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Geometric discrepancy is a lively field and many things have happened since
the first appearance of this book ten years ago. In the present revised print-
ing, scheduled to appear in 2009 or 2010, I decided to add this appendix
mentioning some of the new results, rather than trying to insert dispersed
remarks into the old text.

I should perhaps begin with a disclaimer. I have been following the de-
velopment in discrepancy theory only cursorily, devoting most of my time to
other subjects. The following remarks should not be regarded as a serious
survey. Among the results I happened to learn about, I’ve selected according
to strictly objective scientific criteria: the results I liked best, those I con-
sidered interesting, unexpected, or particularly difficult, those easy to write
about, those proved by me or my friends, and so on.

Boxes in dimensions 3 and more. The closest to the heart of a classical
discrepancy theorist are probably two recent papers improving lower bounds
on D(n,Rd), the Lebesgue-measure discrepancy for axis-parallel boxes.

We recall that Roth’s lower bound for the L2 average discrepancy gives
D(n,Rd) = Ω((log n)(d−1)/2) for every fixed d ≥ 2. A common belief, sup-
ported by a proof only for d = 2, is that the order of D(n,Rd) is at least by
the factor of

√
logn larger. For many years the only step in this direction for

d ≥ 3 had been Beck’s [Bec89c] magnificent proof improving Roth’s bound
in dimension 3 by the factor of roughly (log logn)1/8.

In 2006 Bilyk and Lacey [BL08] simplified and greatly developed Beck’s
approach, improving the 3-dimensional lower bound to Ω((logn)1+η) for a
small constant η > 0 (which they didn’t compute explicitly). Similar to Beck’s
proof, the the core of their method is a so-called small ball inequality, an in-
equality for multidimensional Haar functions i.e., higher-dimensional analogs
of the functions fj from Halász’s proof (see Section 6.2 and its Exercise 2).

To state the inequality, let r = (r1, . . . , rd) be a d-dimensional vector
of nonnegative integers, let us write |r| = r1 + · · · + rd, and let Rr be the

appropriate Rademacher function, given by Rr(x) =
∏d

i=1(−1)b2
ri+1xic. A

weighted r-function is a function f : [0, 1]d → R such that on every binary
canonical box B of size 2−r1 ×2−r2 ×· · ·×2−rd , the function f coincides with
αBRr for some real αB (depending on the box B). (The r-function defined
in Exercise 6.1.1 is a special case with αB ∈ {−1, 0,+1} for all B.) In the
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small ball inequality we seek, for given natural numbers d and k, the smallest
C = Cd,k such that for every choice of weighted r-functions fr, for all r with
|r| ≥ k, we have

∑

r:|r|=k

‖fr‖1 ≤ C

∥∥∥∥
∑

r:|r|≥k

fr

∥∥∥∥
∞

.

A Roth-like L2 averaging argument shows that C = O(k(d−1)/2) for every
fixed d, the small ball conjecture asserts C = O(k(d−2)/2) for all d ≥ 2 (which
is known only for d = 2), and [BL08] proved C3,k = O(k1−η). The small ball
inequality is of fundamental nature and it has applications in other fields
(probability theory, approximation theory) as well. In particular, the name
“small ball” comes from a probabilistic setting, concerning the behavior of
the d-dimensional Brownian random walk.

The paper [BL08], available on ArXiv, uses lots of beautiful mathemat-
ics, mostly harmonic analysis (e.g., the Littlewood–Paley theory), and it is
written in a way that looks quite accessible even to us non-experts in this
field. Later Bilyk, Lacey, and Vagharshakyan [BLV08] extended the method
to higher dimensions, obtaining D(n,Rd) = Ω((logn)(d−1)/2+η) for every
fixed d and some positive η = η(d), again through the corresponding small
ball inequality.

The discrepancy function for corners in the plane. Bilyk, Lacey, Paris-
sis, and Vagharshakyan [BLPV08] improved our understanding of the dis-
crepancy function for two-dimensional corners. We recall that D(n, C2), the
worst-case, or L∞, discrepancy for corners, is of order logn, while the Lp

average discrepancy Dp(n, C2) is of order
√

logn for every fixed p ∈ [1,∞).
Bilyk et al. proved bounds that, in a sense, smoothly interpolate between

these two results: they obtained a tight bound, of order (logn)1−1/α, for the
Orlicz norms ‖.‖exp(Lα) of the discrepancy function, for every fixed α ∈ [2,∞).
We recall that the Orlicz norm is a generalization of the Lp norm where the
numeric parameter p is replaced with a (convex) real function ψ. The Orlicz
norm of a function f (defined on a space X with measure µ) equals inf{t >
0:

∫
X
ψ(|f(x)|/t) dµ(x) ≤ 1}; the Lp norm is recovered for ψ(x) = |x|p. In

the result cited above we have ψ(x) = e|x|
α

, which means that the norm is
even much more influenced by large fluctuations that the Lp norms and thus
it is a “closer approximation” of the L∞ norm.

Explicit constructions for Lp discrepancy. Chen and Skriganov [CS02]
obtained an explicit construction of a set meeting Roth’s lower bound for
the L2 discrepancy for corners, in every fixed dimension (while all of the sev-
eral constructions known before had some probabilistic component); also see
[CS08] for a substantial simplification of the proof. We won’t describe the
construction here; we just mention that it has some features in common with
the construction of b-ary nets in Section 2.3, dealing with a suitable vector
subspace of GF (b)md (for a prime b) and then mapping it to a point set in
[0, 1]d in the usual way, by reading the components as digits in base b. Skrig-
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anov [Skr06] constructed explicit sets in the unit cube with asymptotically
optimal Lp discrepancy for every fixed p ∈ (1,∞) and every fixed dimen-
sion d.

Extra-large discrepancy for hyperbolic needles. Beck [Beca], [Becb] in-
vestigated, in our language, the discrepancy for translated and rotated copies
of the hyperbolic needle Hγ(n) = {(x, y) ∈ R2: x ∈ [1, n], |xy| ≤ γ}. We note
that the area vol(Hγ(n)) = 2γ lnn. The number of integer points in such ro-
tated and translated hyperbolic needle (essentially) corresponds to the num-
ber of integer solutions (x, y) with x ≥ 1, 1 ≤ y ≤ n of the inhomogeneous

Pell equation |(x+β)2−αy2| ≤ γ, which is a quantity of considerable interest
in number theory.

Beck established an “extra-large discrepancy” phenomenon. If P is the
integer lattice Z2 or, more generally, a set in R2 of density 1 in which every
two points have distance at least σ (a positive constant), then for 99 percent
of rotational angles θ, there is a translated copy H of Hγ(n) rotated by θ
such that |P ∩H | differs from vol(H) by Ω(logn), i.e., by a fixed fraction of
the area, the constant depending on γ and σ. (We gloss over some subtleties
of Beck’s result; see his Theorem 4 for a stronger formulation.)

Now let γ > 0 be fixed and, for β ∈ [0, 1], let H̃β
γ (n) be Hγ(n) ro-

tated by 45 degrees and translated by β in the positive x-direction. We set
Fn(β) := |Z2∩ H̃β

γ (n)|. Beck [Becb] discovered that, for β ∈ [0, 1] chosen uni-
formly at random, the distribution of Fn(β) suitably normalized tends to the
standard normal distribution (and in particular, the “typical” discrepancy of
H̃β

γ (n) is of order
√

logn). Moreover, Fn(β) also satisfies a law of the iterated
logarithm.

L1 discrepancy for halfspaces and lattice points in polyhedra. Chen
and Travaglini [CT09b] extended Proposition 3.4 to an arbitrary dimension,
showing that the L1 discrepancy for halfspaces in Rd is at most O(logd n),
attained for appropriately re-scaled Zd. The proof is based on results of Bran-
dolini, Colzani, and Travaglini [BCT97] (plus some “boundary effects” have
to be dealt with). In the latter paper it was proved, among others, that if
C is a fixed polyhedron in Rd (not necessarily convex), then the expected
discrepancy of a randomly rotated and translated copy of C w.r.t. the lattice
1
mZd is bounded by O(logdm).

The main theme of [BCT97] is the “average decay” of a Fourier transform,
a more or less classical topic. Letting C be a compact set in Rd, one studies
the behavior of χ̂C , the Fourier transform of the characteristic function of
C. In particular, in the setting of [BCT97], one takes some Lp average of χ̂C

over the sphere of radius R and investigates how fast it tends to 0 as R → ∞.
This is highly relevant for discrepancy lower bounds in the style of Chapter 7,
as well as for questions about lattice point distributions in copies of C; see
Travaglini [Tra04] for a nice survey.
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More on lattice points. The last few results mentioned above are relevant
for geometric discrepancy, but they really belong to the geometry of numbers
or, more precisely, theory of irregularities of distribution for the integer lat-
tice Zd. This is an extensive area on its own, of much more number-theoretic
nature than discrepancy theory in general, and with deep connections to har-
monic analysis and other fields. Here we mention two interesting discrepancy-
related topics.

Let p = p(x1, . . . , pd) be a d-variate polynomial with integer coefficients. A
fundamental problem in number theory is to find integer solutions of p(x) =
λ, where λ ∈ Z. Geometrically, one looks for integer points on the level surface
{x ∈ Rd: p(x) = λ}. Magyar [Mag07] studied the equidistribution of these
point sets for the case of p positive and homogeneous, and in particular, their
discrepancy for caps (i.e., intersections of the level surface with halfspaces).
Among other amazing results he proved, that for p(x) = x2

1 + · · ·+x2
d, where

the level surface is a sphere, these sets have an almost optimal discrepancy,
up to an nε factor (among all possible sets of the same size in the sphere), for
almost all caps. Roughly speaking, the exceptional caps not covered by this
bound have normal directions that are “too well approximable” by rational
directions.

The next topic concerns the L2 discrepancy for balls. For definiteness, let
us consider the toroidal discrepancy; see the notes to Section 7.1. Let P be
a fixed n-point set in the unit torus T d = Rd/Zd, let r ∈ (0, 1

2 ) be a given
radius, and let D2(r) denote the L2 average of the discrepancy of a ball of
radius r centered at x, averaged over x uniformly distributed in T d. Results
of Beck and of Montgomery (see [BC87], [Mon94]) show that the average of
D2(r) over r ∈ (0, 1

2 ) is at least of order n1/2−1/2d.
Now let the set P be the scaled grid 1

mZd, with an integer m; this is
an n-point set in T d, n = md. It is known that this P matches, up to a
constant factor, the just mentioned lower bound (for the average over r).
However, a surprising phenomenon, discovered by Parnovski and Sobolev
[PS01] (Section 3), appears when one considers D2(r) for r ∈ (0, 1

2 ) fixed.
The behavior depends on the remainder of the dimension d modulo 4: for
d 6≡ 1(mod 4), D2(r) behaves “regularly”, being always of order n1/2−1/2d,
but for d ≡ 1(mod 4) there are infinitely values of m for which D2(r) is
asymptotically smaller, namely, of order at most n1/2−1/2d(log n)−cd (with
an explicit constant cd > 0). From below Parnovski and Sobolev proved
D2(r) = Ω(n1/2−1/2d−δ) for every fixed δ > 0; Konyagin, Skriganov, and

Sobolev [KSS03] improved this, replacing n−δ by e−O((log log n)4)).
This phenomenon plays a significant role in Chen and Travaglini [CT09a],

who also considered the L2 toroidal discrepancy for balls and whose goal was
comparing a deterministic construction, namely, the scaled grid as above,
with a randomized construction in the spirit of “jittered sampling”, where one
starts with the grid points and randomly perturbs each of them independently
of the others. They found that the grid is better in small dimensions, while
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the randomized construction wins in large dimensions, except for dimensions
d ≡ 1(mod 4), where the grid is better for infinitely many values of m due to
the Parnovski–Sobolev result. Similar investigations in a more general setting
were undertaken by Brandolini et al. [BCGT09].

Discrepancy for high-dimensional corners. An interesting question is,
how D(n, Cd), the (worst-case) discrepancy for corners, behaves for d large,
say comparable to n? In particular, Heinrich et al. [HNWW01] investigate the
quantity n∞(d, ε) = min{n: D(n, Cd)/n ≤ ε}; that is, the smallest number of
points in [0, 1]d that can approximate the measure of all corners with relative

accuracy ε. Perhaps surprisingly, n∞(d, ε) is polynomially bounded in d and
1
ε . (This should be contrasted with the fact that for d = log2 n, say, we

have D(n, Cd) = 2Ω(d), as can be calculated from Roth’s lower bound—see,
e.g., [Mat98b] for the appropriate formulas.) Indeed, a straightforward VC-
dimension argument yields n∞(d, ε) ≤ Cdε−2 log d

ε , with an explicit constant
C (independent of d, of course!), and using a deep result of Talagrand, this
can be improved to Cdε−2—see [HNWW01].

The best known lower bound is due to Hinrichs [Hin04]: n∞(d, ε) ≥ cd/ε,
for some constant c > 0, all ε > 0 smaller than a suitable constant, and all d.
The idea of this lower bound is simple. One constructs a large set Nε ⊂ Cd of
corners such that the symmetric difference of every two has volume exceeding
ε. If P is an n-point set with discrepancy at most εn, then P ∩C 6= P ∩C ′ for
every two corners C 6= C ′ in Nε. Finally, the number of different intersections
of P with corners is estimated using a VC-dimension argument.

The cited polynomial upper bounds are probabilistic—they hold for a typ-
ical random n-point set. An interesting open problem is obtaining an explicit

construction of polynomial size. What is meant by “explicit”? This word is
often used in an informal sense, but theoretical computer science offers a
formal definition: explicit means computable by a deterministic polynomial-
time algorithm, in our case in time polynomial in d and 1

ε . Methods of the-
oretical computer science, developed mainly for the purpose of derandom-
izing probabilistic algorithms, have also led to the strongest results so far.
Namely, the work of Even et al. [EGL+92] provides explicit sets witnessing
n∞(d, ε) ≤ (d/ε)O(log d), and also n∞(d, ε) ≤ (d/ε)O(log(1/ε)) (which is poly-
nomial in d for ε fixed).1 The second bound has later been improved; to my

knowledge, the best result is n∞(d, ε) ≤ dO(1)ε−O(
√

log(1/ε)) following from
Lu [Lu02]. All of these constructions are actually formulated for the discrete
grid; that is, instead of the Lebesgue measure on [0, 1]d one approximates
the counting measure on the grid {1, 2, . . . , q}d (for converting this to the
Lebesgue-measure case, one needs to set q = Cd/ε). The constructions work
not only for corners, but also for combinatorial rectangles ; see the notes on
page 34.

1 In contrast, the bounds known for the usual constructions for fixed d, such as
the Halton–Hammersley sets, have at least exponential dependence on d.
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There are also nontrivial results concerning deterministic computation of
sets witnessing n∞(d, ε) = O(dε−2 log 1

ε ), almost matching the best known
probabilistic bound, but the running time of these algorithms are exponential
in d; see, e.g., Doerr and Gnewuch [DG08].

The trace bound. An interesting lower bound technique for combinatorial
discrepancy, the so-called trace bound, was developed by Chazelle and Lvov
[CL01], which, for example, yields direct proofs for some results where previ-
ously one had to go via the Lebesgue-measure discrepancy. It asserts that, for
a set system S on n points, with at most n sets, and with incidence matrix
A, we have

disc(S) ≥ 1

4
· 324−n·tr((AT A)2)/t2

√
t/n,

where t = tr(ATA) and tr(M) denotes the trace (sum of diagonal elements)
of a matrix M .

Adding a single set. A tantalizing open question in combinatorial discrep-
ancy is, by how much can the hereditary discrepancy of a set system on n
points increase by adding a single set? The truth could perhaps be an addi-
tive constant, but the current best result of Kim, Matoušek, and Vu [KMV05]
gives only a multiplicative factor of O(log n), with a half-page proof.

Linear discrepancy versus hereditary discrepancy. We have seen that
the linear discrepancy of any set system, or more generally, of any matrix, is
no more than twice the hereditary discrepancy. Spencer conjectured that the
factor 2 can be improved to 2(1− 1

n+1 ) for all matrices with n columns (which,
if true, is tight). Doerr [Doe04a] and, later but independently, Bohman and
Holzman [BH05] proved the special case of this conjecture with A totally
unimodular. Both proofs are nice and the second one is also quite short.

Multicolor discrepancy. The notion of combinatorial discrepancy has been
generalized from two colors to k colors. That is, we want to color the ground
set with k colors so that each set has roughly 1

k fraction of each color; see
Doerr and Srivastav [DS03] for a survey. While many of the results are direct
generalizations from the 2-color case, some interesting phenomena have been
found. In particular, Doerr [Doe04b] showed, with a neat proof employing the
k-color linear discrepancy, that the hereditary discrepancy of a set system S
is nearly independent of the number of colors; that is, for every k, ` ≥ 2 there
is a constant C = C(k, `) such that the `-color hereditary discrepancy of S
is at most C-times the k-color hereditary discrepancy. On the practical side,
multicolor discrepancy turned out to be important in a problem of storing
data on parallel disks, as was observed independently by Chen and Cheng
[CC04] and by Doerr, Hebbinghaus, and Werth [DHW06].


