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Chapter 11 Positive (semi-)definite matrices

Definition 11.1 (Positive (semi-)definite matrices) Let A ∈ Rn×n be a sym-
metric matrix. A is positive semidefinite, if xTAx ≥ 0 for all x ∈ Rn, and A is
positive definite, if xTAx > 0 for all x 6= o.

It is clear that a positive definite matrix A is positive definite.
It would be possible to define negative (semi-)definite matrices using a re-

versed inequality. However, we will not deal with them, because a matrix A
is negative (semi-)definite if and only if −A is positive (semi-)definite, which
reduces the negative (semi-)definity to the positive one.

Remark 11.2 The definition makes sense for non-symmetric matrices as well,
but such matrices can be “symmetrized” by considering 1

2 (A+AT ), because

xT
1

2
(A+AT )x =

1

2
xTAx+

1

2
xTATx =

1

2
xTAx+ (

1

2
xTAx)T = xTAx.

Thus, instead of testing the condition for A, we can use a symmetric ma-
trix 1

2 (A + AT ). It follows that limiting ourselves to symmetric matrices does
not affect generality. The reason why we limit our consideration to symmetric
matrices is that many test conditions work well for symmetric matrices only.

Example 11.3 An example of a positive semidefinite matrix is 0n. An example
of a positive definite matrix is In, because xtAx = xT Inx = xTx = ‖x‖22.

Remark 11.4 (A necessary condition for positive (semi-)definitivity). Let A ∈
Rn×n be a symmetric matrix. In order to be positive semidefinite, it must be
xTAx ≥ 0 for all x ∈ Rn. By setting x = ei, i = 1, . . . , n, we get 0 ≤ xTAx =
eTi Aei = aii. It follows that a positive semidefinite matrix must have a non-
negative diagonal, a positive definite matrix must have a positive diagonal.

Remark 11.5 A matric A = (a) ∈ R1×1 is positive definite if and only if a ≥ 0,
and a positive definite if and only if a > 0. Thus, positive semidefiniteness is a
generalization of the notion of non-negativity from numbers to matrices. This
is why positive semidefiniteness of a matrix A is often denoted as A � 0 (to be
distinguished from A ≥ 0, which is used for non-negativity of all elements).
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Example 11.6 Properties of positive definite matrices)
(1) If A,B ∈ Rn×n are positive definite, then A+B is positive definite,
(2) If A ∈ Rn×n is positive definite, and α > 0, then αA is positive definite,
(3) If A ∈ Rn×n is positive definite, then A is regular and A−1 is positive
definite.

Proof. The first two properties are trivial, we prove the third one.
Let us first check regularity of A. Let x be a solution of Ax = o. Then

xTAx = xT o = 0. Therefore it must be x = o.
Now we prove that A−1 is positive definite. Assume that there is x 6= o such

that xTA−1x ≤ 0. Then

xTA−1x = xTA−1AA−1x = yTAy ≤ 0,

where y = A−1x 6= o - a contradiction, because A is positive definite. ♣
An analogy is valid for positive semidefinite matrices. (1) is unchanged, (2)

holds for all α ≥ 0, but (3) is not true in general.
The product of positive definite matricesis dealt with in example 12.16.
The next theorem gives an important characterization ofpositive definite

matrices both using eigenvalues and using the form UTU .

Theorem 11.7 (Characterization of positive definite matrices). Let A ∈ Rn×n
be symmetric. The the following conditions are equivalent:
(1) A is positive definite,
(2) all eigenvalues of A are positive,
(3) there is a matrix U ∈ Rm×n of the rank n such that A = UTU .

Proof. The implication (1) ⇒ (2). By contradiction: assume that there is an
eigenvalue λ ≤ 0, and x is the corresponding eigenvector of the Euclidean length
1. Then Ax = λx implies xTAx = λxTx = λ ≤ 0, which contradicts the positive
definiteness of A.

The implication (2) ⇒ (3). Since A is symmetric, it has a spectral decom-
position A = QΛQT , where Λ is a diagonal matrix with the diagonal ele-
ments λ1, . . . , λn > 0. Let us define a diagonal matrix Λ′ as having the dia-
gonal elements

√
λ1, . . . ,

√
λn > 0. The the matrix U is U = Λ′QT , because

UTU = QΛ′Λ′QT = QΛQT = A. Note that U nas the rank n andit is regular,
because it is a product of two regular matrices.

The implication (3)⇒ (1). By contradiction. Let xTAx ≤ 0 for some x 6= o.
Then 0 ≤ xTAx = xTUTUx = (Ux)T (Ux) = 〈Ux,Ux〉 = ‖Ux‖22. This means
that Ux = o, but since the rank of U is n, we get x = o, a contradiction. ♣

A similar characterization of positive semidefiniteness follows without proof.

Theorem 11.8 (Characterization of positive semidefinite matrices). The following
statements are equivalent:
(1) A is positive semidefinite,
(2) all eigenvalues of A are non-negative,
(3) there is a matrix U ∈ Rm×n such that A = UTU .
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11.1 Methods of testing of positive definiteness

Now we will look for particular methods of positive definiteness testing. A num-
ber of them follows from the following recurrent formula. Note that it can be
neither used nor easily modified to test positive semidefiniteness.

Theorem 11.9 (A recurrent formula for positive definiteness testing) A sym-

metric matrix A =

(
α aT

a Ã

)
, where α ∈ R, a ∈ Rn−1, Ã ∈ R(n−1)×(n−1) is

positive definite if and only if α > 0 and Ã− 1
αaa

T is positive definite.

Proof. The implication “⇒”. Let A be positive definite. Then xTAx > 0 for all
x 6= 0; especiall for x = e1 we get α = eT1 Ae1 > 0. Moreover, let x̃ ∈ Rn−1,
x̃ 6= o. Then

x̃T
(
Ã− 1

α
aaT

)
x̃ = x̃T Ãx̃− 1

α
(aT x̃)2 =

(
− 1

α
aT x̃x̃T

)(
α aT

a Ã

)(
− 1
αa

T x̃
x̃

)
> 0.

The implication “⇐”. Let x =

(
β
x̃

)
∈ Rn. Then

xTAx =
(
β x̃T

)(α aT

a Ã

)(
β
x̃

)
= αβ2 + 2βaT x̃+ x̃T Ãx̃ =

= x̃T
(
Ã− 1

α
aaT

)
x̃+

(√
αβ +

1√
α
aT x̃

)2

≥ 0.

The equality holds only if x̃ = o and the second square is zero, i.e., β = 0. ♣
Even though the recurent formula can be used to test positive definiteness,

the following theorem, the Cholesky1 decomposition, is much more important.

Theorem 11.10 (Cholesky decomposition). Given a positive definite matrix
A ∈ Rn×n, there is the unique lower triangular matrix L ∈ Rn×n with a positive
diagonal, such that A = LLT .

Proof. By mathematical induction on n. For n = 1 it is A = (a11) and L = (
√

11).

The induction step n← n− 1. Suppose A =

(
α aT

a Ã

)
. In view of Theorem

11.9, α > 0 and Ã− 1
αaa

T is positively definite. The induction hypothesis implies

the existence of a lower triangular matrix L̃ ∈ R(n−1)×(n−1) with a positive

diagonal such that Ã − 1
αaa

T = L̃L̃T . We will prove that L =

(√
α oT

1√
α
a L̃

)
,

because

LLT =

(√
α oT

1√
α
a L̃

)(√
α 1√

α
aT

o L̃T

)
=

(
α aT

a 1
αaa

T + L̃L̃T

)
= A.

1André-Louis Cholesky, a French officer (most likely of Polish origin), developped the me-
thod in 1910 for triangulation and creation of more precise maps (by solving systems of normal
equations by the least square method), the method was published in 1924, after his death in
the 1st World War.
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To prove uniqueness, let A = L′L′T be another such decomposition, where

L′ =

(
β oT

b L̃′

)
. Then(
α aT

a Ã

)
= A = L′L′T =

(
β2 βbT

βb bbT + L̃′L̃′T

)
.

By comparing matrices, we get β =
√
α, b = 1√

α
a and Ã = bbT + L̃′L̃′T ,

which means L̃′L̃′T = Ã − 1
αaa

T . But the induction hypothesis says that the

decomposition Ã − 1
αaa

T = L̃L̃T is unique, and hence L̃′ = L̃, which implies
L′ = L. ♣

Cholesky decomposition exists for positive semidefinite matrices as well, but
it is not unique.

The theorem is more or less of existential character, but the construction
of Cholesky decomposition is quite simple. The basic idea is to compare in the
top-down manner the elements of the first column of the matrix A = LLT , then
the elements in the second column, etc. The final method is given below. If A
is positive definite, the algorithm gives the decomposition, in the negative case
it announces that A is not positive definite.

1: L := 0n,

2: for k := 1 to n do // in the k-th cycle we determine the values L∗k

3: if akk −
∑k−1
j=1 `

2
kj ≤ 0 then return “A is not positive definite”,

4: `kk :=
√
akk −

∑k−1
j=1 `

2
kj ,

5: for i := k + 1 to n do

6: `ik := 1
`kk

(
aik −

∑k−1
j=1 `ij`kj

)
,

7: end for

8: end for

9: return A = LLT .

Proof of correctness of the Cholesky algorithm. Suppose we have computed the
first up to (k − 1)-th column of the matrix L. From the equation A = LLT we
get

akk =

n∑
j=1

Lkj(L
T )jk =

n∑
j=1

`2kj =

k∑
j=1

`2kj .

The only unknown in this equation is the value of `kk, and if it is expressed,
we get the formula of the step 4.

Now, suppose that we know the first i − 1 elements of the k-th column of
the metrix L. The equation A = LLT gives for i > k that
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aik =

n∑
j=1

Lij(L
T )jk =

n∑
j=1

`ij`kj =

k∑
j=1

`ij`kj .

The only unknown in this equation is the value of `ik, and if it is expressed,
we get the formula of the step 6.

The algorithm can also be used as an alternative proof of the uniqueness
of Cholesky decomposition. The elements of the matrix A have determined the
elements of the matrix L in a unique way, nowhere there was a choice from
greater number of possibilities.

Example 11.12 Cholesky decomposition of a matrix A = LLT : 4 −2 4
−2 10 1
4 1 6

 =

 2 0 0
−1 3 0
2 1 1

 ·
2 −1 2

0 3 1
0 0 1

 .

Example 11.13 The use of Cholesky decomposition for a solution of a system
Ax = b with positive definite matrix A. If we know the decomposition A = LLT ,
the system has the form L(LTx) = b. We solve first the system Ly = b, then
LTx = y and we get the vector x. The method:

1. Find Cholesky decomposition A = LLT ,

2. Find the solution of Ly = b by the forward substitution,

3. Find the solution of LTx = y by the backward substitution.

This method is by about 50 % faster than the Gaussian elimination.
Cholesky decomposition can also be used to invert positive definite matrices,

because A−1 = (LLT )−1 = (L−1)TL−1 and inverting of the lower triangular
matrix L is easy.

The recurrent formula has other consequences, that show how to test positive
definiteness using Gauss-Jordan elimination and using determinants.

Theorem 11.14 (Gaussian elimination and positive definiteness). A symmetric
matrix A ∈ Rn×n is positive definite if and only if the Gaussian elimination
transforms it to row echelon form (an upper triangular matrix) with positive
diagonal using only the elementary operation of adding a multiple of the row
with a pivot k to another row below it.

Proof. Let A =

(
α aT

a Ã

)
be positive definite. The first step of Gaussian elimi-

nation transforms the matrix to the form

(
α aT

o Ã− 1
αaa

T

)
. In view of Theorem

11.9 it is α > 0 and Ã − 1
αaa

T is positive definite as well, so we can proceed
inductively on. ♣
Theorem 11.15 (Sylvester2 criterion of positive definiteness). A symmetric
matrix A ∈ Rn×n is positive definite if and only if the determinants of all

2James Joseph Sylvester, an English mathematician, a co-founder of the matrix theory. He
was the first to use the term “matrix” in a work from the year 1850. The criterion is from the
year 1852.
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main leading submatrices A1, . . . , An are positive, where Ai is the left upper
submatrix of A of the size i (which means that it is obtained from A by removing
the last n− i rows and columns).

Proof. The implication “⇒”. Let A ∈ Rn×n is positive definite. Then for each
i = 1, . . . , n the matrix Ai is positive definite, because is xTAix ≤ 0 for some

x 6= o, then
(
xT oT

)
A

(
x
o

)
= xTAix ≤ 0. This implies that the eigenvalues

of Ai are positive and therefore its determinant is positive as well, being equal
to the product of eigenvalues.

The implication “⇐”. During Gaussian elimination of the matrix A, all pi-
vots are positive, because if the i-th pivot is non-positive, then det(Ai) ≤ 0. In
view of 11.14, A is positive definite. ♣

The non-negativity of all main leading submatrices does not imply positive
semidefiniteness (find such an example!). An analogy of Sylvester condition for
positive semidefinite matrices is the following

Theorem 11.14 (Sylvester criterion of positive semidefiniteness). A symmetric
matrix A ∈ Rn×n is positive semidefinite if and only if the determinants of all
main submatrices are non-negative, where a main submatrix is a matrix that
it is obtained from A by removing certain (includin zero) number of rows and
columns with the same indices.

Proof. If A is positive semidefinite, then the main submatrices are obviously
positive semidefinite as well, and hence they have non-negative determinants
(= products of eigenvalues).

The proof of the implication in the other direction is by mathematical in-
duction. For n = 1 the statement is obvious.

The inductio step n ← n − 1 by contradiction. Assume that λ < 0 is an
eigenvalue of A, and let x be the corresponding eigenvector such that ‖x‖2 = 1.
If all other eigenvalues are positive, then det(A) < 0, a contradiction.

In the other case let µ ≤ 0 beanother eigenvalue of A and let y be the
corresponding eigenvector such that ‖y‖2 = 1. We will find ′alpha ∈ R such
that the vector z = x+αy has at least one element equal to 0; suppose that the
element is i-th in the vector. Since x ⊥ y, we have

zTAz = (x+αy)TA(x+αy) = (x+αy)T (Ax+αAy) = (x+αy)T (λx+αµy) = λxTx+α2µyT y = λ+α2µ < 0.

Let A′ be obtained from A by removing the i-th row and column, and z′ be
obtained from z by removing the i-th element. Then z′TA′z′ = zTAz < 0, and
hence the main submatrix A′ is not positive demidefinite, and we can apply the
induction hypothesis. ♣

While Sylvester criterion of positive definiteness requires computing n de-
terminants, the criterion for positive semidefiniteness involves computing of up
to 2n − 1 determinant, and therefore it is not a very practical method. Better
method will be shown in Section 12.2 (Consequence 12.13).

Even though we showed several methods of positive definiteness testing,
some of them are quite similar. The proog of Theorem 11.14 shows that a
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recurrent formula and Gaussian elimination work essentiall in the same way. And
if determinants are computed by Gaussian elimination, Sylvester criterion is a
variant of the former two tests. However, Cholesky decomposition is a method
that is principially different.

11.2 Applications

Theorem 11.17 (Scalar product and positive semidefiniteness). An operation
〈x, y〉 is a scalar product in Rn if and only if it has the form 〈x, y〉 = xTAy for
some positive definite matrix A ∈ Rn×n.

Proof. The implication “⇒”. Let us define a matrix ∈ Rn×n by Aij = 〈ei, ej〉.
The matrix is obviously symmetric. Then

〈x, y〉 =

〈
n∑
i=1

xiei,

n∑
j=1

yjej

〉
=

n∑
i=1

n∑
j=1

xiyjAij = xTAy.

The implication “⇐”. Let A be positive definite. Then 〈x, y〉 = xTAy is a
scalar product, because:
〈x, x〉 = xTAx ≥ 0 and it is equal to 0 only for x = o,
the function is linear in the first coordinate,
and it is symmetric, because

〈x, y〉 = xTAy = (xTAy)T = yTATx = yTAx = 〈y, x〉. ♣

We know that a scalar product induces a norm (Definition 8.4). A norm

induces by the above scalar product is ‖x‖ =
√
xTAx. In this norm the unit

sphere is an ellipsoid (see example 12.18). For A = In, we get the standard
scalar product and the euclidean norm.

Even though a non-standard scalar product 〈x, y〉 = xTAy can look strange,
its relation to the standard one is very close. Since the matrix is positive de-
finite, it can be decomposed as RTR, where R is regular. Let B be the basis
formed by the columns of the matrix R−1, i.e., R =B [id]kan is the matrix of
the transformation from the canonical basis to B. Now, xTAy = xTRTRy =
(Rx)T (Ry) = [x]TB [y]B . This shows that a non-standard scalar product is the
standard scalar product with respect to certain basis.

The next application is a square root of a matrix. For positive semidefinite
matrices we cand define a positive definite square root

√
A. The square root is

even unique, see Rohn (2003).

Theorem 11.18 (Square root of a matrix). For every symmetric positive se-
midefinite matrix A ∈ Rn×n there is a positive semidefinite matrix B ∈ Rn×n
such that B2 = A.

Proof. Let the spectral decomposition oA beA = QΛQT , where Λ = diag(λ1, . . . , λn),
where λ1, . . . , λn ≥ 0. Let us define a diagonal matrix Λ′ = diag(

√
λ1, . . . ,

√
λn)

and a matrix B = QΛ′QT . Then B2 = QΛ′QTQΛ′QT = QΛ′2QT = QΛQT =
A. ♣
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Remark 11.19 Positive (semi)definiteness is also important in optimalization
when determining a minimum of a function. The matrix that is used here, so
called hessian, is the matrix of the second partial derivatives. Supposing we are
in a point x∗ with the zero gradient, then positive definitiveness is a sufficient
condition for x∗ to be a local minimum, while positive semidefinitiveness is a
necessary condition.

The hessian is used similarly to determine convesity of a function. Positive
semidefinitiveness at some open convex set implies convexity of he function f .
See Rohn (1997).

Positive definite matrices play another important role in optimalization. A
semidefinite program is such an optimalization problem, where we are looking for
the minimum of a linear function under a condition of positive semidefiniteness
of a matrix, whose elements are linear functions of variables (see Gärtner and
Matoušek, 2012). Formally, the problem is

min cT under the condition A0 +

m∑
i−1

Aixi is positive definite,

where c ∈ Rm, A0, A1, . . . , Am ∈ Rn×n are given and x = (x1, . . . , xm)T is
the vector of variables. Semidefinite programs model bigger class of problems
than linear programs (see Remark 7.18), but they are still solvable efficiently in
reasonable time. They make it possible to obtain great progress in combinatorial
optimization, because many computationally difficult problems can be tightly
approximated in a short time using appropriate semidefinite programs.

However, the occurence of (semi)definite matrices is even broader. E.g., in
mathematical statistics we find so called covariant and correlation matrices.
Both give certain information about dependence among n ramdom variables
and, not by chance, all of them are positeve semidefinite.

Example 11.20 Skipped.

Insert
The following text is not in Hladik’s text, but it gives another very important

application of positive definite matrices. Suppose we are going to solve a system
of linear equations Ax = b. It happens very often in numerial mathematics
that such system is very sparse, which means that the matrix A has only a very
small number of non-zero elements in each row, typically less that one hundered,
but often even in the range 10-30. On the other hand, the dimension of such a
matrix can be extremely large. If using double precision numbers (i.e., 8 bytes
per one number), one row in a sparse matrix could occupy less than one kilobyte
(1 kB = 103 byte) of the computer memory. However, the biggest computing
sytems nowadays use memory of the capacity about one petabyte (1 PB = 1015

bytes (!!!)). In this way we are able to store matrices of the dimension n ≈ 1012

(million of millions of rows and columns).
If we try to solve such a system using direct method like the Gaussian eli-

mination, the matrix A gets dense, but it is absolutely impossible to store a
dense matrix of the size 1012× 1012! Using Cholesky decomposition fails for the
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same reason. This is why such systems can only be solved by indirect iterative
methods. The by far the most simple case is when the matrix of the system is
symmetric and positive definite, which, fortunately, is qute frequent case.

Theorem Let A ∈ Rn×n be a symmetric positive matrix, b ∈ Rn. Define a
functional f by:

f(x) =
1

2
xTAx− xT b for each x ∈ Rn.

Then the (unique) solution xsol of the system Ax = b is the (unique) mini-
mum of the functional f .

Proof. Consider a vector x ∈ En and a solution xsol of the system Ax = b.
Put e = x− xsol. Then

f(x) = f(xsol + e) =
1

2
(xsol + e)TA(xsol + e)− (xsol + e)T b =

=
1

2
(xTsolAxsol + xTsolAe+ eTAxsol + eTAe)− xTsolb− eT b =

= (
1

2
xTsolAxsol − xTsolb) + eTAe+ eT (Axsol − b) = f(xsol) + eTAe,

because xTsolAe = eTAxsol, and therefore 1
2 (xTsolAe+ eTAxsol) = eTAxsol.

Since A is pozitive definite, the value of the expression eTAe is always non-
negative, and it is 0 (the smallest possible value) if and only if e = o, that is if
and only if x = xsol.
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