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Abstract

We present several variants of the sunflower conjecture of Erdős and Rado [ER60] and
discuss the relations among them.

We then show that two of these conjectures (if true) imply negative answers to ques-
tions of Coppersmith and Winograd [CW90] and Cohn et al [CKSU05] regarding possible
approaches for obtaining fast matrix multiplication algorithms. Specifically, we show that
the Erdős-Rado sunflower conjecture (if true) implies a negative answer to the “no three
disjoint equivoluminous subsets” question of Coppersmith and Winograd [CW90]; we also
formulate a “multicolored” sunflower conjecture in Zn

3 and show that (if true) it implies a
negative answer to the “strong USP” conjecture of [CKSU05] (although it does not seem
to impact a second conjecture in [CKSU05] or the viability of the general group-theoretic
approach). A surprising consequence of our results is that the Coppersmith-Winograd
conjecture actually implies the Cohn et al. conjecture.

The multicolored sunflower conjecture in Zn
3 is a strengthening of the well-known

(ordinary) sunflower conjecture in Zn
3 , and we show via our connection that a construction

from [CKSU05] yields a lower bound of (2.51 . . .)n on the size of the largest multicolored 3-
sunflower-free set, which beats the current best known lower bound of (2.21 . . .)n [Edel04]
on the size of the largest 3-sunflower-free set in Zn

3 .

1 Introduction

Sunflowers. A k-sunflower (also called a ∆-system of size k) is a collection of k sets, from
some universe U , that have the same pairwise intersections. This notion was first introduced in
[ER60] and proved itself to be a very useful tool in combinatorics, number theory and computer
science ever since. See, e.g., [Fu91], [Ju01], [AP01].

A basic problem concerning sunflowers is how many sets do we need in order to guarantee
the existence of a k-sunflower. Erdős and Rado proved the following bound [ER60, ER69].
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Theorem 1.1 (Erdős and Rado [ER60]) Let F be an arbitrary family of sets of size s from
some universe U . If |F| > (k − 1)s · s! then F contains a k-sunflower.

They conjectured that actually many fewer sets are needed.

Conjecture 1 (Classical sunflower conjecture [ER60]) For every k > 0 there exists a
constant ck such that the following holds. Let F be an arbitrary family of sets of size s from
some universe U . If |F| ≥ csk then F contains a k-sunflower.

This (and in particular the case k = 3) is one of the most well known open problems in com-
binatorics and despite a lot of attention it is still open today (see e.g. [Erd71, Erd75, Erd81]).

This conjecture has applications in combinatorial number theory and the study of Turán
type problems in extremal graph theory ([Fu91]), as well as in other areas in combinatorics
including the investigation of explicit constructions of Ramsey graphs ([AP01]). A close variant
has been applied in Circuit Complexity ([Ju01], see also [Ra85], [AB87]).

Matrix multiplication. A fundamental algorithmic problem in computer science asks to
compute the product of two given n × n matrices. This problem received a lot of attention
since the seminal work of Strassen [Str69] that showed that one can do better than the simple
row-column multiplication. The best known result is due to Coppersmith and Winograd that
gave an O(n2.376...) time algorithm for multiplying two n × n matrices [CW90]. It is widely
believed by experts that one should be able to multiply n × n matrices in time O(n2+ϵ), for
every ϵ > 0 (see e.g., [Gat88, BCS97]). It is a major open problem to achieve such an algorithm
(which we term fast matrix multiplication).

In their paper, Coppersmith and Winograd proposed an approach towards achieving fast
matrix multiplication. They showed that the existence of an Abelian group and a subset of it
that satisfy certain conditions, imply that their techniques can yield an O(n2+ϵ) time algorithm.
As we shall later see, if Conjecture 1 is true then no such group and subset exist.

A new approach for matrix multiplication that is based on group representation theory was
suggested by Cohn and Umans [CU03]. In a subsequent work [CKSU05], Cohn et al. gave
several algorithms based on the framework of [CU03], and were even able to match the result
of [CW90]. Similarly to Coppersmith and Winograd, Cohn et al. formulated two questions
regarding the existence of certain combinatorial structures that, if true, would yield fast matrix-
multiplication algorithms. We formulate a variant of the sunflower conjecture (Conjecture 6)
and prove that it contradicts one of their questions, regarding the existence of “strong Uniquely
Solvable Puzzles.” Thus any construction of strong Uniquely-Solvable Puzzles that would yield
an exponent 2 algorithm for matrix multiplication must disprove this variant of the sunflower
conjecture, which helps explain the difficulty of the problem.

We stress though, that this does not rule out the possibility of obtaining fast matrix multi-
plication algorithms using the Cohn-Umans framework. In particular, in [CKSU05] Cohn et al.
propose a second direction that seems not to contradict the variants of the sunflower conjecture
that are considered here.
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Organization. We organize the paper as follows. In Section 2 we discuss different sunflower
conjectures and give the relations among them. In Section 3 we present the questions raised in
[CW90, CKSU05] and show their relation to sunflowers.

Notations. For an integer m we denote by Zm = {0, . . . ,m− 1} the additive group modulo
m. [n] stands for the set [n] = {1, . . . , n}. All logarithms are taken in base 2. We will often
use direct products of families of sets. For families F1 ⊂ Zn1

m and F2 ⊂ Zn2
m , we define their

direct product to be the family F1 × F2 = {u ◦ v | u ∈ F1 and v ∈ F2}, where u ◦ v is the
concatenation of u and v, over Zn1+n2

m . When each Fi is a family of subsets from some universe
Ui, we define the direct product analogously, over the disjoint union U1 ⊔ U2.

2 Sunflower conjectures

Definition 2.1 We say that k subsets A1, . . . , Ak, of a universe U , form a k-sunflower if ∀i ̸= j
Ai ∩ Aj = ∩k

i=1Ai.

Conjecture 1 states that for every k there is an integer ck such that any csk sets of size s
contain a k-sunflower. The conjecture is open even for k = 3, which is the case that we are most
interested in, in this paper. This case is also the main one studied in most existing papers on
the conjecture, and it is believed that any proof of the conjecture for k = 3 is likely to provide
a proof of the general case as well. Currently the best known result is given in the following
theorem of Kostochka, improving an earlier estimate of [Spe77].

Theorem 2.2 (Kostochka [Ko97]) There exists a constant c such that every family of s-sets
of size at least cs! · ( log log log s

log log s
)s contains a 3-sunflower.

The following conjecture of Erdős and Szemerédi [ES78] concerns 3-sunflowers inside [n].

Conjecture 2 (Sunflower conjecture in {0, 1}n [ES78]) There exists ϵ > 0 such that any
family F of subsets of [n] (n ≥ 2) of size |F| ≥ 2(1−ϵ)·n contains a 3-sunflower.

Note the difference between Conjectures 1 and 2. While Conjecture 1 concerns s-sets from
an unbounded universe, Conjecture 2 does not restrict the sets to be of the same size, and
instead demands that they all come from an n element set.

An interesting fact is that Conjecture 1 implies Conjecture 2. This was proved in [ES78]
(see also [DEGKM97] for a somewhat sharper estimate). For completeness, we include a short
proof.

Theorem 2.3 ([ES78]) Assume that for k = 3 there exists a constant c such that every family
of s-sets of size at least cs contains a 3-sunflower. Set ϵ = 1/4c. Then any family F of subsets
of [n] of size |F| ≥ 2(1−ϵ)n contains a 3-sunflower.
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Proof Recall that
∑( 1

2
−δ)n

i=0

(
n
i

)
= 2(1+o(1))H( 1

2
−δ)·n, where H(x) = −x log(x)− (1−x) log(1−x)

is the entropy function. As H(1
2
− δ) < 1− δ2, for δ small enough, we get that for δ =

√
2ϵ, F

must contain at least 1
4δn

2(1−ϵ)·n sets of size s for some s ∈ [(1
2
− δ) · n, (1

2
+ δ) · n]. From now

on we shall only consider those sets of size exactly s in F .
Let α > 0 be some small number to be determined later, such that α · n is an integer. As

each s-set contains exactly
(

s
s−αn

)
subsets of size s − αn, and there are

(
n

s−αn

)
such sets, one

(s− αn)-set belongs to at least

1

4δn
2(1−ϵ)·n ·

(
s

s−αn

)(
n

s−αn

) =
1

4δn
2(1−ϵ)·n ·

(
n+αn
αn

)(
n+αn

s

) >
1

4δn
2(1−ϵ)·n ·

(
n+αn
αn

)
2n+αn

= 2H( α
1+α

)·(1+α)n−αn−ϵn−o(n) > 2n(α log( 1+α
α

)−α−ϵ) (1)

s-sets in F . Let α = 1/4c and ϵ ≤ α. From (1) it follows that, for some (s − αn)-set A, the
number of s-sets in F that contain A is larger than

2n(α log( 1+α
α

)−α−ϵ) ≥ 2nα log c = cαn .

By the choice of c, it follows that if we remove the set A from all those sets then three of them
form a sunflower (indeed, after removing A, we get a collection of more than cαn sets of size
αn). In particular, a sunflower exists in F . �

The same proof idea can be used to show a strong consequence if Conjecture 2 is false, that
will be useful in the proof of Theorem 2.7.

Theorem 2.4 If Conjecture 2 is false, then the following holds for every ϵ > 0. For infinitely
many n, for all integers 2 ≤ c < 1/

√
ϵ, there are families F of n-subsets of [cn] of cardinality(

cn
n

)1−ϵ
, containing no 3-sunflower.

Proof Let F be a family of 2(1−ϵ)m subsets of [m] that contain no 3-sunflowers. Then repeating
the first part of the proof of Theorem 2.3, we can find a family F ′ ⊆ F of at least 1

4
√
2ϵm

2(1−ϵ)m

s-subsets of [m] for some s ∈ [(1/2 −
√
2ϵ)m, (1/2 +

√
2ϵ)m]. If m is odd, add an element to

the universe and set m′ = m+ 1; otherwise set m′ = m. If s = m′/2 + ℓ for integer ℓ > 0, then
add 2ℓ fresh elements to the universe [m′]. If s = m′/2− ℓ for integer ℓ > 0, then add 2ℓ fresh
elements to the universe [m′] and to every subsets in F ′ to obtain a 3-sunflower-free family of
(m′/2 + ℓ)-subsets of [m′ + 2ℓ]. In both cases, since ℓ ≤

√
2ϵm, the cardinality is at least

1

4
√
2ϵm

2(1−ϵ)m ≥ 1

8
√
2ϵm

2(1−ϵ)m′ ≥ 1

8
√
2ϵm

2
1−ϵ

1+2
√

2ϵ
(m′+2ℓ)

.

Assuming Conjecture 2 is false, we have families F of 2(1−ϵ)m subsets of [m] that contain no
3-sunflowers, for arbitrarily small ϵ > 0, and infinitely many m. Applying the above transfor-
mation, we have that for every ϵ > 0, and infinitely many n, there are families of n-subsets of

[2n] of cardinality 2(1−ϵ)2n ≥
(
2n
n

)1−ϵ
. This takes care of the case c = 2.

Now, we turn to the cases 2 < c < 1/ϵ. By taking the (c − 1)-fold direct product of the
c = 2 construction, we obtain families of (c − 1)n-subsets of [2(c − 1)n] of cardinality at least
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22(c−1)n(1−ϵ) ≥
(
2(c−1)n
(c−1)n

)1−ϵ
. Consider such a 3-sunflower-free family (note that a direct product

of sunflower-free families is also sunflower-free). Set r = (c− 2)n. The number of r-subsets of
[2(c− 1)n] is (

2(c− 1)n

r

)
=

(
2(c−1)n
(c−1)n

)(
(c−1)n

r

)(
2(c−1)n−r
(c−1)n−r

) .

The number of r-subsets of each set in the family is
(
(c−1)n

r

)
. Thus, there is some r-set contained

in at least (
2(c− 1)n

(c− 1)n

)1−ϵ

·

(
2(c−1)n−r
(c−1)n−r

)(
2(c−1)n
(c−1)n

) ≥

(
2(c−1)n−r
(c−1)n−r

)
22ϵ(c−1)n

.

subsets in the family. Remove this r-set from these subsets and the universe. Since 2(c −
1)n − r = cn and (c − 1)n − r = n, the resulting family consists of n-subset of [cn] that are
3-sunflower-free, and it has cardinality at least(

cn
n

)
22ϵ(c−1)n

≥
(
cn
n

)1−2
√
ϵ
c2

√
ϵn

22ϵ(c−1)n
≥

(
cn

n

)1−2
√
ϵ

,

using the fact that
(
cn
n

)
≥ cn, and the requirement that 2 ≤ c < 1/

√
ϵ. As ϵ > 0 was arbitrary,

we are done. �

In order to relate sunflowers to the question of Cohn et al. we need to consider the following
variant of sunflowers.

Definition 2.5 (Sunflowers in Zn
D) We say that k vectors v1, . . . , vk ∈ Zn

D form a k-
sunflower if for every coordinate i ∈ [n] it holds that either (v1)i = . . . = (vk)i or they all
differ on that coordinate.

Note that this definition generalizes the notion of sunflower if we identify each subset of the
universe U with its characteristic vector.

Conjecture 3 (Sunflower conjecture in Zn
D) For every k there is an absolute constant bk

so that for every D and every n any set of at least bnk vectors in Zn
D contains a k-sunflower.

While this conjecture seems different from the classical sunflower conjecture, it turns out
that they are equivalent.

Theorem 2.6 If Conjecture 1 holds for ck then Conjecture 3 is true for bk = ck. Similarly, if
Conjecture 3 holds for bk, then Conjecture 1 is true with ck = e · bk.

Proof Conjecture 1 ⇒ Conjecture 3: Let U = Z and denote by p1, . . . , pn the first n prime
numbers. Given v ∈ Zn

D define Sv = {p1+v1
1 , . . . , p1+vn

n }. Clearly Sv is an n-set. It is not hard
to see that a collection F ⊆ Zn

D contains a k-sunflower if and only if the corresponding family
SF = {Sv | v ∈ F} contains a k-sunflower.
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Conjecture 3 ⇒ Conjecture 1: Given a family F of cs subsets of U we shall define a corre-
sponding family inside Zs

D, for some large D. Indeed, we can assume w.l.o.g. that |U | ≤ s · cs.
For convenience assume that U = [D] for D ≤ s · cs. Pick a map from [D] to [s] uniformly at
random from all such maps. For a given s-set A ⊂ [D], the probability that A was mapped
injectively to [s] is exactly s!/ss > e−s. Thus, there exists a map f : [D] → [s], that is 1− 1 on
at least (c/e)s of the sets in F . Denote those sets by F̃ and consider any such set A. Define
the vector vA = (v1, . . . , vs) where vi = f−1(i) ∩ A. Namely, the ith coordinate of v is the
unique element of A that was mapped to i by f . Denote the new family by vF . It is not hard
to see that F̃ contains a k-sunflower if and only if vF does. As |vF | = |F̃ | ≥ (c/e)s = bs, where
b = c/e, the result follows. �

The following is a weaker version of Conjecture 3, for the special case k = 3.

Conjecture 4 (Weak sunflower conjecture in Zn
D) There is an ϵ > 0 so that for D > D0

and n > n0, any set of at least D(1−ϵ)n vectors in Zn
D contains a 3-sunflower.

The main difference from Conjecture 3 is that we allow the number of sets to scale with D.
It is clear that Conjecture 3 immediately implies Conjecture 4. Next we show that Conjecture
4 is in fact equivalent to Conjecture 2.

Theorem 2.7 If Conjecture 2 holds for ϵ0 then Conjecture 4 holds for ϵ = ϵ0/2, D0 ≥ 2
12

ϵ20 and
n > n0. If Conjecture 4 holds for ϵ0 and D0 ≥ 3 and n > n0 then Conjecture 2 holds for some
ϵ′0 > 0.

Proof Conjecture 2⇒ Conjecture 4: Let d be such that
(

d
d/2

)
≥ D (by Stirling’s approximation,

d = logD+ 1
2
log logD+3 suffices). Pick an arbitrary 1-1 map f from [D] to subsets of size d/2

in {0, 1}d. Given a family F ⊂ Zn
D map every vector v ∈ F to v′ ∈ {0, 1}dn in the natural way.

I.e. v′ = f(v1) ◦ f(v2) ◦ · · · ◦ f(vn), where ◦ stands for concatenation. Call the resulting family
F ′. It is clear that if v′, u′, w′ form a 3-sunflower in {0, 1}dn then v, u, w form a 3-sunflower
in Zn

D (the converse is not necessarily true). From our choice of parameters it follows that
|F ′| = |F| ≥ D(1−ϵ)n ≥ 2(1−ϵ0)dn. Hence, F ′ contains a 3-sunflower and therefore so does F .

Conjecture 4 ⇒ Conjecture 2: Assume that Conjecture 2 is false. By Theorem 2.4, we can
choose ϵ < min(ϵ0/2, 1/D

2
0) and then for infinitely many n, for each 2 ≤ c ≤ D0 there is a

family Fc of at least
(
cn
n

)1−ϵ0/2 n-subsets of [cn]. We now describe a family of vectors in ZD0n
D0

.
We use the phrases “0-set,” “1-set,” etc... to refer to the coordinates of a given vector that
have 0s, 1s, etc... Our vectors have as their 0-sets the subsets in family FD0 . For each 0-set, we
have vectors whose 1-sets (which are subsets of the remaining (D0 − 1)n coordinates) are given
by family FD0−1. Then for each pattern of 0s and 1s, we have vectors whose 2-sets (which are
subsets of the remaining (D0 − 2)n coordinates) are given by family FD0−2, and so on, until we
define the (D0 − 2)-sets using family F2. The remaining n coordinates of each vector are then
set to D0 − 1. It is clear that if three vectors u, v, w in this family form a 3-sunflower, then
their 0-sets coincide (since FD0 is 3-sunflower-free), and then their 1-sets coincide (since FD0−1
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is 3-sunflower-free), and so on, until we conclude that u = v = w. Thus our family in ZD0n
D0

is
3-sunflower free, and it has cardinality at least((

D0n

n

)(
(D0 − 1)n

n

)(
(D0 − 2)n

n

)
· · ·

(
2n

n

))1−ϵ0/2

=

(
D0n

n, n, n, · · · , n

)1−ϵ0/2

≥(∗) D
D0n(1−o(1))(1−ϵ0/2)
0 ≥ D

(1−ϵ0)D0n
0 ,

where (∗) follows easily from Stirling’s theorem. �

The assertion of Conjecture 4 may well hold for small values of D as well. In particular, the
case D = 3 attracted a considerable amount of attention as in this case a 3-sunflower in the
group Zn

3 is equivalent to a 3-term arithmetic progression in this group.

Conjecture 5 (Weak sunflower conjecture in Zn
3) There is an ϵ > 0 so that for n > n0,

any set of at least 3(1−ϵ)n vectors in Zn
3 contains a 3-sunflower.

An obvious modification of the previous proof (replacing any symbol of [D] by its base-3
representation) shows that Conjecture 5 implies Conjecture 4. The best known upper bound for
the cardinality of a subset of Zn

3 that contains no 3-sunflower is the recent O(3n/n1+ϵ) bound,
for some small ϵ > 0, of [BK11] that improves upon the previous 2 · 3n/n bound of [Me95]. The
best known lower bound is (2.217 . . .)n [Edel04].

It is natural to guess that Conjecture 5 is true when it is seen as a variant of Conjecture 4.
On the other hand, one might guess that Conjecture 5 is false when it is viewed as a variant
of the assertion that sets of size D(1−ϵ)n in Zn

D have a 3-term arithmetic progression, because
the latter statement is false for large D. We include a simple construction, due to Salem and
Spencer [SS42]:

Theorem 2.8 (3-term arithmetic progression free sets in Zn
D [SS42]) For all ϵ > 0, if

D > 22/ϵ and n is sufficiently large, there is a set of D(1−ϵ)n vectors in Zn
D that contains no

3-term arithmetic progressions.

Proof Set d = ⌊(D−1)/2⌋, and for simplicity assume (d+1)|n. Let F be the set of all vectors
in Zn

D with equal numbers of the elements {0, 1, 2, . . . , d}. Then

|F| =
(

n

n/(d+ 1), n/(d+ 1), . . . , n/(d+ 1)

)
= (d+ 1)(1−o(1))n ≥ D(1−ϵ/2−o(1))n > D(1−ϵ)n

(if (d+ 1) - n, we take vectors with a near-equal distribution, and the calculation is essentially
unchanged).

Suppose we have u, v, w ∈ F for which u + w = 2v (i.e., u, v, w form a 3-term arithmetic
progression). Since all entries in u, v, w are at most d this equation holds in the integers as well.
Then, consider the set I of coordinates i for which vi = d. Since all entries in u,w are at most
d, it must be that ui = wi = d for all i ∈ I. But now we have accounted for all of the entries
equal to d in all three vectors. The same argument then gives that all three vectors are d − 1
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in exactly the same set of coordinates, etc... We conclude u = v = w. �

The last sunflower conjecture is a “multicolored” version of Conjecture 5. To formulate it,
we will be discussing collections of ordered triples of vectors in Zn

3 (instead of collections of
vectors in Zn

3 ). We say that such a triple (x, y, z) is an ordered sunflower if the set {x, y, z} is a
sunflower in Zn

3 , and we say that two ordered sunflowers (x, y, z) and (a, b, c) are disjoint x ̸= a,
y ̸= b, and z ̸= c. We say that a collection of ordered triples contains a multicolored sunflower if
it contains three triples, (x(1), y(1), z(1)), (x(2), y(2), z(2)), (x(3), y(3), z(3)), not all equal, for which
{x(1), y(2), z(3)} form a sunflower.

Conjecture 6 (multicolored sunflower conjecture in Zn
3) There exists ϵ > 0 so that for

n > n0, every collection F ⊆ Zn
3 × Zn

3 × Zn
3 of at least 3(1−ϵ)n ordered sunflowers contains a

multicolored sunflower.

The requirement in Conjecture 6 that F be a collection of sunflowers (rather than an
arbitrary collection of triples) is needed for non-triviality1. Note that if F ⊆ Zn

3 is 3-sunflower-
free, then {(x, x, x) : x ∈ F} is a collection of ordered sunflowers containing no multicolored
sunflower. Thus Conjecture 6 implies Conjecture 5.

Figure 1 describes the connections between the different conjectures.

Conj. 3

��

ks Thm. 2.6 +3 Conj. 1

Thm. 2.3
��

Conj. 6 +3 Conj. 5 +3 Conj. 4 ks Thm. 2.7 +3 Conj. 2

Figure 1: Sunflower conjectures

3 Matrix multiplication

In [CW90] Coppersmith and Winograd gave the fastest algorithm known today for multiplying
two n×n matrices. Their argument fell short of providing an O(n2+ϵ) time algorithm; however
they proved that if a certain structure (that we define next) exists then their techniques can
yield such an algorithm.

Definition 3.1 ([CW90]) An Abelian group G (with at least two elements) and a subset S of
G satisfy the no three disjoint equivoluminous subsets property if: whenever T1, T2 and T3 are
three disjoint subsets of S, not all empty, they cannot all have the same sum in G:∑

g∈T1

g ̸=
∑
g∈T2

g or
∑
g∈T2

g ̸=
∑
g∈T3

g .

1Otherwise, e.g., the collection of ordered triples (x, y, z) with the first digit of x = 0, the first digit of y = 0,
and the first digit of z = 1 contains no multicolored sunflower.
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Coppersmith and Winograd showed that if “... we can find a sequence of pairs G,S with
the no three disjoint equivoluminous subset property, such that log(|G|)/|S| approaches 0” then
for every ϵ > 0 there is an O(n2+ϵ) time fast matrix multiplication algorithm. However, the
next claim, whose proof is very simple, shows that if Conjecture 2 is true then there is no such
sequence.

Theorem 3.2 If Conjecture 2 holds with ϵ0 then if G,S have the no three disjoint equivolumi-
nous subset property then |S| ≤ log(|G|)/ϵ0.

Proof Given S, consider all its 2|S| subsets. For each subset T ⊆ S, compute σ(T ) =
∑

g∈T g.

Clearly, there is some g ∈ G such that at least 2|S|/|G| subsets T satisfy σ(T ) = g. Now, if
log(|G|)/|S| < ϵ0 then 2|S|/|G| > 2(1−ϵ0)|S|. Therefore, in this case, Conjecture 2 implies the
existence of a 3-sunflower T ′

1, T
′
2 and T ′

3 such that σ(T ′
1) = σ(T ′

2) = σ(T ′
3). Let T = T ′

1 ∩ T ′
2.

Set Ti = T ′
i \ T . By our construction we have that the Ti’s are disjoint and σ(Ti) = g − σ(T ).

Hence, they violate the no three disjoint equivoluminous subsets property. Hence, we must
have |S| ≤ log(|G|)/ϵ0 for the property to hold. �

We now turn to discussing a question that was formulated by Cohn et al. [CKSU05]. Denote
by Sym(U) the group of permutations of a set U .

Definition 3.3 (Uniquely solvable puzzle [CKSU05]) A uniquely solvable puzzle (USP)
of width n is a subset F ⊆ Zn

3 satisfying the following property: For all permutations π0, π1, π2 ∈
Sym(F), either π0 = π1 = π2 or else there exist u ∈ F and i ∈ [n] such that at least two of
(π0(u))i = 0, (π1(u))i = 1, and (π2(u))i = 2 hold.

The USP capacity is the largest constant C such that there exist USPs of size (C − o(1))n

and width n for infinitely many values of n.

Quoting [CKSU05]: “The motivation for the name uniquely solvable puzzle is that a USP
can be thought of as a jigsaw puzzle. The puzzle pieces are the sets {i : ui = 0}, {i : ui = 1},
and {i : ui = 2} with u ∈ F , and the puzzle can be solved by permuting these types of pieces
according to π0, π1, and π2, respectively, and reassembling them without overlap into triples
consisting of one piece of each of the three types. The definition requires that the puzzle must
have a unique solution.”

Cohn et al. observed that the USP capacity is at most 3/22/3 and noticed that a construction
of Coppersmith and Winograd implies that the capacity is at least 3/22/3 [CW90]. They thus
concluded that the USP capacity equals 3/22/3. For the purpose of obtaining fast matrix
multiplication algorithms, [CKSU05] require a structure that is more restrictive than USP,
which they call a strong USP.

Definition 3.4 (Strong uniquely solvable puzzle [CKSU05]) A strong USP is a USP
F ⊆ Zn

3 in which the defining property is strengthened as follows: For all permutations
π0, π1, π2 ∈ Sym(F), either π0 = π1 = π2 or else there exist u ∈ F and i ∈ [n] such that
exactly two of (π0(u))i = 0, (π1(u))i = 1, and (π2(u))i = 2 hold.

The strong USP capacity is the largest constant C such that there exist strong USPs of size
(C − o(1))n and width n for infinitely many values of n.

9



A variant of strong USPs that seems easier to reason about, but potentially harder to con-
struct, is what [CKSU05] call a local strong USP. Expressing their definition slightly differently,
we see the connection to sunflowers:

Definition 3.5 (local strong USP [CKSU05]) A collection F of vectors in Zn
3 is a local

strong USP if for every u, v, w ∈ F , not all equal, the sets {i : ui = 0}, {i : vi = 1}, and
{i : wi = 2} do not form a 3-sunflower. The local strong USP capacity is the largest constant
C such that there exist local strong USPs of size (C − o(1))n in Zn

3 for infinitely many values
of n.

It is not hard to see that a local strong USP is a strong USP (Lemma 6.1 in [CKSU05]). More
interestingly, we have the the strong USP capacity is achieved by local strong USPs (Proposition
6.3 in [CKSU05]). In particular, if the strong USP capacity is at least c, then for infinitely many
n, there is a local strong USP F ⊆ Zn

3 of size (c − o(1))n. Cohn et al. conjectured that the
strong USP capacity (and thus also the local strong USP capacity) is equal to the USP capacity.
As shown in [CKSU05], this would imply an O(n2+ϵ) time algorithm for matrix multiplication.

Conjecture 7 (Conjecture 3.4 in [CKSU05]) The strong USP capacity (and the local
strong USP capacity) equals 3/22/3.

Next, we show that Conjecture 6 implies that Conjecture 7 is false. In the proof, it will be
convenient if our local strong USPs have equal numbers of 0’s, 1’s, and 2’s in each vector, and
the next lemma shows this can be assumed without loss of generality.

Lemma 3.6 If the strong USP capacity is at least c, then for infinitely many n, there is a local
strong USP F ⊆ Z3n

3 with each v ∈ F having equal numbers of 0’s, 1’s, and 2’s, of cardinality
at least (c− o(1))3n.

Proof We begin with local strong USP U ⊆ Zm
3 of cardinality at least N = (c− o(1))m, which

exists because the capacity is at least c. Now, form the strong USP V ⊆ ZmN
3 by taking all

vectors that are the concatenation (in some order) of the N vectors of U . Each vector v ∈ V
now has the same distribution of 0’s, 1’s and 2’s. It is easy to see that the local strong USP
property is preserved when cyclically permuting Z3. The direct product of the three local strong
USPs obtained from V by these three transformations is a local strong USP F ⊆ Z3mN

3 with
each v ∈ F having an equal number of 0’s, 1’s and 2’s. Its cardinality is

(N !)3 =
(
NN(1−o(1))

)3 ≥ (
(c− o(1))mN(1−o(1))

)3
= (c− o(1))3mN

for infinitely many values of m. �

Theorem 3.7 If the strong USP capacity is at least c, then for infinitely many N , there exists
a collection of at least (22/3c − o(1))N ordered sunflowers in ZN

3 × ZN
3 × ZN

3 that contains no
multicolored sunflower. In particular, if Conjecture 6 is true for ϵ0, then the strong USP capacity
is at most (3/22/3)1−ϵ0.
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Proof Let F ⊆ Z3n
3 be a local strong USP for which every v ∈ F has equal numbers of 0’s,

1’s and 2’s. Our goal will be to produce a collection F ′ ⊆ S0 × S1 × S2 ⊆ (Zn
3 )

3 such that
(1) F ′ is a collection of pairwise disjoint ordered sunflowers, and (2) every ordered sunflower in
S0 × S1 × S2 is in F ′. Such a collection then contains no multicolored sunflowers.

For x ∈ Z3n
3 and I ⊆ [n], we denote by xI the projection of x to the coordinates I. Fix a

vector v ∈ F and let I = {i : vi = 0}, J = {j : vj = 1} and K = {k : vk = 2}. We define

T
(v)
0 = {x : xI = 0n, xJ ∈ {1, 2}n, xK ∈ {1, 2}n}

T
(v)
1 = {y : yI ∈ {1, 2}n, yJ = 0n, yK ∈ {1, 2}n}

T
(v)
2 = {z : zI ∈ {1, 2}n, zJ ∈ {1, 2}n, zK = 0n}.

We identify {1, 2}n with the integers {0, 1, 2, . . . , 2n − 1} arbitrarily and denote this lift of
w ∈ {1, 2}n to the integers by w.

Define functions a(v) : T
(v)
0 → Z, b(v) : T (v)

1 → Z, and c(v) : T
(v)
2 → Z as follows, where s is

the integer ⌈3 · 2n/2⌉+ 1:

a(v)(x) = ((xJ)− s)2 + 2((xJ)− s)(−xK)

b(v)(y) = (yK)
2 + 2(yK)(−yI)

c(v)(z) = (zI)
2 + 2(zI)((−zJ)− s).

These functions and the following lemma are used in [BCS97] (in a presentation of material
originally appearing in [Str87]), to show, in their language, that the matrix multiplication tensor
has a large diagonal which is a combinatorial degeneration. We use it for a slightly different
purpose here.

Lemma 3.8 ([BCS97] Lemma 15.31) If (x, y, z) ∈ T
(v)
0 × T

(v)
1 × T

(v)
2 form a sunflower,

a(v)(x) + b(v)(y) + c(v)(z) ≥ 0. Moreover, the set

∆(v) = {(x, y, z) ∈ T
(v)
0 × T

(v)
1 × T

(v)
2 | {x, y, z} form a sunflower

and a(v)(x) + b(v)(y) + c(v)(z) = 0}

is a collection of pairwise disjoint ordered sunflowers with cardinality at least ⌈3 · 22n/4⌉.

We sketch the proof here for completeness.
Proof When (x, y, z) form an ordered sunflower, we have yI = −zI , xJ = −zJ and xK = −yK ,
and then setting i = zI , j = xJ , and k = yK , we have

a(v)(x) + b(v)(y) + c(v)(z) = (j − s)2 + 2(j − s)k + k2 + 2ki+ i2 + 2i(j − s) = (i+ j + k − s)2.

Clearly this function is non-negative, and equals 0 exactly when i + j + k = s. Since each
of x, y, and z determines two of i, j, k and any two of i, j, k determine the third under this
constraint (and thus determine the entire triple), the sunflowers in ∆(v) are pairwise disjoint.
The cardinality of ∆(v) is an easy calculation. �
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Now, define T0 =
∪

v∈F T
(v)
0 , T1 =

∪
v∈F T

(v)
1 , and T2 =

∪
v∈F T

(v)
2 . We note that any

ordered sunflower (x, y, z) ∈ T0×T1×T2 must have (x, y, z) ∈ T
(v)
0 ×T

(v)
1 ×T

(v)
2 for some v ∈ F ,

because otherwise by the strong USP property, there is some coordinate i in which exactly
two of {xi, yi, zi} equal 0, and so {x, y, z} cannot be a sunflower. We will use this observation,
together with Lemma 3.8 to produce our final construction.

Notice that the a(v), b(v), c(v) define in a consistent way functions a, b, c from T0, T1, T2, re-
spectively, to Z, because the T (v)

0 are disjoint sets (and the same for the T
(v)
1 and the T

(v)
2 ). Now,

consider the ℓ-fold direct product of the three sets, T ℓ
0 , T

ℓ
1 , T

ℓ
2 , and the functions A : T ℓ

0 → Z,
B : T ℓ

1 → Z, and C : T ℓ
2 → Z defined by A(X) =

∑
i a(Xi), B(Y ) =

∑
i b(Yi), and

A(Z) =
∑

i c(Zi). We claim that

∆ = {(X,Y, Z) ∈ T ℓ
0 × T ℓ

1 × T ℓ
2 : {X, Y, Z} form a sunflower and A(X) +B(Y ) + C(Z) = 0}

is a collection of pairwise disjoint ordered sunflowers with cardinality at least

(|F| · ⌈3 · 22n/4⌉)ℓ.

This is because each (Xi, Yi, Zi) must lie in T
(vi)
0 ×T

(vi)
1 ×T

(vi)
2 for some vi ∈ F (as we observed

above), and then by the first part of Lemma 3.8,

A(X) +B(Y ) + C(Y ) = 0 ⇔ a(Xi) + b(Yi) + c(Zi) = 0 for all i.

Thus ∆ =
(∪

v∈F ∆(v)
)ℓ
.

We are not done, however, because T ℓ
0 ×T ℓ

1 ×T ℓ
2 may contain an ordered sunflower (X, Y, Z)

not already in ∆, and this happens exactly when A(X)+B(Y )+C(Z) > 0. One final trick will
fix this problem, and we describe it next. If a, b, c take values in [−M,M ], then A,B,C take
values in [−ℓM, ℓM ]. Thus there exist α, β, γ such that at least a 1/(2ℓM)3 fraction of the triples
(X, Y, Z) in ∆ satisfy A(X) = α,B(Y ) = β,C(Z) = γ. So, define S0 = {X ∈ T ℓ

0 : A(X) = α},
S1 = {Y ∈ T ℓ

1 : B(Y ) = β}, S2 = {Z ∈ T ℓ
2 : C(Z) = γ}, and

F ′ = ∆ ∩ (S0 × S1 × S2).

Then F ′ is a collection of pairwise disjoint ordered sunflowers (because ∆ is) for which every
ordered sunflower (X, Y, Z) ∈ S0 ×S1 ×S2 is in F ′, as desired. The cardinality of F ′ is at least

(|F| · ⌈3 · 22n/4⌉)ℓ

(2ℓM)3
.

If the strong USP capacity is at least c, then by Lemma 3.6, for infinitely many n, there exist
balanced, local strong USPs F ⊆ Z3n

3 with cardinality at least (c−o(1))3n. Taking ℓ sufficiently
large in the above expression, the theorem follows. �

Cohn et al. proved that the strong USP capacity is at least 22/3 (Proposition 3.8 in
[CKSU05]). Applying Theorem 3.7, we obtain a lower bound of (24/3 − o(1))n > 2.51n on
the maximum cardinality of a collection of ordered sunflowers in Zn

3 × Zn
3 × Zn

3 containing no
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multicolored sunflower. Notice that this is larger than the best known lower bound on the
maximum cardinality of 3-sunflower-free subsets of Zn

3 [Edel04].
Finally, we show that if Conjecture 4 is in fact false, then Conjecture 7 is true, and hence the

exponent of matrix multiplication is 2. The complete picture with the two matrix-multiplication
related conjectures included is in Figure 2. Notice the interesting conclusion that the “no three
disjoint equivoluminous subsets” conjecture of [CW90] actually implies the (seemingly very
different) strong USP conjecture of [CKSU05].

Conj. 7 false
Thm.3.9

#+OOOOOOOOOOO

OOOOOOOOOOO
Conj. 3

��

ks Thm. 2.6 +3 Conj. 1

Thm. 2.3
��

Conj. 6 +3

Thm.3.7
3;ooooooooooo

ooooooooooo
Conj. 5 +3 Conj. 4 ks Thm. 2.7 +3 Conj. 2 Thm.3.2 +3 Conj.[CW90] false

Figure 2: Sunflower conjectures and matrix multiplication conjectures. Everything in this paper
is labeled a “conjecture” for uniformity of presentation; however some seem more likely to be
true than others. In particular, it would not be overly surprising if everything to the left of
Conjecture 3 and 4 in this figure turned out to be false.

Theorem 3.9 If the strong USP capacity is at most (3/22/3)1−ϵ0 for some ϵ0 > 0 then Conjec-
ture 4 holds with ϵ = ϵ0/2 and n large enough.

Proof Assume for convenience that D = 1
3
·
(

n
n/3

)
, for some integer n divisible by 3 (we later

show that this can be assumed w.l.o.g.) and that we are given a 3-sunflower-free collection
F ⊆ Zm

D of size |F| ≥ D(1−ϵ)m, for m sufficiently large. We will rely on the following (special
case of a) theorem of Baranyai [Bar75].

Theorem 3.10 There is a set G of D vectors in Zn
3 , each having exactly n/3 zeros, n/3 ones

and n/3 twos, where every subset of size n/3 of [n] appears exactly once as the set of all
occurrences of a 0,1 or 2 in some vector

We shall create a family, corresponding to F , in Znm
3 . Identify the set [D] with the elements of

G (arbitrarily). Given a vector in F we replace each symbol by the corresponding member of
G and concatenate all those sets to obtain a vector of length nm. This gives a new family F ′

of D(1−ϵ)m vectors in Znm
3 . As

|F ′| ≥ D(1−ϵ)m =

(
1

3
·
(

n

n/3

))(1−ϵ)m

= 2H(1/3)(1−ϵ)nm+o(nm) =

(
nm

nm/3

)1−ϵ+o(1)

>

(
nm

nm/3

)1−ϵ0

we get, by the assumption that the strong USP capacity is at most (3/22/3)1−ϵ0 , that there are
three vectors u′, v′, w′ (not all equal) in F ′ such that the sets {i : u′

i = 0}, {j : v′j = 1} and
{l : w′

l = 2} form a 3-sunflower. It is not hard to verify that the ‘original’ vectors v, u and
w of F form a 3-sunflower. Indeed, suppose that in some coordinate i we have that the set
{ui, vi, wi} contains exactly two distinct values, say ui = α, vi = α and wi = β. Let Aα and
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Aβ be the corresponding members of G. By the construction of G, the sets {j | (Aα)j = 3}
and {j | (Aβ)j = 3} are different. Hence, {j | (Aβ)j = 3} intersects at least one of the sets
{j | (Aα)j = 1} or {j | (Aα)j = 2}. However, since {j | (Aα)j = 1} and {j | (Aα)j = 2} are
disjoint, this contradicts the assumption that u′, v′, w′ form a 3-sunflower.

To complete the proof we argue that we can assume w.l.o.g. that D = 1
3
·
(

n
n/3

)
, for some

integer n divisible by 3. Indeed, we can always find an integer n divisible by 3, such that

1
3
·
(

n−3
(n−3)/3

)
< D ≤ 1

3
·
(

n
n/3

)
. As

(
n−3

(n−3)/3

)
> 4

27
·
(

n
n/3

)
it follows thatD(1−ϵ)m >

(
4
27

·
(

n
n/3

))(1−ϵ)m

>(
n

n/3

)(1−1.1ϵ)m
, for large enough n. Set D′ =

(
n

n/3

)
and view F as a subset of Zm

D′ of size at least

D′(1−1.1ϵ)m. As we picked ϵ < ϵ0/2 the calculations above are not affected by this change. �
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