zu depends
only on the height of vertex u. Also the variables in {Zu}u∈V`

are mutually independent, because for any two vertices u, u′

of the same height `, the subtrees Tu and Tu′ are disjoint .
It follows that we can define (uncorrelated) random vari-

ables X0, . . . ,XT−1, Y0, . . . , YT−1 in the following way, so
that X` has the same distribution as Zu for u ∈ V2`+1 and
Y` has the same distribution as Zu for u ∈ V2`,

Y0 = ω0η

X` = min
n
Y

(1)
` , . . . , Y

(dR−1)
`

o
(0 6 ` < T )

Y` = ω`η +X
(1)
`−1 + . . .+X

(dL−1)
`−1 (0 < ` < T )

Here, η is a random variable that takes value 1 with proba-
bility 1− p and value −1 with probability p. The notation
X(1), . . . ,X(d) means that we take d mutually independent
copies of the random variable X (the copies are also inde-
pendent of η).

We will use the Laplace transform of XT−1 in order to
bound the probability Πp,dL,dR(T, ω).

Lemma 7. For every t > 0,

Πp,dL,dR(T, ω) 6
“

E e−tXT−1
”dL

.

Proof. As noted before, Πp,dL,dR(T, ω) = P {Zv0 6 0}.
Hence, by Markov’s inequality

Πp,dL,dR(T, ω) = P
n
e−tZv0 > 1

o
6 E e−tZv0 .

The variable Zv0 is equal to the sum of the Z-values of its
dL children. Each child of the root v0 has height 2T − 1 and
hence its Z-value has the same distribution as XT−1. Thus,
we have as desired

E e−tZv0 =
“

E e−tXT−1
”dL

.

The following is our key lemma for estimating the probabil-
ity Πp,dL,dR(T, ω) (or more precisely, the Laplace transform
of X`). For the sake of brevity, let us denote d′L = dL − 1
and d′R = dR − 1.

Lemma 8. For `, s with 0 6 s 6 ` < T , we have

E e−tX` 6
“

E e−tXs

”d′L`−s

·
`−s−1Y
k=0

(d′R E e−tω`−kη)d
′
L

k

.

Proof. We derive the relation for s = `− 1. The general
case follows by induction on `− s.

Since Y` is a sum of mutually independent variables,

E e−tY` =
`
E e−tωtη

´ “
E e−tX`−1

”d′L
.

We use a relatively crude estimate to bound the Laplace
transform of X` in terms of the Laplace transform of Y`. By

the definition of X`, we have exp(−tX`) 6 exp(−tY (1)
` ) +

. . .+ exp(−tY (dR−1)
` ) with probability 1. Hence,

E e−tX` 6 d′R E e−tY` =
`
d′R E e−tω`η

´ “
E e−tX`−1

”d′L
,

which is the desired bound for s = `− 1.

Armed with these general bounds on Πp,dL,dR(T, ω) and
the Laplace transform of X`, we can now derive several
concrete bounds on Πp,dL,dR(T, ω).

Uniform Weights.
In this paragraph, we will consider the case ω = 1. We

apply Lemma 8 for s = 0. For brevity, let us denote
c1 = E e−tX0 and c2 = d′R E e−tη. Note that c1 6 c2 (same
argument as in the proof of Lemma 8). For reasons that be-
come apparent shortly, let us choose t > 0 so as to minimize

c := c1 · c1/(dL−2)
2 . We will assume c < 1. Now, the bound

of Lemma 8 simplifies to

E e−tX` 6 c
d′L

`

1 · c
P`−1

k=0 d
′
L

k

2 = c1
d′L

`

·
“
c
1/(d′L−1)
2

”d′L`−1

= cd
′
L

`

· c−1/(d′L−1)
2 6 cd

′
L

`−1 .

By Lemma 7 we can conclude from this bound that

Πp,dL,dR(T,1) 6 cdLd
′
L

T−1−dL .

Next, let us compute c1 and c2 as functions of p, dL and dR.
The variable X0 has the following distribution

X0 =

(
+1, with probability (1− p)dR−1,

−1, with probability 1− (1− p)dR−1,



Hence,

c1 = E e−tX0 = (1− p)dR−1 e−t + (1− (1− p)dR−1) et .

We also have

c2 = (dR − 1)
`
(1− p)e−t + pet

´
.

Putting together the calculations in this paragraph, we
proved the following general bound on Πp,dL,dR(T,1).

Lemma 9. If p ∈ (0, 1) and dL, dR > 2 satisfy the condi-
tion

c = min
t>0

“
(1− p)dR−1 e−t + (1− (1− p)dR−1) et

”
·
`
(dR − 1)

`
(1− p)e−t + pet

´´1/(dL−2)
< 1 ,

then for T ∈ N and w = (1, . . . , 1) ∈ [0, 1]T , we have

Πp,dL,dR(T, ω) 6 cdLd
′
L

T−1−dL .

For (3, 6)-regular graphs, we have the following corollary.

Corollary 1. Let p 6 0.02, dL = 3, and dR = 6. Then,
there exists a constant c < 1 such that for all T and ω = 1,

Πp,dL,dR(T, ω) 6 c2
T

.

Non-uniform Weights.
In this paragraph, we will show how to improve the bounds

by using different weights according to the height. We will use
very simple weights: variable nodes at height 0 are weighted
by a factor ω0 > 0, all variable nodes at higher heights are
weighted by 1.

We apply Lemma 8 again for s = 0. As in the previous
paragraph, the bound simplifies to

E e−tX` 6 cd
′
L

`

· c−1/(d′L−1)
2 ,

where c1 = E e−tX0 , c2 = d′R E e−tη, and c = c1 · c1/(dL−2)
2 .

The additional freedom of choosing the weight ω0, allows us
to minimize both c1 and c2 at the same time. To minimize
c2, we need to choose t = 1

2
ln 1−p

p
. The value of c1 is equal

to

c1 = E e−tX0 = (1− p)dR−1 e−tω0 + (1− (1− p)dR−1) etω0 ,

which is minimized for

tω0 = ln

s
(1− p)dR−1

1− (1− p)dR−1
.

Here, the right-hand side is nonnegative for p < 1− 2−1/d′R .
(Note that we do not have to worry whether ω0 6 1. By the
definition of the (T, ω)-process, Πp,dL,dR(T, ω) is invariant
under (nonnegative) scaling of the weights.)

For these choices of ω0 and t, we have

c1 = 2
p

(1− p)dR−1 (1− (1− p)dR−1)

c2 = d′R2
p
p(1− p) .

Thus,

c = 2

r
(1− p)d′R

“
1− (1− p)d′R

”“
d′R2

p
p(1− p)

”−1/(dL−2)

.

We proved the following bound on Πp,dL,dR(T, ω) for ω =
(ω0, 1, . . . , 1).

Lemma 10. If p ∈ (0, 1) and dL, dR > 2 satisfy the condi-

tion p < 1− 2−1/d′R and cp,dL,dR < 1, where

cp,dL,dR

def
= 2

r
(1−p)d′R

“
1−(1−p)d′R

”“
d′R2

p
p(1−p)

”1/(dL−2)

.

then there exists a constant ω0 > 0 such that for all T ∈ N
and ω = (ω0, 1, . . . , 1),

Πp,dL,dR(T, ω) 6 c′cdLd
′
L

T−1
,

where c′ = (d′R2
p
p(1− p))−(dL−1)/(dL−2).

Corollary 2. Let p 6 0.0247, dL = 3, and dR = 6.
Then, there exists a constant c < 1 such that for all T ,

Πp,dL,dR(T, ω) 6 c2
T

for some ω ∈ [0, 1]T .

Improved Bounds for (3, 6)-Regular Trees.
In this paragraph we show how to obtain the bound of

0.05 on the tolerable noise rate of (3, 6)-regular codes.
Computer simulations suggest that for p > 0.025, the

probability Πp,3,6(T,1) approaches 1 as T → ∞. Thus,
it seems necessary to use non-uniform weights in order to
achieve the bound 0.05.

Let us first consider the weight vector ω̄ = (1, 2, . . . , 2s).
Note that this weight vector has the effect that every level
contributes equally to the ω-weighted value valω̄(τ ; η) of a
skinny subtree τ . For a concrete value of s (say s = 15),
we can compute the distribution of Xs using the recursive
definition of the X and Y variables. Hence, for a fixed s, we
can also compute the value

λs
def
= min

t>0
E e−tXs .

Let t∗ > 0 be the point where the Laplace transform of
Xs achieves its minimum λs. We now show how to bound
Πp,3,6(T, ω) in terms of λs for ω = (ω̄, ρ, . . . , ρ) ∈ RT+, where
ρ is a carefully chosen constant.

By Lemma 8, we have

E e−t
∗XT−1 = (λs)

2T−s−1
“

5 E e−t
∗ρη
”PT−s−2

k=0 2k

= (λs)
2T−s−1

“
5 E e−t

∗ρη
”2T−s−1−1

=
“
λs · 10

p
p(1− p)

”2T−s−1“
10
p
p(1− p)

”−1

,

where we chose ρ such that et
∗ρ =

p
(1− p)/p (then E e−t

∗ρη

is minimized). Using 7, we can see that Πp,3,6(T, ω) decrease

doubly-exponential in T if λs · 10
p
p(1− p) < 1 for some s.

We verified that this condition is satisfied for s = 15 and
p = 0.05 using the numerical analysis software MATLAB.

We extend this approach to general (dL, dR)-regular trees
in the following lemma.

Lemma 11. Let p ∈ (0, 1
2
) and dL, dR > 2. Suppose that

for some s ∈ N and some weight vector ω̄ ∈ Rs+,

min
t>0

E e−tXs <
1

(dR − 1)2
p
p(1− p)

.

Then, there exists constants c < 1 and ρ > 0 such that for
all T ,

Πp,dL,dR(T, ω) 6 cdL(dL−1)T−1
,

where ω = (ω̄, ρ, . . . , ρ) ∈ RT+.



Corollary 3. Let p 6 0.05, dL = 3, and dR = 6. Then,
there exists a constant c < 1 such that for all T ,

Πp,dL,dR(T, ω) 6 c2
T

for some ω ∈ [0, 1]T .

7. CONCLUSIONS
Our original intention was to connect Belief Propagation

to Linear Programming (or some other form of convex pro-
gramming) and this remains open. It is unclear where to
start since BP relies on highly nonlinear operations.

It would also be interesting to investigate if stronger ver-
sions of LP decoding using either lift-and-project operators
such as Sherali Adams or using SDPs could have better
provable performance for LDPCs, possibly approaching the
information theoretic bound.
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