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Abstract. This article introduces a new algorithm for the random generation
of labelled planar graphs. Its principles rely on Boltzmann samplers, as re-
cently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines
the Boltzmann framework, a suitable use of rejection, a new combinatorial bi-
jection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic
description of the generating functions counting planar graphs, which was re-
cently obtained by Giménez and Noy. This gives rise to an extremely efficient
algorithm for the random generation of planar graphs. There is a preprocessing
step of some fixed small cost. Then, the expected time complexity of genera-
tion is quadratic for exact-size uniform sampling and linear for approximate-size
sampling. This greatly improves on the best previously known time complexity
for exact-size uniform sampling of planar graphs with n vertices, which was a
little over O(n7).

1. Introduction

A graph is said to be planar if it can be embedded in the plane so that no two edges
cross each other. In this article, we consider labelled planar graphs, i.e., a graph of size
n has its vertices bearing distinct labels in [1..n]. Statistic properties of planar graphs
have been intensively studied [5, 16, 17]. Very recently, Giménez and Noy [17] have solved
exactly the difficult problem of the asymptotic enumeration of labelled planar graphs.
They also provide exact analytic expressions for the asymptotic probability distribution
of parameters such as the number of edges and the number of connected components. Since
many other statistics on random planar graphs remain analytically and combinatorially
untractable, it is an important issue to find efficient procedures to generate planar graphs
at random. For example, random generation makes it possible to validate algorithms
and programs on planar graphs, such as planarity testing, embedding algorithms, efficient
procedures for finding geometric cuts, and so on.

Denise, Vasconcellos, and Welsh have proposed a first algorithm for the random gen-
eration of planar graphs [6], by defining a Markov chain on the set Gn of labelled planar
graphs with n vertices. At each step, two different vertices v and v′ are chosen at ran-
dom. If they are adjacent, the edge (v, v′) is deleted. If they are not adjacent and if the
operation of adding (v, v′) does not break planarity, then the edge (v, v′) is added. By
symmetry of the transition matrix of the Markov chain, the probability distribution con-
verges to the uniform distribution on Gn. This algorithm is very easy to describe but more
difficult to implement, as there exists no simple linear-time planarity testing algorithm.
More importantly, the rate of convergence to the uniform distribution is unknown.

A second approach for fixed-size uniform random generation has been developed by
Bodirsky, Gröpl and Kang [4]. It relies on the recursive method introduced by Nijenhuis
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Aux. mem. Preproc. time Time per generation

Markov chains O(log n) O(log n) unknown {exact size}

Recursive method O(n5 log n) O∗
`

n7
´

O(n3) {exact size}

Boltzmann sampler O((log n)k) O((log n)k) O(n2) {exact size}
O(n) {approx. size}

Figure 1. Complexities of the random samplers of planar graphs (O∗

stands for a big O taken up to logarithmic factors).

and Wilf [21] and formalised by Flajolet, Van Cutsem and Zimmermann [12]. The recur-
sive method is a general framework for the random generation of combinatorial classes
admitting a recursive decomposition. For such classes, producing an object of the class
uniformly at random boils down to producing the decomposition tree corresponding to its
recursive decomposition. Then, the branching probabilities that produce the decomposi-
tion tree with suitable (uniform) probability are computed using the coefficients counting
the objects involved in the decomposition. As a consequence, this method requires a pre-
processing step where large tables of large coefficients are calculated using the recursive
relations they satisfy.

Bodirsky et al [4] apply the recursive method for planar graphs, which admit a well
known combinatorial decomposition according to successive levels of connectivity. The
coefficients enumerating planar graphs satisfy complicated recursive relations, so that
the complexity of the preprocessing step is large. Precisely, the random generation of
planar graphs with n vertices (and possibly also a fixed number m of edges), requires
a preprocessing time of order O

(

n7(log n)2(log log n)
)

and an auxiliary memory of size

O(n5 log n). Once the tables have been computed, the complexity of each generation is
O(n3). A more recent optimisation of the recursive method by Denise and Zimmermann [7]
—based on controlled real arithmetics— should be applicable; it would improve the time
complexity somewhat, but the storage complexity would still be large.

In this article, we introduce a new algorithm for the random generation of labelled
planar graphs, which relies on the same decomposition of planar graphs as the algorithm
of Bodirsky et al. The main difference is that we translate this decomposition into a
random generator using the framework of Boltzmann samplers, instead of the recursive
method. (A preliminary description of our algorithm has been presented at the conference
Analysis of Algorithms AofA’05 [13].) Boltzmann samplers are a powerful framework
for random generation of decomposable combinatorial structures recently developed by
Duchon, Flajolet, Louchard, and Schaeffer in [8]. The idea of Boltzmann sampling is
to gain efficiency by relaxing the constraint of exact size sampling. As we will see, the
gain is particularly significant in the case of planar graphs, where the decomposition is
more involved than for classical classes such as trees. Given a combinatorial class, a
Boltzmann sampler draws an object of size n with probability proportional to xn (or
proportional to xn/n! for labelled objects), where x is a certain real parameter that can
be appropriately tuned. Accordingly, the probability distribution is spread over all objects
of the class, with the property that objects of the same size have the same probability
of occurring. In particular, the probability distribution is uniform when restricted to
a fixed size. Like the recursive method, Boltzmann samplers can be produced for any
combinatorial class admitting a recursive decomposition, as there are explicit sampling
rules associated with each classical construction (Sum, Product, Set, Substitution). The
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branching probabilities used to produce the decomposition tree of a random object are
not based on the coefficients (recursive method) but on the values at x of the generating
functions of the classes intervening in the decomposition.

In this article, we translate the decomposition of planar graphs into Boltzmann samplers
and obtain very efficient random generators that produce planar graphs with a fixed
number of vertices or with fixed numbers of vertices and edges uniformly at random.
Furthermore, our samplers have an approximate-size version where a small tolerance, say
a few percents, is allowed for the size of the output. For practical purpose, approximate-
size random sampling often suffices. The approximate-size samplers we propose are very
efficient as they have linear time complexity.

Theorem 1 (Samplers with respect to number of vertices). Let n ∈ N be a target size.
There exists an exact-size sampler An producing labelled planar graphs with n vertices
uniformly at random. For any tolerance ratio ǫ > 0, there exists an approximate-size
sampler An,ǫ producing random planar graphs with number of vertices in [n(1−ǫ), n(1+ǫ)]
such that the distribution is uniform on each size k ∈ [n(1− ǫ), n(1 + ǫ)].

Under a real-arithmetics complexity model, Algorithm An is of expected complexity
O(n2). Algorithm An,ǫ is of expected complexity O(n), where the linearity constant depends
on ǫ, being of order 1/ǫ as ǫ→ 0.

Theorem 2 (Samplers with respect to the numbers of vertices and edges). Let n ∈ N

be a target size and µ ∈ (1, 3) be a parameter of ratio edges-vertices. There exists an
exact-size sampler An,µ producing planar graphs with n vertices and ⌊µn⌋ edges uniformly
at random. For any tolerance-ratio ǫ > 0, there exists an approximate-size sampler An,µ,ǫ

producing random planar graphs with number of vertices in [n(1 − ǫ), n(1 + ǫ)] and ratio
edges/vertices in [µ(1 − ǫ), µ(1 + ǫ)], such that the distribution is uniform for each fixed
pair (number of vertices, number of edges).

Under a real-arithmetics complexity model, for a fixed µ ∈ (1, 3), Algorithm An,µ is of

expected complexity O(n5/2), where the constant depends on µ. For fixed µ ∈ (1, 3) and
ǫ > 0, Algorithm An,µ,ǫ is of expected complexity O(n). The constant of linearity depends
both on µ and ǫ, being of order 1/ǫ as ǫ→ 0 for any fixed µ ∈ (1, 3).

The samplers are completely described in Section 5.3 and Section 5.4.
The real-arithmetic complexity model is that of the number of arithmetic operations

(additions, comparisons) over real numbers assumed to be known exactly. The complexity
of our algorithm is compared to the complexities of the two preceding random samplers
in Figure 1.

Let us comment on the practical preprocessing complexity. The implementation of An,ǫ

and An, as well as An,µ,ǫ and An,µ, requires the storage of a fixed number of real constants,
which are special values of generating functions. The generating functions to be evaluated
are those of several families of planar graphs (connected, 2-connected, 3-connected). A
crucial result, recently established by O. Giménez and M. Noy [17], is that there exist
exact analytic equations satisfied by these generating functions. Hence, their numerical
evaluation can be performed efficiently, the complexity being of low polynomial degree k
in the number of digits that need to be computed.

Fixed-size truncation of real numbers leads to algorithms with a probability of failure
(caused by lack of precision) that can be made arbitrarily close to 0. No failure arises
with a precision of 20 digits in practice, when we draw objects of size up to the million. In
general, to draw objects of size n, the precision needed to make the probability of failure
small is of order log(n) digits. Thus the preprocessing step to evaluate the generating
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functions with a precision of log(n) digits has a complexity of order log(n)k. Notice that
it is possible to achieve perfect uniformity by calling adaptive precision routines in case
of failure, see Denise and Zimmermann [7] for a detailed discussion on similar problems.
The following informal statement summarizes the discussion:

Fact. With high probability, the auxiliary memory necessary to generate planar graphs of
size n is of order O(log(n)) and the preprocessing time complexity is of order O(log(n)k)
for some low integer k.

We briefly discuss on the practical aspects of the implementation in the conclusion
section.

2. Overview

The algorithm we propose relies on several tools. First, we extend the collection of con-
structions for Boltzmann samplers, as detailed in [8], and develop the more complicated
case of substitution constructions, see Section 3. We describe in Section 4 the recursive
decomposition of planar graphs according to successive levels of connectivity (also used
in [4]) and adapt it to the Boltzmann framework. We start with the development of a
Boltzmann sampler for (edge-rooted) 3-connected planar graphs. To do this, we use a
recent result of bijective combinatorics found by the author, Poulalhon and Schaeffer [15],
establishing that there exists a surprisingly simple correspondence between binary trees
and edge-rooted 3-connected planar graphs. The realisation of a Boltzmann sampler for
binary trees is straightforward and it yields, via the correspondence of [15] combined with
rejection techniques, a Boltzmann sampler for edge-rooted 3-connected planar graphs.
The next step is the realisation of a Boltzmann sampler for 2-connected planar graphs. A
decomposition, due to Trakhtenbrot, ensures that edge-rooted 2-connected planar are as-
sembled in a unique way from edge-rooted 3-connected planar graphs. Translating the de-
composition yields a Boltzmann sampler for edge-rooted 2-connected planar graphs. Then
we develop a Boltzmann sampler for connected planar graphs, using another decomposi-
tion ensuring that vertex-rooted connected planar graphs are assembled in a unique way
from vertex-rooted 2-connected planar graphs. Finally, we obtain a Boltzmann sampler
for (unconstrained) planar graphs, resulting from the decomposition of planar graphs into
connected components. The corresponding Boltzmann sampler is denoted by ΓG(x, y),
where the variable x marks the number of vertices and the variable y marks the number
of edges.

The Boltzmann sampler ΓG(x, y) can unfortunately not be used directly to generate
large planar graphs with a good time complexity. Indeed, the size distribution of ΓG(x, y)
is too concentrated on objects of small size. To improve the size distribution, we point
the objects, in a way inspired by [8], which corresponds to a derivation of the associated
generating function. The precise singularity analysis of the generating functions of planar
graphs, recently performed in [17], indicates that we have to perform derivation of planar
graphs three times in order to get a usable size distribution. In Section 5, we explain how
to inject the derivative operator into the decomposition of planar graphs. This gives a
Boltzmann sampler ΓG′′′(x, y) for “triply derived” planar graphs. Our random genera-
tors of planar graphs are finally obtained as targetted samplers, starting from ΓG′′′(x, y)
and choosing well tuned values x = xn and y = y(µ) for each target size n and ratio
edges/vertices µ ∈ (1, 3). The time complexity of the targetted samplers is analyzed in
Section 6. This eventually yields the complexity results stated in Theorems 1 and 2. The
general scheme of the planar graph generator is shown in Figure 2.
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Figure 2. The chain of constructions from binary trees to planar graphs.

3. Boltzmann samplers

In this section, we define Boltzmann samplers and describe the main properties which
we will need to develop a Boltzmann sampler for planar graphs in Section 4. In partic-
ular, we have to extend the framework to the case of mixed classes, meaning that the
objects have two types of atoms. Indeed the decomposition of planar graphs involves
both (labeled) vertices and (unlabeled) edges. The constructions needed to formulate
the decomposition of planar graphs are classical ones in combinatorics: Sum, Product,
Set, Substitutions [10]. For each of the constructions, we describe a sampling rule, so
that Boltzmann samplers can be assembled for any class that admits a decomposition
in terms of these constructions. Morevover, the decomposition of planar graphs involves
rooting/unrooting operations. Taking these operations into account in the samplers makes
it necessary to develop specific rejection techniques, as well as derivative operators, in the
framework of Boltzmann samplers.

3.1. Definition. Boltzmann samplers, introduced and developed by Duchon et al in [8],
constitute a general and efficient framework to produce a random generator on a com-
binatorial class C that admits an explicit decomposition. Instead of fixing a particular
size for the random generation, objects are drawn under a probability distribution spread
over the whole class. This distribution assigns to each object of a combinatorial class
C a weight essentially proportional to the exponential of its size n. Precisely, if C is an
unlabelled class, the ordinary generating function of C is

C(y) :=
∑

γ∈C

y|γ|,

where |γ| stands for the size (e.g., the number of nodes in a tree) of γ, and y is a variable
marking the size. It is clear that the sum defining C(y) converges if y is smaller than
the radius of convergence ρC of C(y), in which case y is said to be coherent. Then, the
probability distribution assigining to each object γ of C a probability

Py(γ) =
y|γ|

C(y)
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is a well defined distribution, called ordinary Boltzmann distribution of parameter y. An
ordinary Boltzmann sampler of parameter y is a procedure ΓC(y) that draws objects
of C at random under the Boltzmann distribution Py. The authors of [8] provide a
collection of rules to assemble Boltzmann samplers for combinatorial classes specified
using basic combinatorial constructions, like Sum, Product, Sequence. The framework
has been recently extended to constructions that are subject to symmetries, like Multiset,
Powerset, Cycle [11]. An interesting application to random sampling of plane partitions
is developed in [3].

Boltzmann samplers can similarly be assembled in the framework of labelled objects
(e.g., graphs with labelled vertices). The exponential generating function of the class C is
defined as

C(x) :=
∑

γ∈C

x|γ|

|γ|! ,

where |γ| is the size of an object γ ∈ C (e.g., the number of vertices of a graph). The
exponential Boltzmann distribution assigns to each object of C a weight

Px(γ) =
x|γ|

|γ|!C(x)
.

Given a coherent value x, i.e., a value smaller than the radius of convergence of C(x), a
Boltzmann sampler for the labelled class C is a procedure ΓC(x) that draws objects of C at
random under the “labelled” Boltzmann distribution Px. As in the unlabelled framework,
the authors of [8] give sampling rules associated to classical combinatorial constructions
(Sum, Product, Set).

To assemble a Boltzmann sampler for planar graphs from their combinatorial decom-
position, we need to extend the framework of Boltzmann samplers to the case of a mixed
combinatorial class. In a mixed class C = ∪n,mCn,m, an object has n labelled “atoms”
and m unlabelled “atoms”, e.g., a graph with n labelled vertices and m unlabelled edges.
For γ ∈ C, we write |γ| for the number of labelled atoms of γ and ||γ|| for the number of
unlabelled atoms of γ. The associated generating function C(x, y) is defined as

C(x, y) :=
∑

γ∈C

x|γ|

|γ|! y
||γ||.

For a fixed real value y > 0, we denote by ρC(y) the radius of convergence of the function
x → C(x, y). A pair (x, y) is said to be coherent if x ∈ (0, ρC(y)), which means that
∑

γ∈C
x|γ|

|γ|! y
||γ|| converges and that C(x, y) is well defined. Given a coherent pair (x, y),

the mixed Boltzmann distribution is the probability distribution Px,y assigning to each
object γ ∈ C probability

Px,y(γ) =
1

C(x, y)

x|γ|

|γ|! y
||γ||.

An important property of this distribution is that two objects with the same parameters
(|γ|, ||γ||) have the same probability of occurring. A mixed Boltzmann sampler at (x, y) —
called in short Boltzmann sampler hereafter— is a procedure ΓC(x, y) that draws objects
of C at random under the Boltzmann distribution Px,y. Observe that the development of
the Boltzmann framework for mixed classes is an extension of the labelled case studied
in [8]. Indeed, ΓC(x, 1) is an exponential Boltzmann sampler for C.
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3.2. Constructions. The five constructions that follow serve to express the decomposi-
tion of planar graphs, see [10] for details. In particular, we need two specific substitution
constructions, one at labelled atoms called x-substitution, the other at unlabelled atoms
called y-substitution.

Sum. The sum C = A+B of two classes is meant as a disjoint union, i.e., it is the union
of two distinct copies of A and B. The generating function of C satisfies

C(x, y) = A(x, y) + B(x, y).

Product. The product C = A ⋆ B is a classical cartesian product, combined with a
relabelling step ensuring that the atoms of an object γ ∈ A ⋆ B bear distinct labels in
[1, . . , |γ|]. The generating function of C satisfies

C(x, y) = A(x, y) ·B(x, y).

Set≥d. For d ≥ 0 and a class A having no object of size 0, C = Set≥d(A) is the class
such that each object γ ∈ Set≥d(A) is a finite set of at least d objects of A, relabelled
so that the atoms of γ bear distinct labels in [1 . . |γ|]. For d = 0, this corresponds to the
classical construction Set. The generating function of C satisfies

C(x, y) = ed(A(x, y)), where ed(Z) :=
∑

k≥d

Zk

k!
.

x-substitution. Given A and B two classes such that B has no object of size 0, the
class C = A ◦x B is the class of objects that are obtained by taking an object ρ ∈ A,
called the core-object, substituting each labelled atom v of ρ by an object γv ∈ B, and
finally relabelling the atoms of ∪vγv with distinct labels from 1 to

∑

v |γv|. The generating
function of C satisfies

C(x, y) = A(B(x, y), y).

y-substitution. Given A and B two classes such that B has no object of size 0, the
class C = A ◦y B is the class of objects that are obtained by taking an object ρ ∈ A,
called the core-object, substituting each unlabelled atom e of ρ by an object γe ∈ B, and
finally relabelling the atoms of ρ ∪ (∪eγe) with distinct labels from 1 to |ρ| + ∑e |γe|.
We assume here that the unlabelled atoms of an object of A are distinguishable. This
property is satisfied in the case where A is a family of labelled graphs with no multiple
edges, as two different edges are distinguished by the labels of their two incident vertices.
The generating function of C satisfies

C(x, y) = A(x, B(x, y)).

3.3. Sampling rules. A nice feature of Boltzmann samplers is that the basic combi-
natorial constructions (Sum, Product, Set) give rise to simple rules for assembling the
associated Boltzmann samplers. To describe these rules, we assume that the exact values
of the generating functions at a given coherent pair (x, y) are known. We will also need
two well-known probability distributions.

• A Bernoulli law of parameter p ∈ (0, 1) is a random variable equal to 1 (or true)
with probability p and equal to 0 (or false) with probability 1− p.
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Construction Boltzmann sampler

empty atom

unit atom

Sum C = A+ B

Product C = A ⋆ B

Set≥d C = Set≥d(A)

1

Z

x-subs C = A ◦x B

y-subs C = A ◦y B

return 1

return Z

ΓC(x, y): if Bern
(

A(x,y)
C(x,y)

)

, return ΓA(x, y)

else return ΓB(x, y)

ΓC(x, y): γ ← (ΓA(x, y),ΓB(x, y))
DistributeLabels(γ); return γ

ΓC(x, y): k ← Pois≥d(A(x, y))

γ ← (ΓA(x, y), . . . ,ΓA(x, y)) {k ind. calls}

DistributeLabels(γ); return γ

ΓC(x, y): γ ← ΓA(B(x, y), y)

for each labeled atom v ∈ γ do
replace v by γv ← ΓB(x, y) od {ind. calls}

DistributeLabels(γ); return γ

ΓC(x, y): γ ← ΓA(x,B(x, y))

for each unlabeled atom e ∈ γ do
replace e by γe ← ΓB(x, y) od {ind. calls}

DistributeLabels(γ); return γ

Figure 3. The sampling rules associated with each of the five constructions.

• Given λ > 0 a real value and d a nonnegative integer, the conditioned Poisson law
Pois≥d(λ) is the probability distribution on Z≥d defined as follows:

P(k) =
1

ed(λ)

λk

k!
, where ed(Z) :=

∑

k≥d

Zk

k!
.

For d = 0, this corresponds to the classical Poisson law, abbreviated as Pois.

For complexity analysis, a Bernoulli choice is assumed to have unit cost, and drawing
from a conditioned Poisson law has cost equal to the value of the output. (Indeed, a
conditioned Poisson law can be classically drawn using a loop executed k times if the
result is k, see [8].)

Starting from combinatorial classesA and B endowed with Boltzmann samplers ΓA(x, y)
and ΓB(x, y), Figure 3 describes how to assemble a sampler for a class C obtained from
A and B (or from A alone for the construction Set≥d) using the five constructions. The
relabelling step, as mentioned in the definition of the constructions, is performed by an
auxiliary procedure DistributeLabels. Given an object γ with its labelled atoms ranked
from 1 to |γ|, DistributeLabels(γ) draws a permutation σ of [1, . . , |γ|] uniformly at
random and gives label σ(i) to the atom of rank i.

Proposition 1. Let A and B be two mixed combinatorial classes endowed with Boltzmann
samplers ΓA(x, y) and ΓB(x, y). For the five constructions {+, ⋆,Set≥d, x−subs, y−subs},
the sampler ΓC(x, y), as specified in Figure 3, is a valid Boltzmann sampler for the com-
binatorial class C.

Proof. 1) Sum: C = A + B. An object of A has probability 1
A(x,y)

x|γ|

|γ|! y
||γ|| (by definition

of ΓA(x, y)) multiplied by A(x,y)
C(x,y) (because of the Bernoulli choice) of being drawn by
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ΓC(x, y). Hence, it has probability 1
C(x,y)

x|γ|

|γ|! y
||γ|| of being drawn. Similarly, an object

of B has probability 1
C(x,y)

x|γ|

|γ|! y
||γ|| of being drawn. Hence ΓC(x, y) is a valid Boltzmann

sampler for C.
2) Product: C = A ⋆ B. Define a generation scenario as a pair (γ1 ∈ A, γ2 ∈ B), together
with a relabelling permutation σ ∈ S|γ1|+|γ2| of the labelled atoms of (γ1, γ2). By defini-
tion, Γ(A⋆B)(x, y) draws a generation scenario and returns the object γ ∈ A⋆B obtained
by keeping the secondary (distributed) labels. Each generation scenario has probability

(

1

A(x, y)

x|γ1|

|γ1|!
y||γ1||

)(

1

B(x, y)

x|γ2|

|γ2|!
y||γ2||

)

1

(|γ1|+ |γ2|)!
of being drawn, the three factors corresponding respectively to ΓA(x, y), ΓB(x, y), and
DistributeLabels(γ). Observe that this probability has the more compact form

1

|γ1|!|γ2|!
1

C(x, y)

x|γ|

|γ|! y
||γ||.

Given γ ∈ A ⋆ B, let γ1 be its first component (in A) and γ2 be its second component
(in B). Any labelling of the labelled atoms of γ1 from 1 to |γ1| and of the labelled
atoms of γ2 from 1 to |γ2| induces a unique generation scenario producing γ. Indeed, the
two labellings determine unambiguously the relabelling permutation σ of the generation
scenario. Hence, γ is produced from |γ1|!|γ2|! different scenarios, each having probability

1
|γ1|!|γ2|!C(x,y)

x|γ|

|γ|! y
||γ||. As a consequence, γ is drawn under the Boltzmann distribution.

3) Set≥d: C = Set≥d(A). In the case of the construction Set≥d, a generation scenario is
defined as a sequence (γ1 ∈ A, . . . , γk ∈ A) with k ≥ d, together with a relabelling permu-
tation σ ∈ S|γ1|+...+|γk|. Such a generation scenario produces an object γ ∈ Set≥d(A).
By definition of Γ(Set≥d(A))(x, y), the scenario has probability

(

1

ed(A(x, y))

A(x, y)k

k!

)

(

k
∏

i=1

x|γi|y||γi||

A(x, y)|γi|!

)

1

(|γ1|+ . . . + |γk|)!
,

the three factors corresponding respectively to drawing Pois≥d(A(x, y)), drawing the se-
quence, and the relabelling step. This probability has the simpler form

1

k!C(x, y)

x|γ|

|γ|! y
||γ||

k
∏

i=1

1

|γi|!
.

For k ≥ d, an object γ ∈ Set≥d(A) can be written as a sequence γ1, . . . , γk in k! different
ways. In addition, by a similar argument as for the Product construction, a sequence

γ1, . . . , γk is produced from
∏k

i=1 |γi|! different scenarios. As a consequence, γ is drawn
under the Boltzmann distribution.

4) x-substitution: C = A ◦x B. For this construction, a generation scenario is defined as
a core-object ρ ∈ A, a sequence γ1, . . . , γ|ρ| of objects of B, and a relabelling permutation
σ ∈ S|γ1|+...+|γ|ρ|| (γi stands for the object of B substituted at the atom i of ρ). This
corresponds to the scenario of generation of an object γ ∈ A ◦x B by the algorithm
Γ(A ◦x B), and the scenario has probability

(

1

A(B(x, y), y)

B(x, y)|ρ|

|ρ|! y||ρ||

)





|ρ|
∏

i=1

x|γi|y||γi||

B(x, y)|γi|!





1

(|γ1|+ . . . + |γ|ρ||)!
.
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This expression has the simpler form

x|γ|y||γ||

C(x, y)|γ|!
1

|ρ|!

|ρ|
∏

i=1

1

|γi|!
.

Given γ ∈ A ◦x B, each labelling of the atoms of the core-object ρ ∈ A followed, for
1 ≤ i ≤ |ρ|, by a relabelling of the atoms of γi from 1 to |γi|, induces a unique generation

scenario producing γ. As a consequence, γ is produced from |ρ|!∏|ρ|
i=1 |γi|! scenarios,

each having probability x|γ|y||γ||

C(x,y)|γ|!
1
|ρ|!

∏|ρ|
i=1

1
|γi|!

. Hence, γ is drawn under the Boltzmann

distribution.

5) y-substitution: C = A ◦y B. A generation scenario is defined as a core-object ρ ∈ A, a
sequence γ1, . . . , γ||ρ|| of objects of B, and a relabelling permutation σ ∈ S|ρ|+|γ1|+...+|γ||ρ|||

(after giving a rank to each unlabelled atom of ρ, γi stands for the object of B substituted
at the unlabelled atom of rank i). This corresponds to the scenario of generation of an
object γ ∈ A ◦y B by the algorithm Γ(A ◦y B), and the scenario has probability

(

1

A(x, B(x, y))

x|ρ|

|ρ|! B(x, y)||ρ||
)





||ρ||
∏

i=1

x|γi|y||γi||

B(x, y)|γi|!





(

1

(|ρ|+ |γ1|+ . . . + |γ||ρ|||)!

)

.

This expression has the simpler form

x|γ|y||γ||

C(x, y)|γ|!
1

|ρ|!

||ρ||
∏

i=1

1

|γi|!
.

Given γ ∈ A ◦y B, each labelling of the atoms of the core-object ρ ∈ A followed, for
1 ≤ i ≤ ||ρ||, by a relabelling of the atoms of γi from 1 to |γi|, induces a unique generation

scenario producing γ. As a consequence, γ is produced from |ρ|!
∏||ρ||

i=1 |γi|! scenarios,

each having probability x|γ|y||γ||

C(x,y)|γ|!
1

|ρ|!

∏||ρ||
i=1

1
|γi|!

. Hence, γ is drawn under the Boltzmann

distribution.
�

Example. Consider the class C of labelled binary trees where the atoms are the inner
nodes. The class C has the following decomposition grammar,

C = (C + 1) ⋆ Z ⋆ (C + 1) .

Accordingly, the series C(x) counting binary trees satisfies C(x) = x (1 + C(x))2. Thus,
C(x) can be easily evaluated for a fixed real parameter x < ρC = 1

4 .
Using the sampling rules for Sum and Product, we obtain the following Boltzmann

sampler for binary trees,
ΓC(x) : return (Γ(1 + C)(x),Z, Γ(1 + C)(x)) {independent calls}
Γ(1 + C)(x) : if Bern

(

1
1+C(x)

)

return ∅ {leaf}
else return ΓC(x)

Remark 1. The procedure DistributeLabels(γ) throws distinct labels uniformly at
random on the atoms of γ that support labels. The fact that the relabelling permu-
tation is always chosen uniformly ensures that the call to DistributeLabels can be
postponed till the end of the algorithm, i.e., we can apply the labelling to the finally
output object (this is also mentioned by Flajolet et al [12, Sec 3]). Hence, the labels
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do not really matter and induce no additional complexity to the Boltzmann samplers:
for a class C whose combinatorial decomposition involves the five constructions, we just
have to generate the unlabelled shape of an object γ produced by ΓC(x, y); then we call
DistributeLabels(γ).

3.4. Additional techniques for Boltzmann sampling.

3.4.1. Derivation, y-derivation, and edge-rooting. In the following sections, we will make
much use of the derivative operator. Given a mixed (or labelled) combinatorial class
C = ∪n,mCn,m, an object of the derived class C′ is obtained by removing the label n of
an object of C of size n, so that the obtained object has size n − 1 (the atom n can
be considered as a pointed atom that does not count in the size). As a consequence,
C′n−1,m ≃ Cn,m , so that the generating function C′(x, y) of C′ satisfies

(1) C′(x, y) =
∑

n,m

|Cn,m|
xn−1

(n− 1)!
ym =

∂C

∂x
(x, y).

The y-derivative of C is the class C of objects of C having a marked unlabelled atom
that does not count in the size. Thus, the generating function C(x, y) of C satisfies

(2) C(x, y) =
∂C

∂y
(x, y).

For the particular case of planar graphs, we will also consider edge-rooted objects, i.e.,
planar graphs where an edge is “marked” (distinguished) and oriented. In addition, the
root edge is not counted as unlabelled atom, and the two extremities of the root do not
count as labelled atoms (i.e., are not labelled). The edge-rooted class of C is denoted by−→C . The generating function

−→
C (x, y) of

−→C satisfies

(3)
−→
C (x, y) =

2

x2

∂C

∂y
(x, y).

3.4.2. Rejection. Great flexibility results from combining Boltzmann sampling with rejec-
tion, making it possible to adjust the obtained distributions of the samplers.

Lemma 1 (Rejection). Given a combinatorial class C, let W : C → R+ and p : C → [0, 1]
be two functions, called weight-function and rejection-function, respectively. Assume that
W is summable, i.e.,

∑

γ∈C W (γ) is finite. Let A be a random generator on C that draws

each object γ ∈ C with probability proportional to W (γ). Then, the procedure

Arej : repeat A→ γ until Bern(p(γ)); return γ

is a random generator on C, which draws each object γ ∈ C with probability proportional
to W (γ)p(γ).

Proof. Define W :=
∑

γ∈C W (γ). By definition, A draws an object γ ∈ C with probability

P (γ) := W (γ)/W . Let prej be the probability of rejection of Arej at each try. The
probability Prej(γ) that γ is drawn by Arej satisfies Prej(γ) = P (γ)p(γ)+prejPrej(γ), where
the first (second) term is the probability that γ is drawn at the first try (at least at the
second try, respectively). Hence, Prej(γ) = P (γ)p(γ)/(1−prej) = W (γ)p(γ)/(W ·(1−prej)),
i.e., Prej(γ) is proportional to W (γ)p(γ). �
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4. Decomposition of planar graphs and Boltzmann samplers

The classical method to count planar graphs consists in decomposing a planar graph
into planar components that have higher degree of connectivity. (Recall that a graph is
k-connected if it has at least k vertices and if the removal of any set of k − 1 vertices
and their incident edges does not disconnect the graph.) The decomposition is stopped at
connectivity degree 3, where the graphs have a unique planar embedding (up to continuous
deformation and reflection), according to a theorem of Whitney [29]. The generation
method we describe follows the decomposition, i.e., planar graphs are assembled according
to their decomposition.

First, by uniqueness of the embedding, generating 3-connected planar graphs is equiv-
alent to generating 3-connected maps, where a map is a planar graph endowed with an
explicit topological planar embedding. Following the general bijective approach intro-
duced by Schaeffer [24], Fusy et al develop a bijective method to enumerate 3-connected
maps [15], recovering the counting formulas originally obtained by Mullin and Schellen-
berg [20]. As described in Section 4.1, the bijection yields an explicit Boltzmann sampler
for (rooted) 3-connected maps. The next step is to generate 2-connected planar graphs
from 3-connected ones. We take advantage of a decomposition of 2-connected planar
graphs into 3-connected planar components, which has been formalised by Trakhten-
brot [26] and later used by Walsh [28] to count 2-connected planar graphs and by Bender,
Gao, Wormald to obtain asymptotic enumeration [1]. Finally, connected planar graphs
are generated from 2-connected ones by using a well-known decomposition at separating
vertices, and planar graphs are generated from connected ones by choosing the number
of connected components and then generating each component. Notice that these steps
translate to explicit equations relating the generating functions of 2-connected, connected,
and unconstrained planar graphs. Starting from these equations, Giménez and Noy have
solved the asymptotic enumeration of planar graphs, using analytic methods and clever
integral manipulations [17].

Notations. In the sequel, the number of vertices and the number of edges of a planar
graphs γ are respectively denoted by V (γ) and E(γ). Notice that V (γ) may not always
be equal to |γ| and E(γ) might not be equal to ||γ||, e.g., an edge-rooted planar graph γ
satisfies V (γ) = |γ|+ 2 and E(γ) = ||γ||+ 1.

4.1. Boltzmann sampler for 3-connected planar graphs. The development of a
Boltzmann sampler for (edge-rooted) 3-connected planar graphs goes in two steps. First,
we take advantage of a result of Whitney ensuring that Boltzmann sampling of edge-
rooted 3-connected planar graphs is equivalent to Boltzmann sampling of so-called rooted
3-connected maps, where the terminology of map refers to an explicit embedding. Then
we use an explicit bijection relating the families of 3-connected maps and the (very simple)
family of binary trees. Via the bijection, a Boltzmann sampler for rooted binary trees is
translated to a Boltzmann sampler for rooted 3-connected maps.

4.1.1. Equivalence with rooted 3-connected maps. A well known result due to Whitney [29]
ensures that a 3-connected planar graph has a unique embedding on the sphere up to con-
tinuous deformation and reflection (in general a planar graph can have many embeddings).
A 3-connected map is an unlabelled 3-connected planar graph embedded on the sphere
up to continuous deformation. A 3-connected map is rooted by marking and orienting an
edge of the map. Equivalently —use stereographic projection from the face on the right of
the root— a rooted 3-connected map is a 3-connected planar graph embedded in the plane
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up to continuous deformation, the root having the infinite face on its right. The class of
rooted 3-connected maps is denoted by M = ∪i,jMi,j where i is the number of vertices
different from the two end points of the rooted edge and j is the number of edges without
counting the rooted one. The associated generating function is M(z, w) =

∑

i,j |Mi,j |ziwj

(as both vertices and edges are unlabelled, the series is ordinary in the two variables).
Whitney’s theorem ensures that a labelled edge-rooted 3-connected planar graphs has
two different labelled embeddings on the sphere (up to continuous deformation), the two
embeddings differing by a reflection. In other words, if we define a labelled rooted map as
a map where the i vertices different from the two root extremities carry distinct labels in
[1..i], then we have the identity

(4) Mi,j × i! ≃ 2
−→G3(i,j),

which can be written compactly as

(5) M≃ 2
−→G3, M(z, w) =

4

z2

∂G3

∂w
(z, w)

Definition 1. Let M = ∪i,jMi,j be a class with two types of unlabelled atoms, called
an ordinary mixed class. A Boltzmann sampler for M is a random generator ΓM(x, y)
drawing each object γ ∈ Mi,j with probability

P(γ) =
xiyj

M(x, y)
,

where M(x) =
∑

i,j |Mi,j |xiyj is the generating function ofM, which is ordinary in the

two variables. The derived class M′ and y-derived class M are defined in the same way
as for mixed classes; M′ (M) is the class of objects of M having a marked atom of the
first type (second type, respectively) that does not count in the size.

Equation (5) ensures that rooted 3-connected maps correspond to the unlabelled shape
of edge-rooted 3-connected labelled planar graphs. In addition, according to Remark 1, it
is sufficient to draw only the unlabelled shape of the objects, so that we have the following
result.

Lemma 2. Finding a Boltzmann sampler Γ
−→
G3(z, w) for edge-rooted 3-connected planar

graphs is equivalent to finding a Boltzmann sampler ΓM(z, w) for rooted 3-connected maps.

Proof. IfM is endowed with a Boltzmann sampler ΓM(z, w), then the algorithm

Γ
−→
G3(z, w): γ ← ΓM(z, w); DistributeLabels(γ); return γ;

draws each labelled 3-connected planar graph with probability proportional to ziwj (be-
cause of ΓM(z, w)) multiplied by 1/i! (because of DistributeLabels(γ)). Hence the

procedure Γ
−→
G3(z, w) is a mixed Boltzmann sampler for

−→G3. �

4.1.2. Bijection between binary trees and some dissections. A fruitful bijective method to
enumerate planar maps has been developed by Schaeffer in his thesis [24]. Several families
of rooted maps are counted in this way [22, 23, 14]; in each case the family of maps is
proved to be in bijection with an explicit family of trees. The advantage compared to
symbolic methods, as developed by Tutte [27], is that the bijections yield efficient (linear-
time) generators for maps, as random sampling of maps is reduced to the much easier task
of random sampling of trees, see the survey [25]. The method has been recently applied
to enumerate the family of 3-connected maps, which is of interest here. Precisely, there is
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a bijection between binary trees and some specific dissections of the hexagon [15], these
dissections being closely related to 3-connected maps. We make use of a formulation of
the bijection as an unbiased correspondence between rooted bicolored binary trees and
rooted dissections.

Definition 2. A bicolored binary tree is defined as a rooted binary tree —each node has
a left son and a right son that are possibly empty— whose nodes are partitioned into
black and white nodes, with the property that any pair of adjacent nodes have different
colors. For i, j two integers, the set of bicolored binary trees with i black nodes and j
white nodes is denoted by Ti,j .

Definition 3. An irreducible dissection is a planar map with hexagonal outer face,
quadrangular inner faces, and no filled 4-cycle, i.e., the interior of each 4-cycle is a face.
As all face degrees are even, there exists a bicoloration of vertices, say in black and white,
such that adjacent vertices have different colors; and the bicoloration is unique up to
color choice of the first vertex. A rooted dissection is endowed with the unique vertex
bicoloration such that the root-vertex is black. For i, j two integers, we denote by Di,j

the set of rooted irreducible dissections having i inner black vertices and j inner white
vertices.

Proposition 2 (Fusy et al [15]). For i and j two integers, there exists a mapping, called
closure-mapping, that establishes a bijection between the sets

Ti,j × {1, 2, 3} ≡ Di,j × [1..j + 2].

The construction of a dissection from a binary tree takes linear time.

Starting from a binary tree, the closure mapping consists in completing edges incident
to leaves (considered as made of a unique half-edge) into compete edges (made of two
half-edges) so as to close quadrangular faces. At the end a hexagon is added outside of
the obtained figure, and the leaves attached to remaining non-completed edges are merged
with vertices of the hexagon so as to form only quadrangular faces, see [15] for a detailed
description.

4.1.3. Boltzmann sampler for binary trees. Notice that bicolored binary trees admit a
recursive decomposition, so that a Boltzmann sampler is easily derived. Precisely, the
class T of bicolored binary trees is partioned into the class T• of black-rooted binary
trees and the class T◦ of white-rooted binary trees. The associated ordinary generating
functions with respect to the number of black nodes (variable z) and the number of nodes
(variable w) are denoted by T (z, w), T•(z, w), and T◦(z, w). The decomposition at the
root of a bicolored binary tree yields the following decomposition grammar, where Z• and
Z◦ stand for a black and a white node, respectively.

(6)






T = T• + T◦
T• = (1 + T◦) ⋆ Z• ⋆ (1 + T◦)
T◦ = (1 + T•) ⋆ Z◦ ⋆ (1 + T•)







T (z, w) = T•(z, w) + T◦(z, w)

T•(z, w) = zw (1 + T◦(z, w))2

T◦(z, w) = w (1 + T•(z, w))
2

.

The decomposition grammar of bicolored binary trees is directly translated to the
following Boltzmann sampler ΓT (z, w) for bicolored binary trees, based on the remark
given just after:
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ΓT (z, w): if Bern
(

T•(z,w)
T (z,w)

)

return ΓT•(z, w)

else return ΓT◦(z, w)

ΓT•(z, w): return (Γ(1 + T◦)(z, w),Z•,Γ(1 + T◦)(z, w))

ΓT◦(z, w): return (Γ(1 + T•)(z, w),Z◦,Γ(1 + T•)(z, w))

Γ(1 + T◦)(z, w): if Bern
(

1
1+T◦(z,w)

)

return ∅ (leaf)

else return ΓT◦(z, w)

Γ(1 + T•)(z, w): if Bern
(

1
1+T•(z,w)

)

return ∅ (leaf)

else return ΓT•(z, w)

Remark 2. We consider here ordinary mixed classes, i.e., classes with two types of
unlabelled atoms, a case not covered by the rules given in Figure 3, where the classes
considered have both labeled atoms and unlabeled atoms. However, an easy adaptation
of the proof of Proposition 1 ensures that the sampling rules for Sum and Product are also
valid in the case of a class with two types of unlabelled atoms, i.e., a Boltzmann sampler
for C = A+B is obtained by calling ΓA(x, y) with probability A(x, y)/C(x, y) and calling
ΓB(x, y) otherwise; and a Boltzmann sampler for C = A ⋆ B consists of two independent
calls to ΓA(x, y) and ΓB(x, y).

4.1.4. Boltzmann sampler for rooted irreducible dissections. The bijection stated in Propo-
sition 2 yields the following sampler for rooted irreducible dissections,

ΓI(z, w): repeat u← rnd(0, 1); max size← ⌊1/u⌋;
τ ← ΓT (z, w);
abort and restart as soon as #nodes(τ) + 2 > max size

until (generation finishes)
return closure(τ, rnd(1, 2, 3))

Lemma 3. The procedure ΓI(z, w) is a Boltzmann sampler for rooted irreducible dissec-
tions.

Proof. The sampler ΓT (z, w) draws each binary tree τ ∈ Ti,j with probability proportional
to ziwj . Hence, Proposition 2 ensures that the algorithm

repeat τ ← ΓT (z, w)
until (Bern (1/(#nodes(τ) + 2)))
return closure(τ, rnd(1, 2, 3)

is a Boltzmann sampler for rooted irreducible dissections with respect to the number of
black vertices (variable z) and the number of vertices (variable w), according to Lemma 1.
However, this sampler can be made more efficient by “simulating” the Bernoulli choice
all along the generation instead of waiting that the entire object is drawn. This yields
the sampler ΓI(z, w), equivalent in distribution but more efficient. As we will see in
the analysis, we need this improved version using an early abort technique to obtain the
complexity results stated in Theorems 1 and 2. �

4.1.5. From dissections to 3-connected maps. Irreducible dissections are closely related to
3-connected maps, via a classical correspondence between maps and quadrangulations.
Given a bicolored rooted quadrangulation Q, the primal map of Q is the rooted map M
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a) b) c)

Figure 4. An admissible rooted irreducible dissection (Fig.a), and the
associated rooted 3-connected map (Fig.c).

whose vertex set is the set of black vertices of Q, each face f of Q giving rise to an edge of
M connecting the two (opposite) black vertices of f . The map M is naturally rooted with
the same root-vertex as Q. A quadrangulation is called irreducible if the interior of every
4-cycle, expect the outer one, is a face. It is well known that the primal-map construction
restricts to a bijection between rooted irreducible quadrangulations with i black vertices
and j white vertices, and rooted 3-connected maps with i vertices and j faces. Moreover,
irreducible dissections are close to irreducible quadrangulations. Indeed, deleting the root
edge of a rooted irreducible quadrangulation Q yields a rooted irreducible dissection δ, the
root of δ being naturally chosen so that Q and δ have the same root-vertex. The inverse
operation consists in adding an outer edge, the new root, connecting the root-vertex of a
rooted dissection to the opposite outer vertex.

Definition 4. A rooted irreducible dissection δ is called admissible if the operation of
adding an edge connecting the root vertex to the opposite outer vertex yields a (rooted)
irreducible quadrangulation Q. If so, the primal map of Q is called (by extension) the
primal map of the dissection and is denoted by Primal(δ), see Figure 4. By extension
also, a pair (τ, a) ∈ T ×{1, 2, 3} is called admissible if closure(τ, a) is an admissible rooted
dissection. The set of admissible pairs (τ, a) such that τ has i black nodes and j white
nodes is denoted by Πi,j ; and the whole class of admissible pairs is denoted by Π.

It is easily shown that a rooted irreducible dissection δ is admissible iff there exists no
path of length 3 that connects the root-vertex of δ to the opposite outer vertex, and passes
by an inner vertex of δ. Hence, testing admissibility has linear time complexity. To sum
up, 1) rooted irreducible dissections are in bijection with a superset of rooted 3-connected
maps, via edge-addition in the outer face and primal-map construction; 2) the dissections
associated to 3-connected maps are called admissible; 3) testing admissibility has linear
time complexity.

4.1.6. Boltzmann sampler for rooted 3-connected maps. From the Boltzmann sampler for
rooted irreducible dissections, the correspondence stated in Proposition 2 yields the fol-
lowing sampler for rooted 3-connected maps:

ΓM(z, w): repeat δ ← ΓI(z, w) until δ is admissible
return Primal(δ)

The Boltzmann sampler ΓM(z, w) for rooted 3-connected maps is also a mixed Boltz-

mann sampler Γ
−→
G3(z, w) for edge-rooted 3-connected planar graphs, according to the

equivalence stated in Lemma 2.
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4.2. Boltzmann sampler for 2-connected planar graphs. The next step of our sam-
pler is to realise a Boltzmann sampler for 2-connected planar graphs from the Boltzmann
sampler for edge-rooted 3-connected planar graphs obtained in Section 4.1. Precisely, we
first decribe a Boltzmann sampler for edge-rooted 2-connected planar graphs, and subse-
quently obtain a Boltzmann sampler for the derived class of 2-connected planar graphs,
by using rejection techniques.

To generate edge-rooted 2-connected planar graphs, we use a well-known decomposi-
tion, due to Trakhtenbrot [26] and called network-decomposition, which ensures that an
edge-rooted 2-connected planar graph can be assembled from edge-rooted 3-connected pla-
nar components. Precisely, Trakhtenbrot’s decomposition deals with so-called networks,
where a network is defined as a connected graph N with two distinguished vertices 0 and
∞ called poles, such that the graph N∗ obtained by adding an edge between 0 and ∞ is
a 2-connected planar graph. For the enumeration, the two poles are not counted in the
size.

We rely on [28] for the description of Trakhtenbrot’s decomposition. A series-network
or s-network is a network made of at least 2 networks connected in chain at their poles,
the ∞-pole of a network coinciding with the 0-pole of the following network in the chain.
A parallel network or p-network is a network made of at least 2 networks connected in
parallel, so that their respective ∞-poles and 0-poles coincide. A network N such that
N∗ is 3-connected and the poles are not adjacent is called a pseudo-brick. A polyhedral
network or h-network is a network obtained by taking a pseudo-brick and substituting
each edge e of the pseudo-brick by a network Ne (these networks put the bridge between
2-connected and 3-connected planar graphs).

Proposition 3 (Trakhtenbrot). Networks with at least 2 edges are partitioned into s-
networks, p-networks and h-networks.

Let us explain how to obtain a recursive decomposition involving the different families
of networks. Let D, S, P , and H be respectively the classes of networks, s-networks, p-
networks, and h-networks. Let D(z, y), S(z, y), P (z, y), H(z, y) be the associated mixed
generating functions with respect to the number of non-pole vertices (variable z) and the
number of edges (variable y). We recall that L is the family consisting only of the link-
network, i.e., the graph with one edge connecting the two poles. Proposition 3 ensures
that

D = L+ S + P +H.

An s-network can be uniquely decomposed into a non-s-network (the head of the chain)
followed by a network (the trail of the chain), which yields

S = (L+ P +H) ⋆ Z ⋆D.

A p-network has a unique maximal parallel decomposition into a set of components
that are not p-networks. Observe that we consider here graphs without multiple edges,
so that at most one of these components is an edge. Whether there is one or no such
edge-component yields

P = L ⋆ Set≥1(S +H) + Set≥2(S +H).

By definition, the class of h-networks corresponds to an y-substitution of networks
in pseudo-bricks. We write G3 for the family of labelled 3-connected planar graphs and
denote by G3(z, w) the associated generating function with respect to vertices and edges.
By definition, a pseudo-brick is an edge-rooted 3-connected plane graph. As a consequence,
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H =
−→G3 ◦y D.

Finally, Trakhtenbrot’s decomposition yields the following decomposition grammar re-
lating networks and edge-rooted 3-connected planar graphs:















D = L + S + P + H

S = (L + P + H) ⋆ Z ⋆ D

P = L ⋆ Set≥1(S + H) + Set≥2(S + H)

H =
−→
G3 ◦y D

(N)

The decomposition grammar (N) is directly translated to a Boltzmann sampler ΓD(z, y)
for networks, using the sampling rules given in Figure 3. The only terminal nodes of the

decomposition grammar are the classes Z, L (which are explicit), and the class
−→G3. Thus,

the sampler ΓD(z, y) and the auxiliary samplers ΓS(z, y), ΓP (z, y), and ΓH(z, y) are

recursively specified in terms of Γ
−→
G3(z, w), where w = D(z, y).

Observe that each edge-rooted 2-connected planar graph different from the link graph
gives rise to two networks, obtained respectively by counting or not counting the root-edge.
This yields the identity

(7) (1 + L) ⋆
−→B ≃ (1 +D),

where D is the class of networks and L is the one-element class made of the link-graph.
From that point, a Boltzmann sampler is easily obtained for the family of edge-rooted
2-connected planar graphs. Define a procedure AddRootEdge that adds an edge con-
necting the two poles 0 and ∞ of a network if they are not already adjacent, and roots
the obtained graph at the edge (0,∞) oriented from 0 to ∞. Equation (7) translates to

the following Boltzmann sampler for
−→B ,

Γ
−→
B (z, y): γ ← Γ(1 + D)(z, y); AddRootEdge(γ); return γ

Γ(1 + D)(z, y): if Bern
(

1
1+D(z,y)

)

return link-graph else return ΓD(z, y);

The last step is to obtain a Boltzmann sampler for derived 2-connected planar graphs
from the Boltzmann sampler for edge-rooted 2-connected planar graphs (indeed, derived
2-connected planar graphs are the building blocks needed to construct connected planar
graphs). This requires a simple rejection loop:

ΓB′(z, y): repeat γ ← Γ
−→
B (z, y) until Bern

(

V (γ)
2E(γ)

)

;

DistributeLabels(γ); return γ

Lemma 4. The procedure ΓB′(z, y) is a Boltzmann sampler for derived 2-connected pla-
nar graphs.

Proof. By definition, Γ
−→
B (z, y) draws each graph γ ∈ −→B with probability proportional to

z|γ|

|γ|! y
||γ||, i.e., proportional to zV (γ)

(V (γ)−2)!y
E(γ) (because V (γ) = |γ|!+2 and E(γ) = ||γ||+1).

It is easily checked that the procedure: [1) γ ← Γ
−→
B (z, y); 2) DistributeLabels(γ);

3) return γ;] draws each graph γ ∈ B with probability proportional to 2E(γ) zV (γ)

V (γ)!y
E(γ),

the proof relying on bi-labelled objects (as in the proof of Proposition 1) and on the
fact that there are 2E(γ) ways to root a graph γ ∈ B. Lemma 1 ensures that ΓB′(z, y)
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draws a 2-connected planar graph γ ∈ B with probability proportional to zV (γ)

(V (γ)−1)!y
E(γ),

i.e., is a Boltzmann sampler for derived 2-connected planar graphs (using the identity
C′n−1,m ≃ Cn,m). Moreover, it easily follows from Euler’s relation that a 2-connected
planar graph γ satisfies V (γ) ≤ 2E(γ), so that the Bernoulli choice is valid. In fact, the
factor 2 is necessary only for the case of the link-graph, i.e., the graph having one edge,
otherwise V (γ) ≤ E(γ). Notice that the call to DistributeLabels(γ) can be removed
according to Remark 1, its presence is only useful to carry out the proof. �

4.3. Boltzmann sampler for connected planar graphs. To obtain a Boltzmann sam-
pler for connected planar graphs, we translate a decomposition linking derived connected
and derived 2-connected planar graphs to a Boltzmann sampler for derived connected
planar graphs. Then, a further rejection step yields a Boltzmann sampler for connected
planar graphs. The block-decomposition (see [18, p.10] for a detailed description) is spec-
ified as follows. Each derived connected planar graph can be uniquely constructed by
composition in the following way: take a set of derived 2-connected planar graphs and
attach them, by merging their marked vertices into a unique marked vertex. Then, for
each unmarked vertex v of each 2-connected component, take a derived connected planar
graph γv and merge the marked vertex of γv with v (this operation corresponds to an
x-substitution). Writing B for the class of 2-connected planar graphs and B(z, y) for its
mixed generating function with respect to vertices and edges, the block-decomposition
implies

(8) C′ = Set (B′ ◦x (Z ⋆ C′)) , C′(x, y) = exp(B′(xC′(x, y), y)).

The block-decomposition translates to the following sampler for derived connected planar
graphs

ΓC′(x, y): k ← Pois(B′(z, y)) [with z = xC′(x, y)]
γ ← (ΓB′(z, y), . . . , ΓB′(z, y)) {k independent calls}
merge the k components of γ at their marked vertices
for each unmarked vertex v of γ

γv ← ΓC′(x, y)
merge the marked vertex of γv with v

return γ.

Lemma 5. The sampler ΓC′(x, y) is a Boltzmann sampler for derived connected planar
graphs.

Proof. Using the sampling rules for Set and x-substitution in Figure 3, the block decom-
position (8) is directly translated to a Boltzmann sampler for derived connected planar
graphs, which is recursively specified in terms of ΓB′(z, y), where z = xC′(x, y). �

A Boltzmann sampler for connected planar graphs is simply obtained from ΓC′(x, y)
by using a rejection step so as to adjust the probability distribution:

ΓC(x, y): repeat γ ← ΓC′(x, y) until Bern
(

1
V (γ)

)

; return γ.

Lemma 6. The sampler ΓC(x, y) is a Boltzmann sampler for connected planar graphs.

Proof. Lemma 1 ensures that the probability of a graph γ to be drawn by ΓC(x, y) is

proportional to xV (γ)−1

(V (γ)−1)!y
||γ|| (because of ΓC′(x) and of the identity C′n−1,m ≡ Cn,m)
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multiplied by 1
V (γ) (because of the rejection step). Hence the probability is proportional

to xV (γ)

V (γ)!y
||γ||, i.e., ΓC(x, y) is a valid Boltzmann sampler for connected planar graphs. �

4.4. Boltzmann sampler for planar graphs. Let G be the class of planar graphs and
C the class of connected planar graphs. Let G(x, y) and C(x, y) be the mixed generating
functions of G and C with respect to the number of vertices and edges. A planar graph is
decomposed into the set of its connected components, yielding

(9) G = Set(C), G(x, y) = exp(C(x, y)),

which translates to the sampler

ΓG(x, y): k ← Pois(C(x, y))
return (ΓC(x, y), . . . , ΓC(x, y)) {k independent calls}

Proposition 4. The procedure ΓG(x, y) is a Boltzmann sampler for planar graphs.

Proof. As ΓC(x, y) is a Boltzmann sampler for connected planar graphs, the sampling
rule for the construction Set, given in Figure 3, ensures that ΓG(x, y) is a Boltzmann
sampler for planar graphs �

5. Deriving an efficient sampler

The preceding section has provided the complete description of a Boltzmann sampler
for planar graphs. However more is needed to achieve the complexity stated in Theorems 1
and 2, as shown here.

5.1. Size distribution. In the last section, we have described a method to produce a
mixed Boltzmann sampler ΓG(x, y) for labelled planar graphs. In particular, ΓG(x, 1) is a
Boltzmann sampler for labelled planar graphs, drawing two planar graphs with the same
number of vertices with equal probability. For practical purpose, a target size n is chosen
by the user (e.g., n = 100, 000), and the sampler is required to return a random planar
graph whose size is around n up to a few percents, or even exactly n. As a consequence,
the size distribution of planar graphs output by ΓG(x, y) has to be studied. Typically,
we need to tune the real parameter x in order to ensure that the size distribution is
concentrated around the target value n. The validity of this tuning operation depends on
the singularity type of G(x).

Definition 2. Given α ∈ R\Z≥0, a generating function f(x) is said to be α-singular if the
following expansion holds in a ∆-neighbourhood (i.e., an indented disk) of its dominant
singularity ρ (see [8] for technical conditions of such neighbourhoods),

f(x) =
x→ρ

P (x) + cα

(

1− x

ρ

)α

+ o

(

1− x

ρ

)α

,

where P (x) is a polynomial and cα is a non-zero real value.

Remark 3. Clearly, an α-singular function converges at ρ if α > 0; and diverges if α < 0:
f(x) ∼ (1 − x/ρ)α. Moreover, if a function is α singular, then its derivative is (α − 1)-
singular [10, ch.6]. These properties will be useful in the analysis of the time complexity
(Section 6).

The following lemma, Theorem 6.3 of [8], ensures that the tuning operation mentioned
above applies well when f(x) is α-singular with α < 0. We state it in a slightly more
general version, extended to mixed Boltzmann samplers.
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Lemma 7. (Duchon et al [8]) Let F be a mixed combinatorial class endowed with a
Boltzmann sampler ΓF (x, y). Let F (x, y) be the mixed generating function of F . Given
y > 0, assume that the function x → F (x, y) is α-singular with α < 0. For each integer
n, define xn = ρG(y)

(

1 + α
n

)

, ρG(y) being the radius of convergence of x→ F (x, y). Let
Xn be the random variable defined as the labelled size of an object output by ΓF (xn, y).

Then, for each fixed tolerance-ratio ǫ > 0,

P (Xn ∈ [n(1− ǫ), n(1 + ǫ)])→ pǫ as n→∞,

where pǫ is a positive constant depending on ǫ, being of order ǫ as ǫ → 0: pǫ ∼ǫ→0 σ · ǫ
for some constant σ.

Moreover,

P (Xn = n) ∼ σ

n
as n→∞, for the same constant σ > 0.

The following lemma indicates that we have to “derive 3 times” the Boltzmann sampler
ΓG(x, y) for planar graphs, so that the size distribution of the output gets the good
behaviour stated in Lemma 7.

Lemma 8. Let G(x, y) be the mixed generating function of labelled planar graphs. Then,
for each y > 0, the function x→ G′′′(x, y) is (−1/2)-singular.

Proof. It has been shown by Giménez and Noy [17] that, for each y > 0, the function
x → G(x, y) is 5/2-singular. Moreover, the derivative of an α-singular function is (α −
1)-singular (see Remark 3). As a consequence, the function x → G′′′(x, y) is (−1/2)-
singular. �

5.2. The derivative operator and the decomposition of planar graphs. The deriv-
ative operator is easily injected in the 5 constructions used to describe the decomposition
of planar graphs,

(10)























(A+ B)′ = A′ + B′

(A ⋆ B)′ = A′ ⋆ B +A ⋆ B′

Set≥d(A)′ = A′ ⋆ Set≥d−1(A)
(A ◦x B)′ = B′ ⋆A′ ◦x B
(A ◦y B)′ = A′ ◦y B + B′ ⋆A ◦y B,

where we recall thatA stands for the y-derived class ofA. As a consequence, the derivative
operator can be injected in the chain of decompositions, in order to assemble a Boltzmann
sampler for triply derived planar graphs, as explained next.

5.2.1. Boltzmann samplers for derived 3-connected planar graphs. Given a bicolored bi-
nary tree τ , we denote by |τ |• the number of black nodes of τ and by |τ | the number of
nodes of τ . Let ΓT (z, w) be a Boltzmann sampler for bicolored binary trees and ΓT ′(z, w)
be a Boltzmann sampler for the class T ′ of bicolored binary trees with a pointed black
nodes that does not count in the size. In other words, ΓT ′(z, w) draws a bicolored binary
tree τ with probability proportional to |τ |•z|τ |•w|τ |. The class T ′ has a complete recursive
decomposition, obtained by deriving the decomposition grammar of T with respect to z,

(11)







T ′ = T ′
• + T ′

◦

T ′
• = T ′

◦ ⋆ Z• ⋆ (1 + T◦) + (1 + T◦) ⋆ (1 + T◦) + (1 + T◦) ⋆ Z• ⋆ T ′
◦

T ′
◦ = T ′

• ⋆ Z◦ ⋆ (1 + T•) + (1 + T•) ⋆ Z◦ ⋆ T ′
• ,
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which is translated to a Boltzmann sampler ΓT ′(z, w) using the sampling rules for Sum
and Product.

The correspondence binary-trees↔rooted-3-connected-maps stated in Proposition 2 and
Lemma 1 (rejection lemma) ensure that the following algorithms are Boltzmann samplers
for the derived classes of rooted 3-connected maps up to order 2.

ΓM ′(z, w): repeat τ ← ΓT (z, w)

until (M ← closure(τ, rnd(1, 2, 3)) is admissible and Bern
“

|τ |•+1
|τ |+2

”

);

return M

ΓM(z, w): repeat τ ← ΓT (z, w)

until (M ← closure(τ, rnd(1, 2, 3)) is admissible and Bern
“

3
4

|τ |+3
|τ |+2

”

);

return M

ΓM ′′(z, w): repeat τ ← ΓT ′(z, w)

until (M ← closure(τ, rnd(1, 2, 3)) is admissible and Bern
“

|τ |•+1
|τ |+2

”

);

return M

ΓM
′
(z, w): repeat τ ← ΓT ′(z,w)

until (M ← closure(τ, rnd(1, 2, 3)) is admissible and Bern
“

3
8

(|τ |•+1)(|τ |+3)
|τ |•(|τ |+2)

”

);

return M

ΓM(z, w): repeat τ ← ΓT ′(z,w)

until (M ← closure(τ, rnd(1, 2, 3)) is admissible and Bern
“

1
7

|τ |+3
|τ |•

”

);

return M

For instance, Proposition 2 and Lemma 1 imply that, in the sampler ΓM
′
(z, w), each

admissible pair (τ, a) ∈ Π (with a ∈ {1, 2, 3}) is drawn with probability proportional to
(|τ |•+1)(|τ |+3)z|τ |•w|τ | (the 3/8 factor ensuring that the Bernoulli parameter is not larger
than 1). Moreover, if γ = closure(τ, a), then |τ |•+1 = V (γ)−2 and |τ |+3 = E(γ)−1. As a

consequence, ΓM
′
(z, w) draws a rooted 3-connected map γ with probability proportional

to (E(γ) − 1)(V (γ) − 2)zV (γ)wE(γ), i.e, is a Boltzmann sampler for M′
. In the four

samplers given above, the probabilities of the Bernoulli choices are always away from 0
by a fixed constant, a consequence of the inequalities |τ |• ≤ |τ | and |τ | ≤ 3|τ |• + 1. This
property is crucial to obtain the complexities stated in Theorems 1 and 2. It is possible to

improve the constant factors in the Bernoulli choices (e.g., 1/7 for ΓM(z, w)) by treating
graphs with few vertices separately.

5.2.2. Boltzmann samplers for derived 2-connected planar graphs. Starting from the 4-
lines decomposition grammar (N) of networks and deriving two times, we obtain succes-
sively
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D = L + S + P + H

S = (L + P + H) ⋆ Z ⋆ D

P = L ⋆ Set≥1(S + H) + Set≥2(S + H)

H =
−→
G3 ◦y D















D′ = S ′ + P ′ + H′

S ′ = (P ′ + H′) ⋆ Z ⋆ D + (L + P + H) ⋆ (D + Z ⋆ D′)
P ′ = L ⋆ (S ′ + H′) ⋆ Set(S + H) + (S ′ + H′) ⋆ Set≥1(S + H)

H′ =
−→
G3

′
◦y D + D′

⋆
−→
G3 ◦y D



















D′′ = S ′′ + P ′′ + H′′

S ′′=(P ′′+H′′)⋆Z⋆D+2(P ′+H′)⋆(D+Z⋆D′)+(L+P+H)⋆(2D′+Z⋆D′′)
P ′′= (L⋆(S ′′+H′′) + (1+L) ⋆ (S ′+H′)2)⋆Set(S+H)+(S ′′+H′′)⋆Set≥1(S+H)

H′′ =
−→
G3

′′
◦y D + 2D′

⋆
−→
G3

′
◦y D + D′2

⋆
−→
G3 ◦y D + D′′

⋆
−→
G3 ◦y D

(N)

(N’)

(N”)

In these three systems taken together, the only terminal nodes are the class
−→G3 and its

derived classes up to order 2, which are isomorphic to the classM of rooted 3-connected

maps and its derived classes up to order 2, via the identityM≃ 2
−→G3. In addition, we have

obtained in Section 5.2.1 Boltzmann samplers for the derived classes of rooted 3-connected
planar maps up to order 2. Hence, using the sampling rules of Figure 3 , the three systems
for networks, derived networks, and doubly derived networks are translated respectively
to Boltzmann samplers ΓD(z, y), ΓD′(z, y), and ΓD′′(z, y), which are recursively specified
in terms of the Boltzmann samplers forM and its derived classes up to order 2, taken at
(z, w = D(z, y)).

Then, Boltzmann samplers for derived edge-rooted 2-connected planar graphs are easily
obtained. Indeed, Equation (7) yields successively

(1 + L) ⋆
−→B ≃ (1 +D), (1 + L) ⋆

−→B ′ ≃ D′, (1 + L) ⋆
−→B ′′ ≃ D′′,

which translates to

Γ
−→
B (z, y): γ ← Γ(1 + D)(z, y); AddRootEdge(γ); return γ

Γ
−→
B ′(z, y): γ ← ΓD′(z, y); AddRootEdge(γ); return γ

Γ
−→
B ′′(z, y): γ ← ΓD′′(z, y); AddRootEdge(γ); return γ

Finally, the rejection technique allows us to obtain Boltzmann samplers for derived 2-
connected planar graphs from Boltzmann samplers for (derived) edge-rooted 2-connected
planar graphs; the following samplers ΓB′(z, y), ΓB′′(z, y), and ΓB′′′(z, y) are valid Boltz-
mann samplers for B′, B′′, and B′′′ (after a call to DistributeLabels(γ)).

(12)

ΓB′(z, y) : repeat γ ← Γ
−→
B (z, y) until Bern

“

V (γ)
2E(γ)

”

; return γ

ΓB′′(z, y) : repeat γ ← Γ(
−→
B + z

−→
B ′)(z, y) until Bern

“

V (γ)
2E(γ)

”

; return γ

Γ(
−→
B + z

−→
B ′)(z, y) : if Bern

“ −→
B (z,y)

−→
B (z,y)+z

−→
B ′(z,y)

”

return Γ
−→
B (z, y) else return Γ

−→
B ′(z, y)

ΓB′′′(z, y) : repeat γ ← Γ(2
−→
B ′ + z

−→
B ′′)(z, y) until Bern

“

V (γ)
E(γ)

”

; return γ

Γ(2
−→
B ′ + z

−→
B ′′)(z, y) : if Bern

“

2
−→
B ′(z,y)

2
−→
B ′(z,y)+z

−→
B ′′(z,y)

”

return Γ
−→
B ′(z, y) else return Γ

−→
B ′′(z, y)

The proof is similar to the proof of Lemma 4. For instance, the sampler [γ ← Γ(
−→
B +

z
−→
B ′)(z, y); DistributeLabels(γ); return γ] draws each 2-connected planar graph γ with
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probability proportional to E(γ)(V (γ)− 1) zV (γ)

V (γ)!y
E(γ). Hence, Lemma 1 ensures that the

sampler ΓB′′(z, y) draws each 2-connected planar graph γ ∈ B with probability propor-

tional to V (γ)(V (γ) − 1) zV (γ)

V (γ) yE(γ), i.e., is a Boltzmann sampler for B′′. Notice that

the factor 1/2 before V (γ)/E(γ) in the Bernoulli choice is only useful for the link-graph
(otherwise V (γ) ≤ E(γ)). Using a starting switch deciding if the generated graph is
the link-graph makes it possible to remove the factor 1/2, improving the expected time
complexity of the sampler.

5.2.3. Boltzmann samplers for derived connected planar graphs. Starting from Equation (8),
the derivative rules (10) yield successively

(13)
8

<

:

C′ = Set (B′◦x (Z ⋆ C′)) ,

C′′ = (C′ + Z ⋆ C′′) ⋆ B′′◦x (Z ⋆ C′) ⋆ C′,
C′′′=(2C′′+Z⋆C′′′)⋆B′′◦x(Z⋆C′)⋆C′+(C′+Z⋆C′′)2⋆B′′′◦x(Z⋆C′)⋆C′+(C′+Z⋆C′′)⋆B′′◦x(Z⋆C′)⋆C′′.

Using the sampling rules of Figure 3, these decompositions translate to Boltzmann sam-
plers ΓC′(x, y), ΓC′′(x, y), and ΓC′′′(x, y), which are recursively specified in terms of the
Boltzmann samplers ΓB′′′(z, y), ΓB′′(z, y), and ΓB′(z, y), where z = xC′(x, y).

5.2.4. Boltzmann samplers for derived planar graphs. Starting from G = Set(C), the
derivative rules (10) yield successively

(14)















G = Set(C),
G′ = C′ ⋆ G,
G′′ = C′′ ⋆ G + C′ ⋆ G′,
G′′′ = C′′′ ⋆ G + 2C′′ ⋆ G′ + C′ ⋆ G′′.

Again, using the sampling rules of Figure 3, these decompositions translate to Boltzmann
samplers ΓG′(x, y), ΓG′′(x, y), and ΓG′′′(x, y), which are specified in terms of the Boltz-
mann samplers ΓC′′′(x, y), ΓC′′(x, y), ΓC′(x, y), and ΓC(x, y). (The Boltzmann sampler
ΓC(x, y) has already been obtained from ΓC′(x, y) using rejection, see Lemma 6).

The complete algorithmic scheme, from binary trees to triply derived planar graphs, is
summarized in Figure 5 and Figure 6.

5.3. Samplers according to the number of vertices. The random sampler of planar
graphs we use is the “triply derived” Boltzmann sampler ΓG′′′(xn, 1) with the value xn =
ρG

(

1− 1
2n

)

tuned as indicated in Lemma 7, ρG being the radius of convergence of G(x, 1).
The exact-size sampler is

An: repeat γ ← ΓG′′′(xn, 1) until V (γ) = n; return γ.

For any ǫ > 0, the approximate-size sampler is

An,ǫ: repeat γ ← ΓG′′′(xn, 1) until V (γ) ∈ [n(1− ǫ), n(1 + ǫ)]; return γ.

5.4. Samplers according to the numbers of vertices and edges. For any y > 0,
we denote by ρG(y) the radius of convergence of x → G(x, y). Let µ(y) be the function
defined as

µ(y) := −y
dρG

dy
(y)/ρG(y).

It has been shown by Giménez and Noy [17] that the function µ(y) is strictly increasing
on (0, +∞), with limµ(y) = 1 as y → 0 and lim µ(y) = 3 as y → +∞. As a consequence,
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ΓT (z, w)







T = T•+T◦
T• = (1+T◦) ⋆ Z• ⋆ (1+T◦)
T◦ = (1+T•) ⋆ Z◦ ⋆ (1+T•)

Procedure 1: bicolored binary trees







T
′ = T ′

•
+T ′

◦

T
′

•
= . . .

T
′

◦
= . . .

∂

∂z

ΓT ′(z, w)

Procedure 2: binary trees → 3-connected planar graphs

τ ← ΓT (z, w)

1) Pkeep = 1
|τ |+2

τ ← ΓT (z, w)

+ early abort

2) closure(τ)

ΓM(z, w) ΓM ′(z, w) ΓM(z, w)

1) Pkeep = |τ |•+1
|τ |+2

2) closure(τ)

1) Pkeep = 3
4

|τ |+3
|τ |+2

2) closure(τ)

≃ Γ
−→
G3(z, w) ≃ Γ

−→
G3

′

(z, w) ≃ Γ
−→
G3(z, w)

τ ← ΓT ′(z, w)

ΓM
′

(z, w) ΓM ′′(z, w)

1) Pkeep = 3
8

(|τ |•+1)(|τ |+3)
|τ |•(|τ |+2)

2) closure(τ) 1)Pkeep=
|τ |•+1
|τ |+2

2)closure(τ)

≃ Γ
−→
G3

′

(z, w) ≃ Γ
−→
G3

′′

(z, w)

ΓM(z, w)

≃ Γ
−→
G3(z, w)

1)Pkeep=
1
7

|τ |+3
|τ |•

2)closure(τ)

Figure 5. The algorithmic scheme producing Boltzmann samplers for
3-connected planar graphs from Boltzmann samplers for bicolored binary
trees.

µ(y) has an inverse function y(µ) defined on (1, 3). We define xn(µ) := ρG(y(µ))(1− 1
2n ).

The exact size sampler we propose is

An,µ: repeat γ ← ΓG′′′(xn(µ), y(µ)) until (V (γ)=n and E(γ)=⌊µn⌋); return γ.

For any ǫ > 0, the approximate-size sampler is

An,µ,ǫ: repeat γ ← ΓG′′′(xn(µ), y(µ))

until (V (γ) ∈ [n(1− ǫ), n(1 + ǫ)] and E(γ)
V (γ) ∈ [µ(1 − ǫ), µ(1 + ǫ)]);

return γ.
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Procedure 3: 3-connected planar graphs → 2-connected planar graphs

Network-decomposition














D = . . .

. . .

. . .

involves
−→
G3















D′ = . . .

. . .

. . .

involves
−→
G3,
−→
G3

′

,
−→
G3



















D′′ = . . .

. . .

. . .

involves
−→
G3,
−→
G3

′′

,
−→
G3

′

,
−→
G3

derivate derivate

ΓD(z, y) ΓD′(z, y) ΓD′′(z, y)

AddRootEdge AddRootEdgeAddRootEdge

Γ
−→
B (z, y) Γ

−→
B

′

(z, y) Γ
−→
B

′′

(z, y)

ΓB′(z, y)

Pkeep =

V (γ)
2E(γ)

γ ← Γ
−→
B (z, y) γ ← Γ(

−→
B + z

−→
B

′

)(z, y)

Pkeep =

V (γ)
2E(γ)

ΓB′′(z, y)

γ ← Γ(
−→
B + z

−→
B

′

)(z, y)

Pkeep =

V (γ)
E(γ)

ΓB′′′(z, y)

Procedure 4: 2-connected planar graphs → connected planar graphs

Block-decomposition

C′ = Set(B′ ◦x (Z ⋆ C′)) C′′ = expr. with
C′,C′′,B′,B′′

C′′′ = expr. with
C′,C′′,C′′′,B′,B′′,B′′′

derivate derivate

ΓC ′(x, y) ΓC ′′(x, y) ΓC ′′′(x, y)

γ ← ΓC ′(x, y)

Pkeep =
1

V (γ)

ΓC(x, y)

Procedure 5: connected planar graphs → planar graphs

G = Set(C) G′ = C′ ⋆ G G′′=C′′⋆G+C′⋆G′

ΓG(x, y)

G′′′=C′′′⋆G+2C′′⋆G′+C′⋆G′′der. der. der.

ΓG′(x, y) ΓG′′(x, y) ΓG′′′(x, y)

Decomposition into connected components

Figure 6. The algorithmic scheme producing a Boltzmann sampler for
triply derived planar graphs from Boltzmann samplers for 3-connected
planar graphs.

6. Analysis of the time complexity

6.1. Preliminaries. This section is devoted to the proof of the time complexities of the
planar graph generators, as stated in Theorems 1 and 2. For this purpose, we need explict
rules to compute the expected complexity of a Boltzmann sampler obtained from the
constructions given in Figure 3. Given a mixed combinatorial class C endowed with a
Boltzmann sampler ΓC(x, y), we denote by ΛC(x, y) the expected complexity of a call to
ΓC(x, y). We also define |C|(x,y) (||C||(x,y)) as the expected number of labelled (unlabelled,
respectively) atoms of an object of C drawn under the Boltzmann distribution at (x, y).
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Notice that

(15) |C|(x,y) = x
∂C

∂x
(x, y)/C(x, y), ||C||(x,y) = y

∂C

∂y
(x, y)/C(x, y).

Then we have the following computation rules for each of the sampling rules given in
Figure 3:

(16)







































C = A+ B ΛC(x, y) = A(x,y)
C(x,y)ΛA(x, y) + B(x,y)

C(x,y)ΛB(x, y)

C = A ⋆ B ΛC(x, y) = ΛA(x, y) + ΛB(x, y)

C = Set≥d(A) ΛC(x, y) =
ed−1(A(x,y))
ed(A(x,y)) A(x, y) · (1 + ΛA(x, y))

C = A ◦x B ΛC(x, y) = ΛA(B(x, y), y) + |A|(B(x,y),y)ΛB(x, y)

C = A ◦y B ΛC(x, y) = ΛA(x, B(x, y)) + ||A||(x,B(x,y))ΛB(x, y)

Let us comment on the computation rule for Set≥d(A). The sampler Γ(Set≥d(A)) draws
a Poisson law k ← Pois≥d(A(x, y)) and then performs k independent calls to ΓA(x, y).
As already mentioned in Section 3.3, the cost of drawing Pois≥d(A(x, y)) is equal to its
output k. The expected complexity of k calls to ΓA(x, y) is k ΛA(x, y). Moreover, for
λ ≥ 0, the expectation of Pois≥d(λ) is ed−1(λ)/ed(λ) · λ. The result follows.

We also need a computation rule associated with a rejection sampler: the following
lemma is the counterpart of Lemma 1 for complexity analysis.

Lemma 9 (rejection complexity). Let A be a random sampler on a combinatorial class
C according to a probability distribution P, and let p : C → [0, 1] be a function on C, called
rejection function. Consider the rejection algorithm

Arej: repeat γ ← A until Bern(p(γ)) return γ.
Then the expected complexity E(Arej) of Arej and the expected complexity E(A) of A are

related by

(17) E(Arej) =
1

pacc
E(A),

where pacc :=
∑

γ∈C P(γ)p(γ) is the probability of success of A at each trial.

Proof. The quantity E(Arej) satisfies the recursive equation

E(Arej) = E(A) + (1 − pacc)E(Arej).

Indeed, a first trial, with expected complexity E(A), is always needed; and in case of
rejection, occuring with probability (1 − pacc), the sampler restarts in the same way as
when it is launched. �

As detailed from Section 6.2 to Section 6.6, the computation rules given by (16) and
Lemma 9 allow us to obtain the asymptotic order of ΛG′′′(x, y) when (x, y) is close to a
singularity. We claim that this is sufficient to establish the time complexities of the planar
graph generators. We recall that, given a generating function C(x, y) and a fixed y > 0,
ρC(y) stands for the radius of convergence of x→ C(x, y). In the sequel, all convergence
statements such as x→ ρC(y) are meant “from below”, i.e., with x < ρC(y).

Claim 1. Proving the time complexities of the planar graph generators, as stated in
Theorems 1 and 2, reduces to proving the following asymptotic result:

(18) for each fixed y > 0, ΛG′′′(x, y) = O
x→ρG(y)

(

1

1− x/ρG(y)

)

.
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Proof. Let πn,ǫ be the probability that the output of ΓG′′′(xn, 1) (with xn = ρG(1−1/2n))
has size in [n(1−ǫ), n(1+ǫ)] and πn the probability that the output has size n. According
to Lemma 9, the expected complexity of the exact size and approximate size samplers
with respect to vertices —as described in Section 5.3— satisfy

E(An) =
ΛG′′′(xn, 1)

πn
, E(An,ǫ) =

ΛG′′′(xn, 1)

πn,ǫ
.

Assume that (18) is true. Then ΛG′′′(xn, 1) = O(n) as n → ∞. Moreover, Lemma 7
and Lemma 8 ensure that πn is of order 1/n as n → ∞ and πn,ǫ → pǫ as n → ∞, the
constant pǫ being of order ǫ as ǫ→ 0. Thus, proving (18) is sufficient to prove the expected
complexities of the samplers with respect to vertices stated in Theorem 1.

The proof for the samplers with respect to vertices and edges is similar. Let πn,µ be
the probability that the output of ΓG′′′(xn(µ), y(µ)) (with xn(µ) and y(µ) as given in
Section 5.4) has n vertices and ⌊µn⌋ edges, and let πn,µ,ǫ be the probability that the
output γ ← ΓG′′′(xn(µ), y(µ)) satisfies V (γ) ∈ [n(1 − ǫ), n(1 + ǫ)] and E(γ)/V (γ) ∈
[µ(1 − ǫ), µ(1 + ǫ)]. Lemma 9 ensures that

E(An,µ) =
ΛG′′′(xn(µ), y(µ))

πn,µ
, E(An,µ,ǫ) =

ΛG′′′(xn(µ), y(µ))

πn,µ,ǫ
.

Notice that πn,µ = P(||γ|| = ⌊µn⌋ | |γ| = n) · P(|γ| = n), where P(.) is the Boltzmann
distribution on G′′′ at (xn(µ), y(µ)). For a fixed µ ∈ (1, 3), it has been shown by Giménez
and Noy [17] (based on the quasi-power theorem) that P(||γ|| = ⌊µn⌋ | |γ| = n) is of
order n−1/2 as n → ∞. Moreover, Lemma 7 and Lemma 8 ensure that P(|γ| = n) is
of order 1/n as n → ∞. Hence, πn,µ ∼ cn−3/2 for some constant c that depends on µ.

If (18) is true, then ΛG′′′(xn(µ), y(µ)) = O(n), so that E(An,µ) = O(n5/2). Similarly,

πn,µ,ǫ = P

(

E(γ)
V (γ) ∈ Iµ,ǫ | V (γ) ∈ In,ǫ

)

· P(V (γ) ∈ In,ǫ), where Iµ,ǫ = [µ(1 − ǫ), µ(1 + ǫ)]

and In,ǫ = [n(1− ǫ), n(1+ ǫ)]. Based on the result of Giménez and Noy, it is easily proved
that, for fixed µ ∈ (1, 3) and ǫ > 0, the first factor converges to 1 as n→∞. In addition,
Lemma 7 and Lemma 8 ensure that the second factor converges to a constant pǫ, the
constant being of order ǫ as ǫ → 0. Assuming that (18) is true, this yields the expected
linear time complexity of An,µ,ǫ, as stated in Theorem 2. �

The method to prove (18) is to inject the computation rules for complexities, as given by
(16) and Lemma 9, into the decomposition of planar graphs. In this way we obtain succes-
sively the asymptotic expected complexities of the Boltzmann samplers for 3-connected,
2-connected, connected, and (finally) unconstrained planar graphs.

6.2. Binary trees. The decomposition grammars of binary trees and derived binary trees
are translated to Boltzmann samplers using the sampling rules for Sum and Product. The
obtained samplers have no rejection involved: the tree is built progressively based on the
results of the Bernoulli choices. To simplify, we assume unit cost for each Bernoulli choice
possibly followed by a node addition. In this model, the complexity of generating a tree
is equal to its size (number of nodes) all along the generation.

6.3. From binary trees to 3-connected planar graphs. The Boltzmann samplers
for rooted 3-connected maps —as given in Section 5.2.1— perform a call to the Boltz-
mann samplers for binary trees and apply the closure-mapping to the obtained tree. The
procedure is combined with a rejection step to obtain the Boltzmann distribution. For

each of the families M, M′, M, M′′, M′
, and M, we show in this section that the
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expected complexity of the Boltzmann sampler has the same asymptotic order as the ex-
pected size of the output. Precisely, the asymptotic is a constant for ΓM(z, w), is of order
(1 − z/ρM (w))−1/2 for the derived samplers ΓM ′(z, w) and ΓM(z, w), and is of order

(1 − z/ρM (w))−1 for the doubly derived samplers ΓM ′′(z, w), ΓM
′
(z, w), and ΓM(z, w).

This means that the rejection loops do not make the complexity order increase.

Lemma 10. Let I be a compact (i.e., closed and bounded) interval contained in (0,∞).
Then there exists a constant c > 0 such that, for w ∈ I and ρM (w)/2 < z < ρM (w),

(19)

ΛM(z, w) ≤ c,

ΛM ′(z, w) ≤ c√
1−z/ρM (w)

, ΛM(z, w) ≤ c√
1−z/ρM (w)

,

ΛM ′′(z, w) ≤ c
1−z/ρM (w) , ΛM

′
(z, w) ≤ c

1−z/ρM (w) , ΛM(z, w) ≤ c
1−z/ρM (w) .

Proof. Proof of the bound on ΛM(z, w). The Boltzmann sampler ΓM(z, w), as given in
the proof of Lemma 3, is a rejection sampler calling the Boltzmann sampler ΓI(z, w)
for rooted irreducible dissections until the dissection generated is admissible. Moreover,
ΓI(z, w) calls the following tree generator

A: u← rnd(0, 1); max size← ⌊1/u⌋;
τ ← ΓT (z, w);
abort as soon as #nodes(τ) + 2 > max size

until the generation finishes, and then returns closure(τ, rnd(1, 2, 3)), where τ is the tree
generated.

Recall that the closure-mapping has linear time complexity, assumed here (for the sake
of simplicity) to be exactly λn for a tree of size n, with λ > 0 a fixed constant. Let τ ∈ T
be a tree of size n. For 1 ≤ k < n, the probability that A aborts at size k knowing that τ
is generated is

Pk(τ) =
1

k
− 1

k + 1
=

1

k(k + 1)
,

and the probability that τ is completely generated is 1/n. As a consequence, the expected
complexity of A knowing that τ is generated satisfies

EA(τ) =

n−1
∑

k=1

kPk(τ) + (n + λn)
1

n
=

n−1
∑

k=1

k
1

k(k + 1)
+ 1 + λ = Hn + λ,

where Hn :=
∑n

k=1 1/k is the nth harmonic number. For each w ∈ I, define ak(w) as
the kth coefficient of the one-variable series z → T (z, w). Singularity analysis of the
“tree-type” series T (z, w) [10] and transfer theorems [9, 10] (based on Cauchy’s integral
formula) ensure that there exists a constant c0 > 0 such that

ak(w) ≤ c0ρT (w)−kk−3/2 for k ≥ 1 and w ∈ I.

It is shown in [2] that, for each w > 0, ρT (w) = ρM (w), so that ρT (w) can be replaced
by ρM (w) in the bound on ak(w). The probability that ΓT (z, w) draws a tree with k
black nodes is equal to T (z, w)−1ak(w)zk for z < ρM (w). Moreover, a tree τ having k
black nodes has at most 3k + 1 nodes, so that EA(τ) ≤ H3k+1 + λ. As a consequence, the
expected complexity of A satisfies

E(A) ≤
1

T (z, w)
c0

X

k≥1

k
−3/2(H3k+1 + λ)

„

z

ρM (w)

«k

for w ∈ I and z < ρM(z).
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Lemma 9 ensures that the expected complexity of the Boltzmann sampler for rooted
irreducible dissections satisfies

ΛI(z, w) =
E(A)

pacc
,

where pacc is the success probability of A. By definition of A, each tree τ ∈ T is accepted
with probability 1/(|τ | + 2) if τ is admissible and with probability 0 otherwise. As a
consequence

pacc =
1

T (z, w)

∑

τ∈T

1

|τ | + 2
z|τ |•w|τ |.

Let I(z, w) be the generating function of rooted irreducible dissections with respect to the
number of inner black nodes (variable z) and the number of inner white nodes (variable
w). According to Proposition 2,

pacc =
I(z, w)

3T (z, w)
.

Moreover, the probability that a dissection drawn by ΓI(z, w) is admissible is clearly equal
to M(z, w)/(zw3I(z, w)), because of the bijection between admissible rooted dissections
and rooted 3-connected maps. Hence, we obtain

ΛM(z, w) =
zw3I(z, w)ΛI(z, w)

M(z, w)

≤ 3zw3

M(z, w)
c0

∑

k≥1

k−3/2(H3k+1 + λ)

(

z

ρM (w)

)k

, for w ∈ I and z < ρM (w).

This clearly gives a uniform bounding constant on ΛM(z, w) for w ∈ I and ρM (w)
2 <

z < ρM (w), because the sum
∑

k≥1 k−3/2(H3k+1 + λ) is convergent and M(z, w) ≥
M(1

2ρM (minI), minI) > 0.

Proof of the bound on ΛM ′(z, w) and ΛM(z, w). The proof of the bounds on the expected
complexities of the derived samplers is easier. Indeed, these samplers do not use early
abort rejection. For instance, the sampler ΓM ′(z, w), as given in Section 5.2.1, satisfies

ΛM ′(z, w) =
λ · ΛT (z, w)

pacc
, with pacc =

1

3T (z, w)

∑

(τ,a)∈Π

|τ |• + 1

|τ |+ 2
z|τ |•w|τ |.

Recall that, if (γ) = Primal(closure(τ, a)), with (τ, a) ∈ Π, then V (γ) = |τ |• + 3 and
E(γ) = |τ | + 4. Proposition 2 yields

pacc =
1

3T (z, w)

∑

γ∈M

(V (γ)− 2)zV (γ)−3wE(γ)−4 =
1

3w3T (z, w)

∂M

∂z
(z, w).

Moreover, we have seen in Section 6.2 that the complexity of generating a tree τ using
ΓT (z, w) is equal to the size of τ . Hence,

ΛT (z, w) =
∑

τ∈T

1

T (z, w)
|τ |z|τ |•w|τ | = w

∂T

∂w
(z, w)/T (z, w).

This yields

ΛM ′(z, w) = 3λw4 ∂T

∂w
(z, w)/

∂M

∂z
(z, w).

The function T (z, w) has a tree-like singularity type [10, ch.6]. As a consequence, its
derivative satisfies:
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∀w ∈ I, ∃ c(w) > 0 such that
∂T

∂w
(z, w) ∼ c(w)

√

1− z/ρM(w)
as z → ρM (w).

In addition, the constant c(w) varies continuously with w, so that c(w) is bounded on I.
Moreover, ∂M

∂z (z, w) has positive coefficients, so that it is clearly bounded from below for
w ∈ I and ρM (w)/2 < z < ρM (w). This concludes the proof of the bound on ΛM ′(z, w).
The proof of the bound on ΛM(z, w) is similar.

Proof of the bound on ΛM ′′(z, w), ΛM
′
(z, w) and ΛM(z, w). Let us finally sketch the

proof of the upper bound on ΛM ′′(z, w). Using a similar approach as for ΛM ′(z, w), we
obtain the following expression of ΛM ′′(z, w),

ΛM ′′(z, w) = 6λw4 ∂2T

∂z∂w
(z, w)/

∂2M

∂z2
(z, w).

The singularity analysis of the tree-like series T (z, w) and ∂M
∂z (z, w) ensures that, for each

w > 0, there exist a constant c0(w) > 0 and a constant c1(w) > 0 such that

∂2T

∂z∂w
(z, w) ∼

z→ρM (w)

c0(w)

(1− z/ρM (w))3/2
,

∂2M

∂z2
(z, w) ∼

z→ρM (w)

c1(w)
√

1− z/ρM(w)
.

In addition, the two constants c0(w) and c1(w) vary continuously with w, so that they
are upper and lower bounded on I. This concludes the proof of the bound on ΛM ′′(z, w).

The bounds on ΛM
′
(z, w) and ΛM(z, w) are proved similarly. �

Finally, using the correspondenceM≃ 2
−→G3, the complexity results stated in Lemma 10

apply to the Boltzmann samplers of
−→G3 and of the derived families of

−→G3 up to order 2.

6.4. From 3-connected to 2-connected planar graphs. The first step is the analysis
of the expected complexities of the Boltzmann samplers for networks.

Lemma 11. For each fixed y > 0,

ΛD(z, y) = O
z→ρD(y)

(1),

ΛD′(z, y) = O
z→ρD(y)

(

1
√

1− z/ρD(y)

)

,

ΛD′′(z, y) = O
z→ρD(y)

(

1

1− z/ρD(y)

)

.

Proof. Proof of the bound on ΛD(z, y). Recall that the Boltzmann sampler ΓD(z, y)
for networks results from the translation of the decomposition grammar (N) given in
Section 5.2.2. Clearly, the labelled vertices created during the generation are either vertices
separating the head component and the trail component of an s-network (call to ΓS(z, y),
with S = (L+P+H)×Z×D); or they belong to one of the 3-connected components of the
network generated (call to ΓM(z, D(z, y))). Let ΛMrej(z, w) be the expected complexity
of ΓM(z, w) without counting the last (successful) trial. Given a fixed γ ∈ M, the
expected complexity of ΓM(z, w) knowing that γ is finally output satisfies ΛMγ(z, w) =
ΛMrej(z, w) + λ|γ|. Indeed, the first term corresponds to the failing trials and the second
term corresponds to the cost of generating γ (the factor λ standing for the complexity of
the closure mapping). It is shown in [1] that z − ρM (D(z, y)) is negative and converges
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to 0 when z → ρD(y). In addition D(z, y) converges to a positive value when z → ρD(y),
hence D(z, y) stays in a compact interval I ⊂ (0,∞) for z close to ρD(y). Therefore
Lemma 10 applies, giving a uniform upper bound ΛM(z, D(z, y)) ≤ c for z close to ρD(y).
Clearly, ΛMrej(z, w) ≤ ΛM(z, w), so that ΛMγ(z, D(z, y)) ≤ c + λ|γ|. Thus there exists
a constant λ0 ≥ 1 such that ΛMγ(z, D(z, y)) ≤ λ0|γ| for z close to ρD(y).

The cost of a network generation consists of the node additions when calling ΓS(z, y),
of drawing the Poisson laws when calling ΓP (z, y), and of generating the 3-connected
components. As mentioned in Section 3.3, the cost of drawing a Poisson law is equal to
its output. The sum of the results of the Poisson laws is clearly bounded by the number
of components, itself bounded by the number of edges of the network generated. Given
a network γ ∈ D of size n, let k be the number of vertices of γ that are separating
in a s-network, and let β1, . . . , βl be the 3-connected components of γ. Observe that
n = k + |β1|+ . . . + |βl|. When γ is generated, the cost of addition of separating vertices
is k, and the total cost of the Poisson laws is bounded by E(γ), hence is at most 3n
according to Euler’s relation. Hence, the expected complexity of ΓD(z, y) knowing that
γ is generated satisfies

ΛDγ(z, y) ≤ k + 3n +
l
∑

i=1

ΛMβi
(z, D(z, y)) ≤ k + 3n + λ0(|β1|+ . . . + |βl|) ≤ (λ0 + 3)n.

Let an be the nth coefficient of the function z → D(z, y). Observe that 1
D(z,y)anzn

is the probability that the output of ΓD(z, y) has size n. It follows from the bound
ΛDγ(z, y) ≤ (λ0 + 3)|γ| that

ΛD(z, y) ≤ λ0 + 3

D(z, y)

∑

n≥1

n anzn, for z < ρD(y).

It is shown in [1] that the function z → D(z, y) is 3/2-singular. Hence, according to
transfer theorems [9], an ∼ c0ρD(y)−nn−5/2 for some constant c0 > 0. In particular
an = O(ρD(y)−nn−5/2). Therefore, there exists a constant c > 0 such that

ΛD(z, y) ≤ c

D(z, y)

∑

n≥1

n−3/2

(

z

ρD(y)

)n

for z < ρD(y).

This clearly gives a bounding constant on ΛD(z, y) as z → ρD(y), because
∑

n−3/2 is
finite and D(z, y) converges to a positive value as z → ρD(y).

Proof of the bound on ΛD′(z, y). Let X := (ΛD′(z, y), ΛS′(z, y), ΛP ′(z, y), ΛH ′(z, y)).
Using the computation rules (16), the decomposition grammar (N’) of derived networks,
as given in Section 5.2.2, is translated to a linear system

X = AX + L,

where A is a 4 × 4-matrix and L is a 4-vector. Precisely, the components of A are
rational expressions in terms of series of networks and their derivatives: all these quantities
converge as z → ρD(y) because the series of networks are 5/2-singular. Hence A converges
to a matrix A0 as z → ρD(y). In addition, observe that A is a substochastic matrix, i.e.,
a matrix with nonnegative coefficients and with sum at most 1 in each row. Indeed, the
entries in each of the 4 rows of A correspond to probabilities of a Bernoulli switch when
calling ΓD′(z, y), ΓS′(z, y), ΓP ′(z, y), and ΓH ′(z, y), respectively. Hence, the limit matrix
A0 is also substochastic. It is easily checked that A0 is indeed strictly substochastic, i.e.,
at least one row has sum < 1 (in our case, the first and third row add up to 1, whereas the
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second and 4th row add up to < 1). In addition, A0 is irreducible, i.e., the dependency
graph induced by positive coefficients of A0 is strongly connected. A well known result of
Markov chain theory ensures that (I − A0) is invertible [19]. Hence, (I −A) is invertible
for z close to ρD(y), and (I −A)−1 converges to the finite matrix (I −A0)

−1. Moreover,
the components of L are of the form L = (a, b, c, d · ΛM ′(z, D(z, y)) + e · ΛM(z, D(z, y)),
where {a, b, c, d, e} are expressions involving the series of networks, their derivatives, and
the quantities {ΛD, ΛS, ΛP, ΛH}, which have already been shown to be bounded as z →
ρD(y). As a consequence, a, b, c, d, e are bounded as z → ρD(y). Lemma 10 ensures that
there exists a constant c0 such that, if w = D(z, y), then

ΛM ′(z, w) ≤ c0
√

1− z/ρM(w)
, ΛM(z, w) ≤ c0

√

1− z/ρM (w)
for z close to ρD(y).

Let w0 = limD(z, y) and α = lim D′(z, y) as z → ρD(y). Then

z − ρM (w) ∼ z − ρM (w0)− ρ′M (w0)(w − w0) ∼ z − ρM (w0)− ρ′M (w0)α(z − ρD(y)).

The property ρM (w0) = ρD(y), proved in [1], ensures that z−ρM (w) ∼ (1−ρ′M (w0)α)(z−
ρD(y)). Clearly, the function ρM (y) is nonincreasing, so that ρ′M ≤ 0; and D′(z, y) has
positive coefficients, so that α > 0. This gives (1 − ρ′M (w0)α) ≥ 1, ensuring that (z −
ρM (D(z, y))) ∼ c(z − ρD(y)) as z → ρD(y), with c a positive constant. As a consequence
the components of L, which are O(1 − z/ρM (D(z, y)))−1/2, are also O(1 − z/ρD(y))−1/2

as z → ρD(y). Hence, the components of X = (I − A)−1L, in particular ΛD′(z, y), are
O(1 − z/ρD(y))−1/2 as z → ρD(y).

Proof of the bound on ΛD′′(z, y). Again we define X := (ΛD′′, ΛS′′, ΛP ′′, ΛH ′′). Using
the computation rules (16), the decomposition grammar (N ′′) of doubly derived networks,
as given in Section 5.2.2, is translated to a linear system

X = AX + L,

where A is a 4 × 4-matrix and L is a 4-vector. The coefficients of A involve series of
networks, derived networks and doubly derived networks. All series of doubly derived
networks are (−1/2)-singular, so that they diverge, of order (1 − z/ρD(y))−1/2 as z →
ρD(y). However, it can be checked that the coefficients of A all converge to explicit
constants as z → ρD(y) because series of doubly derived networks come in pair (numerator,

denominator), for instance A12 = S′′

D′′ . Hence, A converges to a matrix A0 as z → ρD(y).
Again, it is readily seen that A is substochastic for each z < ρD(y), so that the limit
A0 is also substochastic. In addition, it is easily checked that A0 is strictly substochastic
(each of the three first rows adds up to 1, whereas the 4th row adds up to < 1), and is
irreducible. Hence (I −A0) is invertible, so that (I −A) is invertible for z close to ρD(y)
and (I−A)−1 converges to the finite matrix (I−A0)

−1 as z → ρD(y). Moreover, it can be
checked that the coefficient of L are O(1 − z/ρD(y))−1 using the following properties: 1)
the complexity results of Lemma 10, 2) the fact that 1− z/ρM(D(z, y)) ∼ c(1− z/ρD(y))
for a non-zero constant c (property also used for the proof of the bound on ΛD′), 3) the
series D(z, y), S(z, y), P (z, y), H(z, y) of networks are 5/2-singular given a fixed y > 0,
and the series M(z, w) is 5/2-singular given a fixed w > 0. Hence these series and their
derivatives converge when z → ρD(y)) (when z → ρM (w)), whereas their bi-derived series
are of order (1− z/ρD(y))−1/2 as z → ρD(y) (of order (1− z/ρM (w))−1/2 as z → ρM (w),
respectively).

Finally, it follows from X = (I − A)−1L that the coefficients of X , in particular
ΛD′′(z, y), are O(1 − z/ρD(y))−1 as z → ρD(y). �
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Then, we can easily deduce from the complexities of network generation the complexi-
ties of the Boltzmann samplers for 2-connected planar graphs.

Lemma 12. For each fixed y > 0,

ΛB′(z, y) = O
z→ρB(y)

(1),

ΛB′′(z, y) = O
z→ρB(y)

(

1
√

1− z/ρB(y)

)

,

ΛB′′′(z, y) = O
z→ρB(y)

(

1

1− z/ρB(y)

)

.

Proof. First, the samplers for edge-rooted 2-connected planar graphs are directly obtained
from the Boltzmann samplers of networks (see Section 5.2.2). By construction, we have

Λ
−→
B (z, y) = Λ(1 + D)(z, y) = O

z→ρD(y)
(1),

Λ
−→
B ′(z, y) = ΛD′(z, y) = O

z→ρD(y)

(

(1− z/ρD(y))−1/2
)

,

Λ
−→
B ′′(z, y) = ΛD′′(z, y) = O

z→ρD(y)

(

(1 − z/ρD(y))−1
)

.

It is shown in [1] that the singularities of x → D(x, y) and of x → B(x, y) are equal,
so that ρD(y) can be replaced by ρB(y) in these asymptotic bounds. The Boltzmann
samplers for B′, B′′ and B′′′ combine the samplers for edge-rooted 2-connected graphs
with a rejection choice: the graph γ generated is kept with probability V (γ)/2E(γ) for
ΓB′(z, y) and ΓB′′(z, y), and kept with probability V (γ)/E(γ) for ΓB′′′(z, y). The crucial
point is that the graphs we consider are planar, so that Euler’s relation gives the bound
V (γ)/E(γ) ≥ 1/3. As a consequence, the success probability in ΓB′(z, y) and ΓB′′(z, y)
at each trial is at least 1/6 and the success probability in ΓB′′′(z, y) at each trial is at
least 1/3. Lemma 9 yields

ΛB′(z, y) ≤ 6Λ
−→
B (z, y) = O

z→ρB(y)
(1),

ΛB′′(z, y) ≤ 6Λ(
−→
B + z

−→
B ′)(z, y) = O

z→ρB(y)

(

(1 − z/ρD(y))−1/2
)

,

ΛB′′′(z, y) ≤ 3Λ(z
−→
B ′ +

−→
B ′′)(z, y) = O

z→ρB(y)

(

(1 − z/ρD(y))−1
)

.

�

6.5. From 2-connected to connected planar graphs. The next step of our bottom-
to-top approach is to go from the complexities of the Boltzmann samplers for 2-connected
planar graphs to the complexities of the Boltzmann samplers for connected planar graphs.
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Lemma 13. For each fixed y > 0,

ΛC(x, y) = O
x→ρC(y)

(1),

ΛC′(x, y) = O
x→ρC(y)

(1),

ΛC′′(x, y) = O
x→ρC(y)

(

1
√

1− x/ρC(y)

)

,

ΛC′′′(x, y) = O
x→ρC(y)

(

1

1− x/ρC(y)

)

.

Proof. Proof of the bound on ΛC′(x, y). The equation C′ = Set(B′ ◦x (Z ×C′)) translates
to

ΛC′(x, y) = B′(z, y)(1 + ΛB′(z, y) + |B′|(z,y)ΛC′(x, y)), where z = xC′(x, y),

As a consequence,

ΛC′(x, y) =
B′(z, y)(1 + ΛB′(z, y))

1−B′(z, y)|B′|(z,y)
.

It is shown in [1] that z = xC′(x, y) converges (from below) to ρB(y) when x → ρC(y).
Moreover, the function z → B(z, y) is 5/2-singular, so that B(z, y), B′(z, y) and B′′(z, y)
converge when z → ρB(y). It remains to prove that B′(z, y)|B′|(z,y) converges to a
value different from 1 in order to ensure that the quantity B′(z, y)/(1−B′(z, y)|B′|(z,y))
converges. Observe that the expected size |C′|(x,y) of ΓC′(x, y) satisfies

|C′|(x,y) = B′(z, y)|B′|(z,y)(|C′|(x,y) + 1).

(Indeed, the expected size |C|(x,y) satisfies computation rules similar to (16)). No-
tice that all quantities in this equality converge to positive values as x → ρC(y) be-
cause C′, C′′, B′ and B′′ converge at singularities. As a consequence, B′(z, y)|B′|(z,y)

converges to a constant smaller than 1 when z = xC′(x, y) and x → ρC(y). Hence,
B′(z)/(1 − B′(z, y)|B′|(z,y)) converges to a finite constant. Moreover Lemma 12 ensures
that ΛB′(z, y) is bounded when z → ρB(y). Thus ΛC′(x, y) is bounded when x→ ρC(y).

Proof of the bound on ΛC(x, y). The sampler ΓC(x, y) calls ΓC′(x, y) and keeps the
generated graph γ with probability 1/V (γ). Lemma 9 yields

ΛC(x, y) =
ΛC′(x, y)

pacc
,

where pacc = 1
C′(x,y)

∑

γ∈C′
1

V (γ)
x|γ|

|γ|! y
||γ||. Notice that a graph γ ∈ C′ satisfies V (γ) =

|γ| + 1 and E(γ) = ||γ||. Using the correspondence, Cn,m ≃ C′n−1,m, we obtain pacc =
C(x, y)/(xC′(x, y)), giving

ΛC(x, y) =
xC′(x, y)

C(x, y)
ΛC′(x, y).

The function x → C(x, y) is 5/2-rational, so that x → C′(x, y) is 3/2-singular. Hence,
C(x, y) and C′(x, y) converge when x → ρC(y) (see Remark 3). In addition, we have
proved that ΛC′(x, y) is bounded when x → ρC(y). Hence, ΛC(x, y) is also bounded as
x→ ρC(y).
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Proof of the bound on ΛC′′(x, y). The second line of the system (13) translates to (we use
the generic notation F to abbreviate F (x, y))

ΛC′′ =
C′

C′ + xC′′
ΛC′ +

xC′′

C′ + xC′′
ΛC′′

+ΛB′′(z, y) + |B′′|(z,y)ΛC′ + ΛC′, where z = xC′(x, y).

As a consequence,

ΛC
′′ =

C′+xC′′

C′
ΛB

′′(z, y) +

„

2C′+xC′′

C′
+ |B′′|(z,y)

C′+xC′′

C′

«

ΛC
′
, where z = xC

′(x, y).

The function C is 5/2-singular. According to Remark 3, C′ is 3/2-singular and C′′

is 1/2-singular, so that C′ and C′′ converge to positive constants as x → ρC(y). Sim-
ilarly, z → B(z, y) is 5/2-singular, so that z → B′′(z, y) and z → B′′′(z, y) are re-
spectively 1/2-singular and (−1/2)-singular. In particular, the expected size |B′′|(z,y) =

zB′′′(z, y)/B′′(z, y) is of order (1 − z/ρB(y))−1/2 as z → ρB(y). We have proved in
Lemma 12 that ΛB′′(z, y) = O(1 − z/ρB(y))−1/2 as z → ρB(y). Thus, the expression of
ΛC′′ given above has the following asymptotic bound

ΛC′′(x, y) = O
x→ρC(y)

((1− z/ρB(y))−1/2), where z = xC′(x, y).

Define F (x, y) := xC′(x, y), z0 := limF (x, y), and α := lim ∂
∂xF (x, y) as x→ ρC(y). It is

shown in [17] that z0 = ρB(y). As a consequence, we have z−ρB(y) = z−z0 ∼ α(x−ρC(y))
when z = F (x, y) and z → ρC(y). In addition, α > 0 because the series ∂F

∂x has positive
coefficients. Hence, 1− z/ρB(y) can be replaced by 1− x/ρC(y) in the asymptotic bound
on ΛC′′(x, y), i.e.,

ΛC′′(x, y) = O
x→ρC(y)

((1 − z/ρC(y))−1/2).

Proof of the bound on ΛC′′′(x, y).
The third line of the decomposition grammar (13) translates to an equation of the form

ΛC′′′ = aΛB′′(z, y) + bΛB′′′(z, y) + cΛC′ + dΛC′′ + eΛC′′′, where z = xC′(x, y),

and the coefficients a, b, c, d and e involve B′′(z, y), B′′′(z, y), C′(x, y), C′′(x, y), and
C′′′(x, y). Again we use the property of α-singularity of the functions to derive the as-
ymptotic order of the coefficients a, b, c and d as x → ρC(y). Indeed the functions
x → C′(x, y) and x → B′(z, y) are 5/2-singular. Hence C′(x, y) and C′′(x, y) converge
when x → ρC(y), and C′′′(x, y) ∼ c0(1 − x/ρC(y))−1/2; similarly B′(z, y) and B′′(z, y)
converge when z → ρB(y), and B′′′(z, y) ∼ b0(1− z/ρB(y))−1/2. Observe that b and e are
probabilities of the Bernoulli switch when calling ΓC′′′(x, y). In particular b + e ≤ 1. In
addition, b converge to a positive value because it is the quotient of two (−1/2)-singular
functions (the denominator being C′′′(x, y)). Hence, e converges to a value < 1, which
ensures that

ΛC′′′ = O
x→ρC(y)

(aΛB′′(z, y) + bΛB′′′(z, y) + cΛC′ + dΛC′′).

The asymptotic order of the coefficients {a, b, c, d}, of {ΛB′′(z, y), ΛB′′′(z, y)} (obtained
in Lemma 12), and of {ΛC′, ΛC′′} (obtained in the foregoing proof) can be injected in
the expression of ΛC′′′ given above. This gives an asymptotic bound of the form

ΛC′′′(x, y) = O
x→ρC(y)

(

1
√

1− x/ρC(y)
+

1

1− z/ρB(y)

)

, where z = xC′(x, y).
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Again we us the property that (1 − x/ρC(y)) ∼ c(1 − z/ρB(y)) (with c 6= 0) when z =
xC′(x, y). As a consequence,

ΛC′′′(x, y) = O
x→ρC(y)

(

1

1− x/ρC(y)

)

.

�

6.6. From connected planar graphs to planar graphs. The last step is to derive
from Lemma 13 the asymptotic expected complexity of the samplers ΓG(x, y), ΓG′(x, y),
ΓG′′(x, y) and ΓG′′′(x, y) when x→ ρG(y).

Lemma 14. For each fixed y > 0,

ΛG(x, y) = O
x→ρG(y)

(1),

ΛG′(x, y) = O
x→ρG(y)

(1),

ΛG′′(x, y) = O
x→ρG(y)

(

1
√

1− x/ρC(y)

)

,

ΛG′′′(x, y) = O
x→ρG(y)

(

1

1− x/ρC(y)

)

.

Proof. Using the computation rules (16), the first line of the system (14) translates to

ΛG(x, y) = C(x, y)(1 + ΛC(x, y)).

We have seen that C(x, y) converges and ΛC(x, y) is bounded when x → ρC(y). In
addition, it is proved in [17] that ρC(y) = ρG(y). Hence ΛG(x, y) is O(1) as x→ ρG(y).

The second line of (14) translates to ΛG′(x, y) = ΛC′(x, y) + ΛG(x, y). These two
terms are bounded as x→ ρG(y), so that ΛG′(x, y) is also bounded.

The third line of (14) translates to ΛG′′ = C′′G
G′′ (ΛC′′ + ΛG) + C′G′

G′′ (ΛC′ + ΛG′).

Observe that the quantities C′′G
G′′ and C′G′

G′′ are bounded by 1 (these are the probabili-
ties of the Bernoulli switch). Hence, the asymptotic bounds on ΛC′, ΛC′′ (obtained in
Lemma 13) and on ΛG and ΛG′ (obtained in the foregoing proof) ensure that ΛG′′ =
O((1 − z/ρG(y))−1/2).

Similarly, translating the 4th line of (14), it is easily checked that ΛG′′′(x, y) = O((1−
x/ρG(y))−1). �

The asymptotic bound on ΛG′′′(x, y) exactly corresponds to Assertion (18). According
to Claim 1, this concludes the proof of the time complexities of the planar graph generators
stated in Theorems 1 and 2.

7. Conclusion

Using a well known decomposition of planar graphs by increasing degree of connectivity,
we have developed in this article very efficient samplers for planar graphs. The transla-
tion of the decomposition into a planar graph generator relies on the recently introduced
framework of Boltzmann sampling. Our sampler is built progressively. The first step is
the realisation of a Boltzmann sampler for 3-connected planar graphs, which is derived
from an explicit bijection with the well understood family of binary trees. Then, from the
sampler of 3-connected planar graphs, we have obtained successively Boltzmann samplers
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for 2-connected planar graphs, connected planar graphs, and finally unconstrained planar
graphs, by taking advantage of explicit decompositions relating these families.

Notice that the samplers developed on the way to planar graphs are interesting on
their own. For each of the families {3-connected, 2-connected, connected, unconstrained}
planar graphs, there results from our study the existence of approximate-size uniform
samplers with expected linear time complexity and of fixed-size uniform samplers with
expected quadratic time complexity.

Regarding the practical aspects of the implementation, the evaluation of the generating
functions of planar graphs has been carried out with the mathematical software Maple,
based on the analytic expressions given by Giménez and Noy [17]. Then, the random
generator has been implemented in Java, with a precision of 64 bits for the values of
generating functions (“double” type). Using the approximate-size sampler, planar graphs
with size of order 100,000 are generated in a few seconds with a machine clocked at 1GHz.
In contrast, the recursive method of Bodirsky et al is currently limited to sizes of about
100.
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