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Queueing 101

Consider a queue with
• Poisson λ arrivals
• Exponential µ service times, µ > λ.
• A single server working according to FCFS discipline
• Let ρ = λ/µ

For the steady-state waiting time W we know that

E[W ] =
ρ

(1− ρ)µ

P (W > x) = ρe−µ(1−ρ)x
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Key questions

If we consider more general inter-arrival times and service times, it is
impossible to compute E[W ] and P (W > x) analytically. However, it
still can be shown that, under some regularity conditions:

E[W ] = Θ

((
1

1− ρ

)β
)
, ρ ↑ 1,

and for fixed ρ and x→∞,

P (W > x) = e−γx(1+o(1)) or P (W > x) = Θ(x−α).

How do α, β, γ depend on the scheduling discipline?

How do we choose a scheduling discipline that mitigates the effect of
critical loading and the occurrence of long delays?
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Overview

• Tail estimates for specific scheduling disciplines (FIFO, LIFO, PS,
SRPT)

• Optimizing tail behavior when distribution is not known

• Scheduling under critical loading
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The GI/GI/1 FIFO queue

Consider a GI/GI/1 FIFO queue with i.i.d. inter-arrival times (Ai),
i.i.d. service times (Bi), working at speed 1. ρ = E[B]/E[A] < 1.

Let W be the steady-state waiting time. Well-known is:

W
d
= sup

n≥0
Sn,

with Sn =
∑n

i=1Xi and Xi = Bi − Ai.

Main question: what is the behavior of

P (W > x) = P (sup
n≥0

Sn > x)

as x→∞?
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Simple estimates

The following crude bounds turn out to be sharp enough!

P (Sn > x) ≤ P (sup
n

Sn > x) ≤
∞∑
n=0

P (Sn > x).

Upper bound: Let u > 0 be such that E[euX ] < 1, and observe that
∞∑
n=0

P (Sn > x) ≤
∞∑
n=0

E[euSn]e−ux =
1

1− E[euX ]
e−ux.

Define γF = sup{u : E[euX ] ≤ 1}.
Since the above bound is valid for all u < γF , we see that

lim sup
x→∞

1

x
logP (W > x) ≤ −γF .

Lower bound: pick n = xb, with b cleverly chosen, and apply "Cramér".
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Comments

• The limit

lim
x→∞

− logP (W > x)

x
= γF = sup{u : E[euX ] ≤ 1}

always holds, but could equal 0.
• Important interpretation from proof of "Cramér": rare events under
light tails typically occur by a temporary change of the underlying
distribution, from F to some exponentially tilted F̃ .
• In a queueing context, this causes the drift to change from negative
to positive.
• Choosing F̃ typically relates to a minimization problem. In GI/GI/1:
trade off between the slope of the new drift, and the duration of the
change.
• bx can be interpreted as the most likely time it takes to create a
workload of level x.
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Heavy tails

The results obtained so far are not very meaningful if

E[eεX ] =∞

for all ε > 0.

In this case, we say that X has a heavy (right) tail.

Examples of heavy tails:
• Lognormal: P (X > x) ∼ e−(log x)2

•Weibull: P (X > x) ∼ e−x
α, α ∈ (0, 1).

• Pareto: P (X > x) ∼ Cx−α

• Regular variation: P (X > x) = L(x)x−α. L(ax)/L(x)→ 1
(example: L(x) = log x).
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Properties

If P (X > x) = L(x)x−α, then

P (X > x + y | X > x)→ 1.

for fixed y > 0 as x→∞.
"If things go wrong, they go totally wrong."

If X ′ is an i.i.d. copy of X , then

P (X + X ′ > x) ∼ P (max{X,X ′} > x) ∼ 2P (X > x).

"Maximum dominates the sum."
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The principle of a single big jump

• Remember W d
= supn Sn, Xi = Bi − Ai.

Suppose P (B1 > x) = L(x)x−α.
• At some time n, the random walk Sn has the typical value −an,
a = −E[X ].
• Xn+1 = Bn+1 − An+1 is so large that Sn+1 > x. For this to happen,
we need Xn > an + x.
• This can happen at any time n.

P (W > x) ≈ P (∪∞n=1{Sn ≈ −an;Xn+1 > an + x})

≈
∞∑
n=0

P (Xn+1 > an + x)

∼ 1

a

∫ ∞

x

P̄ (B > u)du

∼ ρ

1− ρ
1

E[B](α− 1)
L(x)x1−α.
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Summary: The light-tailed case
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Λ′(γF ) −(1− ρ)

P

• In beginning of busy period: Sample from exponentially(γF ) tilted
distribution until level x is crossed.
• Maximum in busy cycle: x + O(1)



JJ J N I II 12/36JJ J N I II 12/36

Summary: The heavy-tailed case
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• In beginning of busy period (after O(1) time): Huge job arrives
• Maximum in busy cycle: x + O(x).
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Preemptive LIFO

Consider a GI/GI/1 queue with i.i.d. inter-arrival times (Ai), i.i.d.
service times (Bi), working at speed 1. ρ = E[A]/E[B] < 1.

Assume the service discipline is Preemptive LIFO.

Observation: sojourn time has same distribution as GI/GI/1 busy
period P (you enter first and leave last).

We will review the behavior as P[P > x] as x→∞, both for light tails
and heavy tails.

In both case, assume a job of size B enters an empty system at time 0.
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Upper bound

LetA(x) =
∑N(x)

n=1 Bi be the amount of work arriving to the system (0, x].

N(x) = max{n : A1 + . . . + An ≤ x}.

Upper bound:

P[P > x] ≤ P[B + A(x) > x]

≤ E[esB]E[esA(x)]e−sx.

Mandjes & Zwart (2004), Glynn & Whitt (1991):

lim
x→∞

1

x
logE[esA(x)] = Ψ(s) := −Φ←A

(
1

ΦB(s)

)
.

ΦA(s) = E[esA], ΦB(s) = E[esB].
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Upper bound (2)

Thus,

1

x
log P[P > x] ≤ logE[esB]

x
+ Ψ(s)(1 + o(1))− s.

optimizing over s, we obtain

lim sup
x→∞

1

x
log P[P > x] ≤ −γL,

with

γL = sup
s≥0

[s− Ψ(s)].

This upper bound is sharp.
Intuition: large busy period happens as a consequence of the fact that
system behaves as if ρ = 1 for x units of time.
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Comparison with FIFO

Observe

γF = sup{s : ΦA(−s)ΦB(s) ≤ 1}
= sup{s : −s ≤ Φ←A (1/ΦB(s))}
= sup{s : s− Ψ(s) ≥ 0}.

Since Ψ′(0) = ρ, and using strict convexity, it follows that

γL < (1− ρ)γF .

Conclusion: LIFO is not optimal in the light-tailed case.
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Heavy tails:intuition
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• In beginning of busy period (after O(1) time): Huge job arrives with
size x(1− ρ)

•Workload process drifts down at rate 1− ρ.
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Idea of proof

Based on picture:

P[P > x] ≈ P[Bmax > x− A(x)]

≈ P[Bmax > (1− ρ)x].

Made rigorous for regularly varying service times in Zwart (2001),
extended to lognormal and some Weibullian tails by Jelenkovic &
Momcilovic (2004).

Boxma (1979)/Asmussen (1999): P[Bmax > x] ∼ E[N ]P[B > x].

Conclusion:

P[P > x] ∼ E[N ]P[B > x(1− ρ)].
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Comparison

If P[B > x] ∼ L(x)x−α, then

P[P > x] ∼ E[N ](1− ρ)−αP[B > x].

Thus, the sojourn time under LIFO has the same tail as the service
time, up to a constant!

Thus, it is optimal (up to a constant).

Conclusion:
• FIFO outperforms LIFO for light tails
• LIFO outperforms FIFO for regularly varying tails.
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Processor Sharing

• Processor Sharing is a service discipline where each job in the system
receives the same service rate.

• Old application: time-sharing in computer systems.

• New application: TCP-like bandwidth allocation mechanisms.

server
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How does a large response time occur?

1. Huge amount of work/number of jobs upon arrival

2. Increased amount of work/arrivals during sojourn

3. Unusually large service time

• FIFO: Always case 1.

• LIFO with light tails: case 2

• LIFO with heavy tails: case 2 or 3.

• PS ??
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Heavy tails

One way to achieve sojourn time of length x is that your own service
time is (1− ρ)x.

All other jobs will regard the big job as permanent (separation of
timescales).

PS with one permanent customer is stable, so throughput must be ρ.
Thus, service rate of 1 − ρ is allocated to large customer, leading to
sojourn of x

P[V > x] ∼ P[B > x(1− ρ)]

r
1
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Comments

P[V > x] ∼ P[B > x(1− ρ)]

• Called a reduced service rate approximation or reduced load approx-
imation.

• Sojourn time is primarily large because of a large service time.

• "If you stay in the system for a long time, its your own fault".
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Light-tailed case

Let P ∗ be the time to empty the system starting from equilibrium.

Upper bound

P[V > x] ≤ P[P ∗ > x]

Using similar arguments as before, we obtain

lim sup
x→∞

log P[V > x]

x
≤ −γL.

This bound is sharp if B can take arbitrary large values.

Conclusion: PS outperforms FIFO for heavy tails, but is as bad as LIFO
for light tails.
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SRPT

• Heavy-tailed case like PS:

P[V > x] ∼ P[B > x(1− ρ)]

with similar intuition.

• Light tails like LIFO:

P[V > x] ≥ P[V > x;B > x0]

This can be lower bounded by a busy period of jobs smaller than x0,
which has decay rate γL,≤x0

. Then take x0 →∞.

• Does not work if B has bounded support with mass at right end
point xB. In that case, there is a connection with a priority queue,
and the decay rate is in the interval (γL, γF ].
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Other disciplines

• Extension of SRPT to wider family of size-based scheduling disci-
plines, so called "SMART" disciplines (Wierman et al): results stay
qualitatively the same

• Same story for FB (LAS).

•What makes a scheduling discipline optimal for light tails, and what
makes it optimal for heavy tails?

• More general framework is needed.
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The setup

• Scheduling discipline π with following properties:
– work-conserving,
– non-anticipative,
– non-learning (scheduling policy is independent of events before
last regeneration epoch).

• Let Vπ,i be sojourn time of ith arriving customer and let N be the
number of customers served during a busy period. Then, if ρ < 1,
Vπ,i

d→ Vπ with

P (Vπ > x) =
1

E[N ]
E

[
N∑
i=1

I(Vπ,i > x)

]
.
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Tail optimal scheduling

•We call a scheduling discipline π0 optimal under P if

lim sup
x→∞

P (Vπ0
> x)

P (Vπ > x)
<∞

for any scheduling discipline π. If the limsup is ≤ 1 we call π0
strongly optimal.

• π0 is weakly optimal if

lim sup
x→∞

P (Vπ0
> x)1+ε

P (Vπ > x)
<∞

for every scheduling discipline π and any ε > 0.

• Challenge: what if we are allowed to vary P (·) as well?
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How to verify optimality

Lower bounds for any service discipline:

P (Vπ > x) ≥ P (B > x)

P (Vπ > x) =
1

E[N ]
E

[
N∑
i=1

I(Vπ,i > x)

]

≥ 1

E[N ]
E

[
N∑
i=1

I(Vπ,i > x)I(Cmax > x)

]
≥ 1

E[N ]
P (Cmax > x).

Cmax is the maximal amount of work in system during a busy period.

Upper bound: time it takes to empty entire system from stationary just
after an arrival (residual busy period).
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Optimality

• Recall that Cmax is the maximal amount of work in system during a
busy period.

• It can be shown that γCmax = γF , so FIFO is weakly optimal for
light tails. This is shown before in a different setting by Ramanan
& Stolyar (2001).

• For heavy tails, PS,LIFO and SRPT are optimal.

• Main question: Can we construct a work-conserving non-anticipative
non-learning scheduling algorithm that will be weakly optimal for
P ∈ P with P containing both light tails and heavy tailed service
times?
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NO!

Some intuition:
• Non-preemptive scheduling disciplines are not optimal, since O(x)
big jobs get stuck after a single big job of size ≥ x arrives. This is
bad in case of heavy tails.

• PS, LIFO and SRPT all have the appealing property that system
stays stable if an infinite-size job is added. This seems a necessary
condition to be optimal for heavy tails.

• Suppose that a scheduling discipline retains stability after adding an
infinite-size job. If you are a large job, you will likely have to wait
for a busy period of small jobs to pass you, leading to busy-period
type behavior, which is bad in case of light tails.

• Proof is actually based on this intuition and shows that disciplines
that are optimal in one case are worst case in the other case, and
vice versa.
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Limited Processor Sharing

server
buffer

<=K

• At most K jobs can be served simultaneously, according to PS
• Additional jobs wait in FIFO buffer.
• Idea: clever choice of K, for example as function of ρ (assuming we
know the load).
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Results for LPS

• If P[B > x] ∼ L(x)x−α, then

− log P[V > x] ∼ min{α, (α− 1)k} log x,

with k = inf{n : ρ > (1 − n/K)} the number of big jobs necessary
to saturate the system.

• If B has decay rate γB > 0, then

γLPS−K = inf
a∈[0,1]
{(1− a)γF + aγB/K + sup

s≥0
[sa(1− 1/K)− Ψ(s)]}

• K = d 1
1−ρe seems a robust choice, leading to better than worst case

behavior for large classes of light-tailed and heavy-tailed distribu-
tions.

• Knowing the load helps!
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Critical loading

For most service disciplines

E[Vπ] = Θ

(
1

1− ρ

)
Nikhil Bansal (2004) found a counterexample: for M/M/1 SRPT, he
found that:

E[Vπ] = Θ

(
1

(1− ρ) log(1/(1− ρ))

)
= o

(
1

1− ρ

)
Proof is based on an "explicit" (triple integral) formula for E[Vπ] and
many laborious manipulations.
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Critical loading (2)

Lin/Wierman/Z (2011): be even more laborious manipulations, we
found for generally distributed service times that:

• If job sizes have a Pareto law with infinite variance, then

E[Vπ] = Θ (log(1/(1− ρ))) .

• If job sizes have finite variance, then

E[Vπ] = Θ

(
1

(1− ρ)G−1(ρ)

)
with G(x) = E[B;B < x]/E[B].
• The heavier the tail the slower the growth
• Proofs are not probabilistic so no intuition yet...
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Concluding remarks

• Challenge 1: get better understanding of SRPT

• Challenge 2: combine techniques from queueing and scheduling.
Example: Suppose one needs to schedule n items and the goal is to
minimize mean response time. Optimal blind scheduling policy has
a competitive ratio of O(log n) for n large. In the queueing world, a
busy period has roughly the length 1/(1 − ρ), so one would expect
that any blind policy would be O(log(1/(1− ρ)) worse than SRPT,
which is consistent with Bansal’s result for M/M/1.

Difficult to make this precise.


