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Chapter 8 Scalar product

Vector spaces have been defined in a very general way, so that they cover a
large class of objects. On the other hand, if we add other requirements vector
spaces have fulfil, it will be possible to derive deeper results. In particular, the
scalar product (sometimes called the dot product) makes it possible to define in
a natural way the notions of orthogonality, the size and the distance of vectors
(and hence limits as well) etc.

8.1. Scalar product and norm

The scalar product (similarly as a group, vector space, etc.,) is defined by a list
of properties that it has to fulfill.

Definition 8.1 (Scalar product over R). Let V be a vector space over R. Then
a scalar product is a mapping 〈·, ·〉 : V 2 → R such that
(1) 〈x, x〉 ≥ 0 ∀x ∈ V , and the equality holds only for x = 0,
(2) 〈x+ y, z〉 = 〈x, z〉+ 〈y.z〉 ∀x, y, z ∈ V ,
(3) 〈αx, y〉 = α〈x, z〉 ∀x, y ∈ V,∀α ∈ R,
(4) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ V .

A generalization to the field of complex numbers is the following. Let us
mention that a complex conjugate to a+ bi ∈ C is defined as a+ bi = a− bi.

Definition 8.2 (Scalar product over C). Let V be a vector space over C. Then
a scalar product is a mapping 〈·, ·〉 : V 2 → C such that
(1) 〈x, x〉 ≥ 0 ∀x ∈ V , and the equality holds only for x = 0,
(2) 〈x+ y, z〉 = 〈x, z〉+ 〈y.z〉 ∀x, y, z ∈ V ,
(3) 〈αx, y〉 = α〈x, z〉 ∀x, y ∈ V,∀α ∈ C,
(4) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ V .

Because of the property (1), that requires ordering, the scalar product is
introduced only for vector spaces over the fields R and C.

The fourth property of the complex scalar product implies that 〈x, x〉 =
〈x, x〉 ∈ R, and hence 〈x, x〉 is always a real number and therefore we can
compare it with zero in the first property.
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The properties (2) and (3) say that the scalar product is a linear function of
its first coordinate. How it is with the second one?

〈x, y + z〉 = y + z, x = 〈y, x〉+ 〈z, x〉 = 〈x, y〉+ 〈x, z〉,

〈x, αy〉 = 〈αy, x〉 = α〈y, x〉 = α〈y, x〉 = α〈x, y〉.

It follows that the complex scalar product is not linear in the second coor-
dinate, while the real scalar product is.

When substituting α = 0, we get 〈o, x〉 = 〈x, o〉 = 0, which means that the
scalar product of any vector with the zero one gives zero.

Example 8.3 (Examples of scalar products).

• In the space Rn: the standard scalar product 〈x, y〉 = xT y =
∑n
i=0 xiyi.

• In the space Cn: the standard scalar product 〈x, y〉 = xT y =
∑n
i=0 xiyi.

• In the space Rm×n: the standard scalar product 〈A,B〉 = xT y =
∑m
i=0

∑n
j=0 aijbij .

• In C[a,b], the space of continuous functions over [a, b]: the standard scalar

product 〈f, g〉 =
∫ b
a
f(x)g(x)dx.

The above mentioned scalar products are only examples of possible scalar
products on the spaces, there are many other scalar products. Later, in Theo-
rem 11.17, we will describe all scalar products on the space Rn.

Let us consider a vector space V over R or C. We will first show that a scalar
product enables us to introduce the norm, or the length of a vector.

Definition 8.4 (A norm induced by a scalar product). The norm defined by a
scalar product is defined by ‖x‖ :=

√
〈x, x〉, where x ∈ V .

The norm is well-defined due to the first property from the definition of the
scalar product, and it is always non-negative.

When using the standard scalar product in Rn, we get well-known Euclidean
norm ‖x‖ =

√
xTx =

√∑n
i=0 x

2
i .

A geometric interpretation of the standard scalar product in Rn is 〈x, y〉 =
‖x‖ · ‖y‖ cos(ϕ), where ϕ is the angle between vectors x and y. In particular,
the vectors x and y are orthogonal if and only if 〈x, y〉 = 0. In pther spaces such
geometry is missing, and therefore the orthogonality is defined by the equation
〈x, y〉 =).

Definition 8.5 (Orthogonality). Given vectors x and y are orthogonal if 〈x, y〉 =
0. We denote x ⊥ y.

Example 8.6 (Examples of orthogonal vectors for standard scalar products).

• In the space R3: (1, 2, 3) ⊥ (1, 1,−1).

• In the space C[−π,π]: sinx ⊥ cosx ⊥ 1.
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Theorem 8.7 (Pythagoras).
If x, y ∈ V are orthogonal, then ‖x+ y‖2 = ‖x‖2 + ‖y‖2.
Proof.

‖x+y‖2 = 〈x+y, x+y〉 = 〈x, x〉+〈x, y〉+〈y, x〉+〈y, y〉 = 〈x, x〉+〈y, y, 〉 = ‖x‖2+‖y‖2. ♣

Let us mention that in R the reverse implication is valid as well, but, in
general, this is not true in C (see Problem 8.2).

Theorem 8.8 (Inequality of Cauchy-Schwartz1). For each x, y ∈ V it is
|〈x, y〉 ≤ ‖x‖ · ‖y‖.
Proof. (Real version) We will prove the inequaliy over real numbers first, because
the proof is quite elegant. For y = o the inequaliy is satisfied trivially, so let
us suppose y 6= o. Consider a real function f(t) = 〈x + ty, x + ty〉 ≥ 0 of the
variable t. Then

f(t) = 〈x, x〉+ t〈x, y〉+ t〈y, x〉+ t2〈y, y〉 = 〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉.

The function is quadratic, and everywhere non-negative, and therefore it
does not have two different roots. Therefore the discriminant is non-positive:

4〈x, y〉 − 4〈x, x〉〈y, y〉 ≤ 0.

It follows that 〈x, y〉2 ≤ 〈x, x〉〈y, y〉, and taking a square root we get |〈x, y〉| ≤
‖x‖ · ‖y‖.
Proof. (Complex version) If 〈x, y〉 = 0, the statement is satisfied trivially. Let
us assume that 〈x, y〉 6= 0 and define a vector

y =
〈y, y〉
〈x, y〉

x− y.

Then

〈z, y〉 =

〈
〈y, y〉
〈x, y〉

x− y, y
〉

=
〈y, y〉
〈x, y〉

〈x, y〉 − 〈y, y〉 = 0.

It follows that the vectors z and y are orthogonal, and Pythagoras theorem
gives

‖x+ y‖2 = ‖z‖2 + ‖y‖2,

or

〈y, y〉2

|〈x, y〉|2
‖x‖2 = ‖z‖2 + ‖y‖2 ≥ ‖y‖2.

By dividing by ‖y‖2 and multiplying by |〈x, y〉|2 we get the inequality to be
proved ‖x‖2‖y‖2 ≥ |〈x, y〉2 in the second powers. ♣

1The inewuality is sometimes called Scwartz, or Cauchy-Bunyakovski, or Cauchy-Schwartz-
Bunyakovski. Augustin-louis Cauchy proved it in 1821 for Rn, later it was generalized indepen-
dently by Hermann Amandus Schwartz (1880) and Viktor Jakovlevich Bunyakovski (1859).
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Sometimes the Cauchy-Schwartz inequality is written equivalently as

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉.

Cauchy-Schwartz inequality is useful and often used for deriving other gene-
ral results, and also for particular algebraic expressions. E.g., for the standard
scalar product in Rn we get(

n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2i

)(
n∑
i=1

y2i

)
.

Other use, see e.g. Kristl 2008. We will use Cauchy-Schwartz inequality im-
mediately to get the triangle inequality:

Theorem 8.9 (Triangle inequality). For each x, y ∈ V it is ‖x+y‖ ≤ ‖x‖+‖y‖.
Proof. Let us first recall that the following holds for any complex number z =
a+ bi¿ z + z = 2a = 2Re(z). Moreover, a ≤ |z|. Now, we get

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈y, y〉+ 〈x, y〉+ 〈y, x〉 =

= 〈x, x〉+ 〈y, y〉+ 2Re(〈x, y〉) ≤ 〈x, x〉+ 〈y, y〉+ 2|〈x, y〉|

≤ ‖x‖2 + ‖y‖2 + 2‖x‖ · ‖y‖ = (‖x‖+ ‖y‖)2,

where the last inequality follows from Cauchy-Schwartz inequality. We obtain
‖x+ y‖2 ≤ (‖x‖+ ‖y‖)2 and the statement to be proved is obtained by square-
rooting.♣

A notm induced by a scalar product is only one of types of a norm, but the
notion of a norm is defined in a more general way. However, we will work mostly
with a scalar product induced norm, the following definition is a small detour
only.

Definition 8.10 (Norm) Let V be a vector space over R or C. Then a norm is
a mapping ‖ · ‖ > V → R such that:
(1) ‖x‖ ≥ 0 for all x ∈ V , and the equality holds for x = o only,
(2) ‖αx‖ = |α| · ‖x‖ for all x ∈ V and all α ∈ R or α ∈ C,
(3) ‖x+ y‖ ≤ ‖x‖ · ‖y‖.

Theorem 8.11 A norm induced by a scalar product is a norm.
Proof. The property (1) is fulfilled in view of the definition of a norm induced
by a scalar product. The property (3) follows from 8.9. Now for (2):

‖αx‖ =
√
〈αx, αx〉 =

√
αα〈x, x〉 =

√
αα
√
〈x, x〉 = |α| · ‖x‖.

Example 8.12 (Examples of norms in Rn). A useful class of norms are so called
p-norms. For 1 ≤ p the p norm of a vector x ∈ Rn is defined as

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

.
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Special settings of p give known norms:

• for p = 2: the Euclidean norm ‖x‖2 =
√∑n

i=1 x
2
i , which is the norm

defined by the standard scalar product,

• for p = 1: the sum norm ‖x‖1 =
∑n
i=1 |xi|, called also the Manhattan

norm, because it represents real distances when walking in a perpendicular
network of streets in a town,

• for p = ∞ (using limit expression): the maximum (Chebychev) norm
‖x‖∞ = maxi=1,...,n |xi|.

Example 8.13 (Examples of norms in C[a,b]). A norm of a continuoius function
f : [a, b]→ R can be defined analogously to the Euclidean space:

• an analogy of the Euclidean norm: ‖f‖2 =
√∫ b

a
f(x)2dx,

• an analogy of the sum norm: ‖f‖1 =
∫ b
a
|f(x)|dx,

• an analogy of the maximum norm: ‖f‖∞ = maxx∈[a,b] |f(x)|.

• an analogy of the p-norm: ‖f‖p =
(∫ b

a
|f(x)|pdx

) 1
p

.

Remark 8.14 (Parallelogram rule). The following statement, so called paralle-
logram rule, is satisfied for a norm induced by a scalar product:

‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + ‖y‖2.

Proof.

‖x−y‖2+‖x+y‖2 = 〈x−y, x−y〉+〈x+y, x+y〉 = 2〈x, x〉+2〈y, y〉 = 2‖x‖2+‖y‖2. ♣

It follows from the theorem that both the sum and the maximum norms
are not induced by any scalar product. E.g., for x = (1, 0) and y = (0, 1) the
parallelogram rule is not satisfied.

A more general theroem can be proved: if a norm verifies the parallelogram
rule, it is induced by some scalar product; see Horn and Johnson (1985).

A notm allows us to define the distance (or metric) of two vectors x and y as
a norm ‖x−y‖/ And when we have distances, we can define limits, etc. I expect
that a reader will not be surprised that a metric can be defined axiomatically.
Moreover, to define a metric, we do not need a vector space, an arbitrary set is
sufficient.

Remark 8.15 (Metric) A metric on a set M is defined as a mapping d : M2 → R
verifying:
(1) d(x, y) ≥ 0 for each x, y ∈M , and the equality holds only if x = y,
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(2) d(x, y) = d(y, x) for each x, y ∈M ,
(3) d(x, z) ≤ d(x, y) + d(y, z) for each x, y, z ∈M .

Each norm defines a metric by d(x, y) = ‖x−y‖, i.e., the distance of x and y
is defined as the length of their difference. The reverse statement is not valid in
general. There are metric spaces, where the metric is not induces by any norm,
e.g., the discrete metric d(x, y) = d‖x − y‖e, od the discrete metric defined by
d(x, y) = 1 for x 6= y, and d(x, y) = 0 for x = y.

Example 8.16 Skipped

8.2. Orthonormal basis, Gram-Schmidt othogonalization

Every vector space has basis. When dealing with a space with scalar product,
it is natural to ask whether there is a basis composed of mutually orthogonal
vectors. In this section we will show that such a basis exists, and that such a
basis has quite a few remarkable properties. We will also derive an algorithm to
find such a basis.

Definition 8.17 (An orthogonal and orthonormal system). A system of vectors
z1, . . . , zn is orthogonal, if 〈zi, zj〉 = 0 for all i 6= j. A system of vectors z1, . . . , zn
is orthonorma, if it is orthogonal, and ‖zi‖ = 1 for all i = 1, . . . , n.

If a system z1, . . . , zn is orthonormal, it is orthogonal. The reversed impli-
cation is not valid, but it is not a problem to orthogonalize such a sustem. If
z1, . . . , zn are non-zero and orthogonal, then 1

‖z1‖z1, . . . ,
1
‖zn‖zn is orthonormal.

The proof: ‖ 1
‖zi‖zi‖ = 1

‖zi‖‖zi‖ = 1.

Example 8.18 In the space Rn with the standard scalar product an example
of an orthonormal system is the canonical basis e1, . . . , en. Especially in the
plane R2 an example of an orthonormal system are vectors (1, 0)T and (0, 1)T .

Another example of an orthonormal basis in R2 is, e.g.,
√
2
2 (1, 1)T ,

√
2
2 (1,−1)T .

Theorem 8.19 If a system z1, . . . , zn of vectors is orthonormal, it is linearly
independent.
Proof. Let us consider a linear combination

∑n
i−1 αizi = o The for each k =

1, . . . , n it is:

0 = 〈o, zk〉 =

〈
n∑
i=1

αizi, zk

〉
=

n∑
i=1

αi〈zi, zk〉 = αk〈zk, zk〉 = αk. ♣

Thus, orthonormality of vectors implies their linear independence plus so-
mething else - their orthogonality. And it is this property that allow us to solve
certain problems efficiently. E.g., the next theorem tells us that it is easy to
compute coordinates of a vector with respect to a basis, which is orthonormal.

Theorem 8.20 (Fourier coefficients). Let z1, . . . , zn be an orthonormal basis of
a space V . Then for each x ∈ V it is x =

∑n
i=1〈x, zi〉zi.

Proof. We know that x =
∑n
i=1 αiz+ i and the coordinates α1, . . . αn are unique

(Theorem 5.28). Now, for each k = 1, . . . , n it is:
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〈x, zk〉 =

〈
n∑
i=1

αizi, zk

〉
=

n∑
i=1

αi〈zi, zk〉 = αk〈zk, zk〉 = αk. ♣

The expression x ∈ V it is x =
∑n
i=1〈x, zi〉zi is called Fourier series and

the scalars 〈x, zi, i = 1, . . . , n are called Fourier coefficients2). Geometric signifi-
cance of the Fourier coefficient 〈x, zi〉 is that the vector 〈x, zi〉zi is the projection
of the vector x to the line span{zi}. In other words, the vector 〈x, zi〉zi is a vec-
tor on the line with the direction zi, which is the closest to the vector x. Then
the vector x can be composed of those partial projections using a simple sum
x =

∑n
i=1〈x, zi〉zi (more about projections in Section 8.3). As illustrated below,

if the basis z1, . . . , zn is not orthonormal, the property is not satisfied in general.

The figures at page 94 of the Czech text, z1 and z2 orthonormal on the left,
but of length 1 and not orthonormal on the right.

How to construct an otrhonormal basis of some space? The following pro-
cedure, Gram-Schmidt orthogonalization, starts with an arbitrary basis, and
using subsequent making vectors orthogonal it creates a basis, which is ortho-
normal. Making vectors orthogonal in the step 2 of the procedure works so that
the projection of a vector xk to the space generated by vectors x1, . . . , xk−1
is subtracted from the vector xk, which becomes orthogonal to all preceding
vectors. More about projection in Section 8.3.

The figures at page 95 of the Czech text: making the second and the third
vector orthogonal to the previous ones.

Theorem 8.21 (Gram-Schmidt orthogonalization). Let x1, . . . , xn ∈ V be li-
nearly independent.

1: for k := 1 to n do
2: yk := xk −

∑k−1
j=1 〈xk, zj〉zj ,

3: zk := 1
‖yk‖yk,

4: end for

The output: z1, . . . , zn - an orthonormal basis of the space span{x1, . . . , xn}.
Proof. (The correctness of Gram-Schmidt orthogonalization.) By mathematical
induction on n we will prove that z1, . . . , zn is an orthonormal basis of the space
span{x1, . . . , xn}. For n = 1 it is y1 = x1 6= o and z1 := 1

‖xk‖x1 is well defined

and span{x1} = span{z1}.
The induction step n← n−1. Let us assume that z1, . . . , zn−1 is an orthonor-

mal basis of the space span{x1, . . . , xn−1}. If yn = o, then xn =
∑n−1
j=1 〈xn, zj〉zj

2Jean Baptiste Joseph Fourier (1768-1830), a French mathematician and physicist. He used
the series around the year 1807 to solve the problem of heat conduction in solid bodies.
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and hence xn ∈ span{z1, . . . , zn−1} = span{x1, . . . , xn−1}, which contradicts li-
near independence of the vectors x1, . . . , xn. Therefore yn 6= o and zn := 1

‖yn‖yn
is well defined and its norm is equal to 1.

Now, we will prove that z1, . . . , zn is an orthonormal system. It follows from
the induction hypothesis that z1, . . . , zn−1 ⊆ span{x1, . . . , xn}, and therefore
span{z1, . . . , zn} ⊆ span{x1, . . . , xn}. Since bothh spaces have the same di-
mension, the equality holds (Theorem 5.42). ♣

The advantage of Gram-Schmidt orthogonalization is that it can be used in
any space with scalar product. Especially when using the standard scalar pro-
duct of Rn, the orthogonalization can be expressed using matrices (see Remark
13.8), but, on the other hand, in this case there are also different methods that
have better numerical properties, compare Section 13.3.

Consequence 8.22 (Existence of an orthonormal basis). Every finitely gene-
rated space (with scalar product) has orthonormal basis.
Proof. We know (Theorem 5.34) that every finitely generated space has a basis;
and the basis can be orthogonalized using Gram-Schmidt method. ♣

Let us note that the statement is not valid for infinitely generated spaces -
there are spaces with scalar product that have no orthonormal basis, see Bečvář
[2005].

Consequence 8.23 (Extension of an orthonormal system to an orthonormal
basis). Every orthonormal system in a finitely generated spacecan be extended
to an orthonormal basis.
Proof. We know (Theorem 5.41) that every orthonormal system of vectors
z1, . . . , zm can be extended to a basis z1, . . . , zm, xm+1, . . . , xn, which can be
orthogonalize using Gram-Schmidt orthogonalization to z1, . . . , zm, zm+1, . . . , zn.
Note that the orthogonalization doesn’t change the first m vectors.

Another useful relation is Bessel inequality and Parseval equality.

Theorem 8.24 Let z1, . . . , zn be an orthonormal system in V , and x ∈ V . Then

(1) Bessel inequality: ‖x‖2 ≥
n∑
j=1

|〈x, zj〉|2,

(2) Parseval equality: ‖x‖2 =

n∑
j=1

|〈x, zj〉|2 if and only if x ∈ span{z1, . . . , zn}.

Proof. (1) follows from

0 ≤

〈
x−

n∑
j−1
〈x, zj〉zj , x−

n∑
j−1
〈x, zj〉zj

〉
=

〈x, x〉 −
n∑
j−1
〈x, zj〉〈x, zj〉 −

n∑
j−1
〈x, zj〉〈zj , x〉+

n∑
j−1
〈x, zj〉〈x, zj〉 =
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= ‖x‖2 −
n∑
j−1
|〈x, zj〉|2.

(2) follows from the preceding computation, because the equality holds if
and only if x =

∑n
j−1〈x, zj〉zj . ♣

Parseval equality shows that, in other words, in any finitely generated space
V the norm of an arbitrary x ∈ V can be expressed as the standard Euclidean
norm of its vector of coordinates ‖x‖ =
sqrt[x]TB [x]B , where B is an orthonormal basis of V . As it will be shown below
in 8.25, the property holds analogously for scalar product: 〈x, y〉 = [x]TB [y]B for

a real space, and 〈x, y〉 = [x]TB [y]B for a complex space.

Theorem 8.25 Let z1, . . . , zn be an orthonormal basis of a space V , and x, y ∈
V . Then 〈x, y〉 = [x]TB [y]B .
Proof. In view of Theorem 8.20, [x]B = (〈x, z1〉, . . . , 〈x, zn〉)T . Now,

〈x, y〉 =

〈
n∑
j=1

〈x, zj〉zj , y

〉
=

n∑
j=1

〈x, zj〉〈zj , y〉 =

=

n∑
j=1

〈x, zj〉〈y, zj〉 = [x]TB [y]B .

It is not difficult to see that the theorem holds in the opposite direction as
well. Which means that the mapping 〈·, ·〉 is a scalar product on V it and only
if it can be expressed as 〈x, y〉 = [x]TB [y]B for some orthonormal basis B. This
implies that each scalar product is the standard scalar product from the point
of view of certain orthonormal basis.

8.3. Orthogonal complement and projection

Orthogonal complement is a useful notion with geometric interpretation. More-
over, an orthogonal projection is a very important tool, its use in many fields
overcomes its basic geometric significance.

Definition 8.26 (Orthogonal complement). Let V be a vector space and M ⊆
V . Then an orthogonal complement of the set M is
M⊥ := {x ∈ V ; 〈x, y〉 = 0∀y ∈M}.

Orthogonal complement M⊥ contains such vectors x, that are orthogonal to
all vectors of M (sometimes we say that x is orthogonal to M).

Example 8.27 The orthogonal complement to a vector (2, 5)T is the line
span{(5,−2)T }. The orthogonal complement to the whole line span{(2, 5)T }is
also the line span{(5,−2)T }.

Theorem 8.28 (Properties of orthogonal complement of a set). Let V be a
vector space and M,N ⊆ V . Then
(1) M⊥ is a subspace of V ,
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(2) if M ⊆ N , then N⊥ ⊆M⊥,
(3) M⊥ = span{M}⊥.
Proof.
(1) Let us check the properties of a subspace: o ∈M⊥ trivially. Now, let x1, x2 ∈
M⊥. Then 〈x1, y〉 = 〈x2, y〉 = 0 for all y ∈M , so 〈x1+x2, y〉 = 〈x1, y〉+〈x2, y〉 =
0. Finally, let x ∈ M⊥, which implies 〈x, y〉 = 0 for all y ∈ M . Then for each
scalar α it is 〈αx, y〉 = α〈x, y〉 = 0.
(2) Let x ∈ N⊥, which implies 〈x, y〉 = 0 for all y ∈ N . Obviously 〈x, y〉 = 0 for
all y in a smaller M , and hence x ∈M⊥.
(3)M ⊆ span{M}, and (2) implies that span{M}⊥ ⊆M⊥. The second inclusion
follows from the fact that if x is orthogonal to some vectors, it is also orthogonal
to their linear combinations, and therefore to their span. Formally¿ let x ∈M⊥,
i.e., 〈x, y〉 = 0 for all y ∈M . Especially, 〈x, yi〉 = 0, where y1, . . . , yn ∈M is the
basis of span{M}. Then for an arbitrary y =

∑n
i=1 ∈ span{M} it is

〈x, y〉 =

〈
x,

n∑
i=1

αiyi

〉
=

n∑
i=1

αi〈x, yi〉 = 0. ♣

The property (3) says that the orthogonal complement of a subspace or
its basis is the same. This simplifies practival construction of a complement,
because it is sufficient to verify orthogonality to vectors of the basis.

While the previous theorem deals with an orthogonal complement of an
arbitrary set of vectors, now we will investigate orthogonal complements of
subspaces. Note that the proof of the first part is relatively constructive, and
gives a method how to compute an orthogonal complement (or its basis).

Theorem 8.29 (Properties of orthogonal complement of a subspace). Let V be
a vector space and U its subspace. Then:
(1) If z1, . . . , zm is an orthonormal basis of U , and if z1, . . . , zm, zm+1, . . . , zn is
its extension to an orthonormal basis of V , then zm+1, . . . , zn it an orthonormal
basis of U⊥.
(2) dimV = dimU + dimU⊥,
(3) V = U + U⊥,
(4) (U⊥)⊥ = U ,
(5) U ∩ U⊥ = {o}.
Proof.
(1) It is obvious that zm+1, . . . , zn is an orthonormal system in V , and therefore
it is sufficient to prove that span{zm+1, . . . , zn} = U⊥.
The inclusion “supseteq”. Every x ∈ V has the Fourier series x =

∑n
i=1〈x, zi〉zi.

If x ∈ U⊥, then 〈x, zi〉 = 0, i = 1, . . . ,m, and hence x =
∑
i = m+ 1n〈x, zi〉zi ∈

span{zm+1, . . . , zn}.
(2) It follows from (1) that dimV = n, dimU = m, dimU⊥ = n−m.
(3) It follows from (1) that

x =

m∑
i=1

〈x, zi〉zi︸ ︷︷ ︸
∈U

+

n∑
i=m+1

〈x, zi〉zi︸ ︷︷ ︸
∈U⊥

∈ U + U⊥.
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(4) It follows from (1) that zm+1, . . . , zn is an orthonormal basis of U⊥, and
therefore z1, . . . , zm is an orthonormal basis of (U⊥)⊥.
(5) From the preceding and Theorem 5.48 about the dimension of the union and
intersection we get dim(U ∩ U⊥) = dimV − dimU − dimU⊥ = 0. ♣

Another nice property of atrhogonal systems is that they allow to compute
in a simple way the projection xU of a vector x to the subspace U , which is the
vector that is closest to x. The next theorem allows us to define a projection as
a mapping V → U , defined by x 7→ xU .

The figure at page 98 of the Czech text.

Theorem 8.30 (On orthogonal projection). Let V be a vector space and U be
a subspace of V . Then for each x ∈ V there is the unique xU such that

‖x− xU‖ = min
y∈U
‖x− y‖.

Moreover, if z1, . . . , zm is an orthonormal basis of U , then

xU =

m∑
i=1

〈x, zi〉zi. 8.1

Proof. Let z1, . . . , zm, zm+1, . . . , zn be the extension to an orthonormal basis of
V . Let us define xU :=

∑m
i=1〈x, zi〉zi ∈ U , and we will show that this is the

vector we are looking for. We have x−xU =
∑
i = 1n〈x, zi〉zi−

∑m
i=1〈x, zi〉zi =∑

i = m+ 1n〈x, zi〉zi ∈ U⊥. Let y ∈ U be an arbitrary vector. Since xU−y ∈ U ,
we can use Pythagoras theorem that gives

‖x− y‖2 = ‖(x− xU ) + (xU − y)‖2 = ‖x− xU‖2 + ‖xU − y‖2 ≥ ‖x− xU‖2,

or, equivalently, ‖x − y‖ ≥ ‖x − xU‖, which proves minimality. In order to
prove uniqueness, it is sufficient to realize that the equality hold if and only if
‖xU − y‖2 = 0, i.e. if xU = y.♣

If a vector x belongs to a subspace U , its projection is x itself, and the
formula 8.1 gives the Fourier series of Theorem 8.20. It is also easy to see that
if x ∈ U⊥, then its projection is o.

Remark 8.31 In view of (3) and (5) of Theorem 8.29 the space V can be
expressed as a direct sum of the subspaces U and U⊥ (Remark 5.50). This
means, among others, that every vector v ∈ V has the unique expression as
v = u+ u′, where u ∈ U and u′ ∈ U⊥. IMoreover, in view of Theorem 8.30, the
vector u is the projection of v into U , and the vector u′ is the projection of v
into U⊥.

We know from the proof 8.30 that x − xU ∈ U⊥, but this property is not
only a necessary, but also a sufficient condition for xU being a projection.

Theorem 8.32 In the notation of Theorem 8.30, if some y ∈ U verifies x− y ∈
U⊥, then y = xU .

11



Proof. Since (x− y) ⊥ (y − xU ), we use Pythagoras theorem that says

‖x− xU‖2 = ‖x− y‖2 + ‖y − xU‖@ ≥ ‖x− y‖2.

We get ‖x − xU‖ ≥ ‖x − y‖, and from the properties and uniqueness of the
projection we get y = xU . ♣

Paragraphs 8.33, 8.34, 8.35 skipped

8.4. Orthogonal complement and projection in Rn

We know from the previous section how to compute an orthogonal complement
and projection for an arbitrtary finitely generated vector space with scalar pro-
duct, using an orthonormal basis. Now, we will show that in Rn and for the
standard scalar product, the transformations can be formulated explicitly and
directly without computing an orthonormal basis.

The following theorem says how to compute the orthogonal complement of
any subspace of Rn, if we know its basis or a finite system of generators (they
represent rows of the matrix A).

Theorem 8.36 (Orthogonal complement in Rn). LetA ∈ Rm×n. Then3 R(A) ⊥=
Ker(A).
Proof. It follows from properties ofan orthogonal complement (Theorem 8.23
(3)) that R(A)⊥ = {A1∗, . . . , Am∗}⊥. Thus, x ∈ R(A)⊥ if and only if x is
orthogonal to all rows of the matrix A, i.e., Ai∗x = 0 for all i = 1, . . . ,m.
Equivalently, Ax = o, which is x ∈ Ker(A). ♣

Example 8.37 Let V be a space generated by vectors (1, 2, 3)T and (1,−1, 0)T .
We want to determine V ⊥, and therefore we will use the matrix

A =

(
1 2 3
1 −1 0

)
,

because V = R(A). Now, it is sufficient to find the basis of V ⊥ = Ker(A), which
is given, e.g., by the vector (1, 1,−1)T . ♣

The characterization of an orthogonal complement has also theoretical con-
sequences, e.g., the relation of the matrix A and the matrix ATA. Be careful,
for column spaces the analogy doesn’t hold!

Consequence 8.38 Let A ∈ Rm×n. Then
(1) Ker(ATA) = Ker(A),
(2) R(ATA) = R(A),
(3) rank(ATA) = rank(A).
Proof.
(1) If x ∈ Ker(A), then Ax = o, and hence ATAx = AT o = o, and therefore
x ∈ Ker(A). Conversely, if x ∈ Ker(ATA), then ATAx = o. Multilying by xT

3Let us recall that R(A) is the space generated by rows of of A, and S is the space generated
by columns of A.
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we get xTATAx = o, which is ‖Ax‖2 = 0. Taking into account the properties of
a norm, we get Ax = o, and x ∈ Ker(A).
(2) R(ATA) = Ker(ATA)⊥ = Ker(A)⊥ = R(A).
(3) Trivial in view of (2). ♣

Let us now look at the projection of a vector x into the subspace V , for
which we will derive an explicit formula. If vectors of a basis of the space V
are put into columns of the matrix A, then the projection of x into V can be
formulated as a projection of x into S(A).

medskipTheorem 8.39 (Orthogonal projection in Rm). Let A ∈ Rm×n of
the rank n. Then the projection of a vector x ∈ Rm into the column vector S(A)
is x′ = A(ATA)−1ATx.
Proof. Let us first note that x′ is well defined. The matrix ATA hes dimension
n (Consequence 8.38 (3)), and hence it is regular and has an inversion matrix.
According to 8.32 it is sufficient to show that x′ ∈ S(A) and x − x′ ∈ S(A)⊥.
The first property holds, because x′ = Az for z = (ATA)−1ATx For the second
one it is sufficient to verify that x − x′ ∈ S(A)⊥ = R(AT )⊥ = Ker(AT ), and
this follows from

AT (x−x′) = AT (x−A(ATA)−1ATx) = ATx−ATA(ATA)−1ATx = ATx−ATx = o. ♣

Let us note that the projection is a linear mapping and in view of the pre-
ceding theorem P := A(ATA)−1AT is its matrix (with respect to the canonical
basis). Moreover, this matrix has a lot of remarkable properties. E.g., it is sym-
metric, P 2 = P , and it is regular only if m = n.

Espacially, the matrix of projection to a one-dimensional space (a line) has
form P = a(aTa)− 1aT , where a ∈ Rn is the direction of the line. If, moreover,
the vector in the direction of the line is normed so that ‖a‖2 = 1, then aTa = 1,
and the projection gets a simple form P = aaT .

Theorem 8.40 (Orthogonal projection into the complement). Let P ∈ Rn× n
be the matrix of the projection onto a space V , which is a subspace of Rn. Then
I − P is the matrix of the projection onto V ⊥.
Proof. According to 8.29, every vector x ∈ Rn can be uniquely decomposed to
x = y+z, where y ∈ V and z ∈ V ⊥. In view of 8.30, y is the projection of x into
V , and z is the projection into V ⊥. It follows that z = x−y = x−Px = (I−P )x.
♣

Example 8.41 (The matrrix of the projection into Ker(A)). Theorem 8.40
allows us to formulate in an elegant way the projection into the kernel of a
matrix A ∈ Rm×n. Let us suppose that rank(A) = m. Since Ker(A)⊥ = R(A) =
S(AT ), the matrix of projection into Ker(A) is given by I−AT (AAT )−1A, where
AT (AAT )−1A is the matrix of the projection into S(AT ). ♣

Remark 8.42 Skipped

8.5. Least squares method

The section is skipped
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8.4. Orthogonal matrices

Let us consider a linear mapping in the space Rn. How this mapping (or its
matrix) should look like not to deform geometrical objects? A rotation or a flip
horizontally or vertically or along another axis are examples of such mappings,
but we would like to analyze them in general. We will show that the property
is related to so called orthogonal matrices. But such matrices are far more
important. Since they have good numerical properties ( see section 1.2 and
3.5.1), we encounter them ofthe in different numerical algorithms.

Also in this section we consider the standard scalar product in Rn and Euc-
lidean norm.

Definition 8.46 (Orthogonal and unitary matrices). A matrix Q ∈ Rn×n is

orthogonal, if QTQ = In. A matrix Q ∈ Cn×n is unitary, if Q
T
Q = In.

The notion of unitary matrix is a generalization of orthogonal matrices for
complex numbers. However, in the sequel, we will work with orthogonal matrices
only.

Theorem 8.47 (Characterization of orthogonal matrices). Let Q ∈ Rn×n. Then
the following statements are equivalent:
(1) Q is orthogonal,
(2) Q is regular and Q−1 = QT ,
(3) QQT = In,
(4) QT is orthogonal,
(5) Q−1 exists and is orthogonal,
(6) columns of Q represent an orthogonal basis of Rn,
(7) rows of Q represent an orthogonal basis of Rn.
Proof. Briefly (1)-(5). If Q is orthogonal, then QTQ = I and therefore Q−1 =
QT , and conversely. Using properties of the inversion, we get QQT + I, or
(QT )TQT = I and therefore QT is orthogonal.

(6) It follows from QTQ = I (by comparing elements at the position i, j,
that 〈Q∗i, Q∗j〉 = 1 if i = j, and 〈Q∗i, Q∗j〉 = 0 if i 6= j. This means that the
colums form an orthonormal system. The converse is analogous. ♣

In view of (6) it sould be more appropriate to say “orthonormal matrix”,
but the term orthogonal matrix is commonly used.

Theorem 8.48 (A product of orthogonal matrices). If Q1, Q2 ∈ Rn×n are
orthogonal, then Q1Q2 is orthogonal as well.
Proof. (Q1Q2)TQ1Q2 = QT2Q

T
1Q1Q2 = QT2Q2 = In.

Example 8.49 (Examples of orthogonal matrices).

• Identity matrix In or the matrix −In.

• Householder matrix: H(a) := In − 2
aT a

aaT , where o 6= a ∈ Rn. Its geo-
metric meaning is the following: Let x′ be the projection of the point x
to tohe line span{a}, and consider linear mapping of rotating the point x
along the axis span{a} by 180o. Using Theorem 8.39 on projection, we get
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that the point x is mapped to the vector

x+ 2(x′ − x) = 2x′ − x = 2a(aTa)−1aTx =

(
2
aaT

aTa
− I
)
x.

Thus, the matrix of the rotation is 2
aT a

aaT−I. Let us now the mirror image
according to a hyperplane with the normale a. This can be represented as
the rotation by 180o along a and then flipping by the origin. This means
that the matrix of this mapping is I − 2

aT a
aaT = H(a).

Figures at page 104:
Left: Rotation along the line a by 180o,

Right: Mirror by the hyperplane with the normale a

It can be shown that any orthogonal matrix of the rank n can be written
as the product of at most n appropriate Householder matrices.

• Givens matrix4: For n = 2 it is the matrix of rotation by the angle α
counterclockwise (

cosα − sinα
sinα cosα

)
.

It is a matrix of the form

(
c −s
s c

)
, where c2+s2 = 1 and any such matrix

represents rotation. More generally, in the dimansion n, it is the matrix
representing rotation by α in the plane given by axis’ xi, xj , i.e.,

Gi,j(c, s) =


I

c −s
I

s c
I

 .

Also Givens matrices have the property that any orthogonal matrix is a
product of Givens matrices, but in general we need up to

(
n
2

)
factors and

possibly one diagonal matrix with +1 and −1 on the diagonal.

Theorem 8.50 (Properties of orthogonal matrices). Let Q ∈ Rn×n be an ortho-
gonal matrix. Then
(1) 〈Qx,Qy〉 = 〈x, y〉 for each x, y ∈ Rn,
(2) ‖Qx‖ = ‖x‖ for each x ∈ Rn,
(3) |Qij | ≤ 1 and |Q−1ij | ≤ 1 for each i, j = 1, . . . , n,

(4)

(
1 oT

o Q

)
is an orthogonal matrix.

4James Wallace Givens, Jr., (1910-1993), American mathematician
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Proof.
(1) 〈Qx,Qy〉 = (Qx)TQy = xTQTQy = xT Iy = xT y = 〈x, y〉.
(2) ‖Qx‖ =

√
〈Qx,Qx〉 =

√
〈x, x〉 = ‖x‖.

(3) In view of (6) of Theorem 8.47, it is ‖Q∗j‖1 for each j = 1, . . . , n. Therefore
1 = ‖Q∗j‖2 =

∑n
i=1 q

2
ij qhich means that q2ij ≤ 1, and hence |qij | ≤ 1. The

matrix Q−1 is orthogonal, and the statement holds for it as well.
(4) From the definition(

1 oT

o Q

)T (
1 oT

o Q

)
=

(
1 oT

o QTQ

)
= In+1. ♣

If we see Q as the matrix of the correesponding linear mapping x 7→ Qx,
then the property (1) of Theorem 8.50 says that the mapping preserves angles,
and (2) says that the lengths are preserved. The statement holds also in the
opposite direction: matrices preserving scalar product must be orthogonal (see
Theorem 8.51) and even matrices preserving Euclidean norm must be ortho-
gonal (Horn and Johnson, 1985). The property (3) is appreciated in numerical
mathematics, because Q and Q−1 have bounded elements. The most important
for numerical computing is (2), because multiplying by an orthogonal matrix
(and also rounding errors) have a tendency not to grow.

Finally let us show some generalization of the aove properties to an arbitrary
scalar product and a general linear mapping.

medskipTheorem 8.51 (Orthogonal matrices and linear mappings) Let U, V
be spaces over R with an arbitrary scalar product, and f : U → V be a linear
mapping. Let B1 is an orthonormal basis of U , and B2 is an orthonormal basis
of V . Then the matrix B2

[f ]B1
is orthogonal if and only if 〈f(x), f(y)〉 = 〈x, y〉

for each x, y ∈ U .
Proof. According to 8.25 and the properties of the matrix of a linear mapping
it is

〈x, y〉 = [x]Tb1 [y]B1
,

〈f(x), f(y)〉 = [f(x)]TB2
[f(y)]B2

= (B2
[f ]B1

· [x]B1
)TB2

[f ]B1
· [y]B1

=

= [x]TB1B2
[f ]B1

[y]B1
.

Therefore, if B2
[f ]B1

is orthogonal, then 〈f(x), f(y)〉 = 〈x, y〉. Conversely, if
〈f(x), f(y)〉 = 〈x, y〉 holds for each x, y ∈ U , the equality holds especially for
vectors with coordinates representing by unit vectors. If we substitute the i-th
vector of the basis B1 for x and the j-th vector of the basis B2 for y, we get
[x]b1 = ei, [y]B2 = ej and therefore

(In)ij = eTi ej = [x]TB1
[y]B1 = 〈x, y〉 = 〈f(x), f(y)〉 = [x]TB1

·B2 [f ]TB1
·B2 [f ]B1 ·[y]B1 =

= eTi ·B2
[f ]TB1

·B2
[f ]B1

· ej =
(
B2

[f ]TB1
· B2

[f ]B1

)
ij
.

Considering particular elements of the matrices, we get In =B2
[f ]TB1B2

[f ]B1
.

medskipTheorem 8.52 (Orthogonal matrices and matrices of transfer) Let
V be a space ove R with an arbitrary scalar product, and b1, b2 be two of its
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basis. The arbitrary two of the following properties imply the third one:
(1) B1 is an orthonormal basis,
(2) B2 is an orthonormal basis,
(3) B2

[id]B1
is an orthonormal basis.

Proof.
The implication “(1),(2) ⇒ (3)”. It follows from Theorem 8.51, because the
identity preserves the scalar product.
The implication “(2),(3)⇒ (1)”. Let B1 = {x1, . . . , xn}. From the definition the
columns of B2

[id]B1
form vectors [xi]B2

that are (due to the orthogonality of the
transfer matrix) orthonormal under the standard scalar product in Rn. In view
of Theorem 8.25, 〈xi, xj〉 = [xi]

T
B2

[xj ]B2
, which is 0 for i = j and 1 otherwise.

The implication “(3),(1) ⇒ (2)”. It follows from the above using symmery,
because B1 [id]B2 =B2 [id]−1B1

. ♣
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