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Chapter 10 Eigenvalues

Eigenvalues (also called “characteristic numbers”) are, similarly as determi-
nants, certain characterization of a matrix. Unlike determinants, their signi-
ficance is very important.
Definition 10.1 (Eigenvalues and eigenvectors) Let A ∈ Cn×n. Then λ ∈ C is
an eigenvalue of A and x ∈ Cn is the corresponding eigenvector, if Ax = λx,
x 6= o.

Let us note that x 6= o is necessary condition, otherwise every λ ∈ C would
be an eigenvalue. On the other hand, λ = 0 is possible and allowed.

Let us also note that an eigenvector is not unique - any multiple by a non-
zero number is an eigenvector as well. This is why eigenvectors are sometimes
normalized so that ‖x‖ = 1.

Of course, eigenvalues can be defined over any field, but we will stay with R
and C. We will se that complex numbers can not be avoided even if the matrix
A is real.

Eigenvalues can be defined in a more general way. Let V be a vector space
and f : V 7→ V is a linear mapping. Then λ is an eigenvalue and x 6= o is
an eigenvector, if f(x) = λx. However we will mostly deal with eigenvalues
of matrices, because, in view of matrix representation of linear mappings, the
problem of eigenvalues of linear mappings can be reduced to matrices. 1

Example 10.2 (Geometric interpretation of eigenvalues and eigenvectors) An
eigenvector repreesents an invariant direction of the mapping x 7→ Ax. In other
words, if v is an eigenvector, then the line span{v}maps into itself. An eigenvalue
represents scaling in this direction.

• Flipping along the line y = −x, the matrix of the mapping is A =(
0 −1
−1 0

)
Figure, eigenvector 1, eigenvector (−1, 1)T

1Remark of L.K.: However, it is my strong feeling that, in order to understand what we are
doing with eigenvalues and eigenvectors, we have to view them as eigenvalues and eigenvectors
of linear mappings.
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Figure, eigenvector -1, eigenvector (1, 1)T

• (0o rotation, the matrix A =

(
0 −1
1 0

)
Figure, no real eigenvalues

Theorem 10.3 (Characterization of eigenvalues and eigenvectors) Let A ∈
Cn×n. Then
(1) λ ∈ C is an eigenvalue if and only if det(A− λIn) = 0.
(2) x ∈ Cn is an eigenvector corresponding to an eigenvalue λ ∈ C if and only
if o 6= x ∈ Ker(A− λIn).
Proof.

(1) λ ∈ C is an eigenvalue of A if and only if (A− λIn)x = o x 6= o, which is
equivalent to singularity ot the matrix A − λIn, which in turn is equivalent to
det(A− λIn) = 0.

(2) Analogically, x ∈ Cn is an eigenvector corresponding to an eigenvalue
λ ∈ C if and only if (A− λIn)x = o, x 6= o, i.e., x is in the kernel of A− λIn.

A consequence of the theorem is that an eigenvalue λ is associated with
dim Ker(A− λIn) = n− rank(A− λIn) linearly independent eigenvectors.

10.1 Characteristic polynomial
Definition 10.4 (Characteristic polynomial) A characteristic polynomial of a
matrix a ∈ Cn×n with respect to a variable λ is pA(λ) = det(A− λIn).

It follows from the definition of a determinant that the characteristic poly-
nomial can be expressed as

pA(λ) = det(A− λIn) = (−1)nλn + an−1λ
n−1 + · · ·+ a1λ+ a0.

Hence it is really a polynomial and its degree is n. It can be seen that an−1 =
(−1)n−1(a11 + · · ·+ ann) and after a substitution λ = 0 we get a0 = det(A).

Acording to the Fundamental Theorem of Algebra (Theorem 1.1) the poly-
nomial has n complex roots (including multiplicities).

Theorem 10.5 Eigenvalues of a matrix A ∈ Cn×n are exactly the roots of its
characteristic polynomial pA(λ) and their number is n (including multiplicities).

Definition 10.6 (Algebraic and geometrical multiplicity of an eigenvalue). Let
λ ∈ C be an eigenvalue of a matrix A ∈ Cn×n. Algebraic multiplicity of λ is equal
to the multiplicity of λ as a root pf pA(λ). Geometric multiplicity of λ is equal
to n − rank(A − λIn), i.e., to the number of linearly independent eigenvectors
sorresponding to λ.

Algebraic multiplicity is always greater or equal to the geometric multiplicity,
see section 10.4. In the sequal, the tem multiplicity will denote the algebraic
multiplicity.

Definition 10.7 (Spectrum and spectral radius). Let A ∈ Cn×nhas eigenvalues
λ1, . . . , λn. Then the spectrum of the matrix A is the set of its eigenvalues
{λ1, . . . , λn} and the spectral radius is ρ(A) = maxi=1,...,n |λi|.
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Computing eigenvalues as roots of the characteristic polynomial is not very
effective. Moreover, there is neither formula nor an algorithm for roots of a
polynomial and the roots are computed by iterative methods. The same is true
for eigenvalues (see Theorem 10.16). Nevertheless, for certain special matrices
eigenvalues could be determined easily.

Example 10.8 (Eigenvalues of a triangular matrix)

• Let A ∈ Cn×n be a triangular matrix. Then its eigenvalues are elements
of the diagonal, because det(A− λIn) = (a11 − λ) · · · (ann − λ).

• Especially, In has the eigenvalue 1, which has multiplicity n. The set of
eigenvectors is the set of all non-zero vectors.

• Especially, )n has the eigenvalue 0, which has multiplicity n. The set of
eigenvectors is the set of all non-zero vectors.

• Especially, the matrix

(
1 1
0 1

)
has an eigenvalue 1, which has the alge-

braical multiplicity 2. The only eigenvector (normalized to the length 1) is
(1, 0)T , and hence the geometrical multiplicity of the eigenvalue 1 is one.2

Example 10.9 Consider the matrix A =

(
0 −1
1 0

)
from Example 10.2. Then

pA(λ) = det(A− λIn) = det

(
−λ −1
1 −λ

)
= λ2 + 1.

The roots of a polynomial, end hence the eigenvalues of A, are +i and −i with
the corresponding eigenvectors (1,−i)T and (1, i)T .

Example 10.10 Consider the matrix A =

(
1.5 0.75
0 1

)
. The corresponding

linear transformation x 7→ Ax geometrically represents skewing and elongation
in the x direction by 50%. See the figure.

Figure of a bridge
The eigenvalues of the matrix A are 1.5 and 1, and the corresponding eige-

nvectors are (1, 0)T and (0, 1)T . The first eigenvalue and eigenvector say that
the picture is elongated by 50 % in the x direction, the second ones say that the
figure is not deformed in the direction y.

Recall that trace(A) is the trace of the metrix A, i.e., the sum of its diagonal
elements.

Theorem 10.11 (The sum and product of eigenvalues) Let A ∈ Cn×n be a
matrix with eigenalues λ1, . . . , λn. Then
(1) det(A) = λ1 · · ·λn,

2Remark L.K. This matrix is the distillation of the worst possible matrix behavior from
the point of view of the spectral theory, as we will see later.
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(2) trace(A) = λ1 + · · ·+ λn,

Proof.
(1) We know that det(A− λIn) = (−1)n(λ− λ1) · · · (λ− λn). Put λ = 0 to get

det(A) = (−1)n(−λ1) · · · (−λn) = λ1 · · ·λn.

(2) Let us compare coefficients of λn−1 in the different representations of the
characteristic polynomial of A. In the formula for det(A− λIn we get that the
coefficient is obtained from the product (a11 − λ) · · · (ann − λ) and its value is
(−1)n−1(a11 + · · · + ann. The coefficient of λn−1 in the expression (−1)n(λ −
λ1) · · · (λ− λn) is obviously (−1)n(−λ1 − · · · − λn. Comparing two expressions
we get det(A) = (−1)n(−λ1) · · · (−λn) = λ1 · · ·λn. ♣

Let us note that comparing other coefficients of the characteristic polynomial
we can get similar, but more complicated relations of elements and eigenvalues
of the matrix A.

Theorem 10.12 (Properties of eigenvalues) Let A ∈ Cn×n be a matrix with
eigenalues λ1, . . . , λn and the corresponding eigenvectors x1, . . . , xn. Then
(1) A is regular if and only it 0 is not its eigenvalue,
(2) if a is regular, then A−1 has eigenalues λ−11 , . . . , λ−1n and the corresponding
eigenvectors x1, . . . , xn.
(3) A2 has eigenalues λ21, . . . , λ

2
n and the corresponding eigenvectors x1, . . . , xn,

(4) αA has eigenvalues αλ1, . . . , αλn and the corresponding eigenvectors x1, . . . , xn,
(5) A+αIn has eigenalues λ1+α, . . . , λn+α and the corresponding eigenvectors
x1, . . . , xn,
(6) AT has eigenalues λ1, . . . , λn but, in general, different eigenvectors.

Proof. We will prove the first two statements, others are left to the reader.
(1) A has the eigenvector 0 if and only if 0 = det(A − 0In) = det(A), i.e., if it
is singular.
(2) It is Axi = λixi for each i = 1, . . . , n.Multiplying by A−1 we get xi =
λiA

−1xi and by dividing by λi 6= 0 we get λ−1xi = A−1xi.
The assumtion that the metrix A is real is substantial in the following the-

orem, that is not generally valid for a complex matrix.

Theorem 10.13 If λ ∈ C is an eigenvalue of a matrix A ∈ Rn×n, than the
complex conjugate λ is an eigenvalue of A as well.

Proof. We know that λ is the root of pA(λ) = (−1)nλn + an−1λ
n−1 + · · · =

a1λ + a0 = 0. The complex conjugate of the equation is pA(λ) = (−1)nλ
n

+

an−1λ
n−1

+ · · · = a1λ+ a0 = 0, and therefore λ is also a root of pA(λ).

Example 10.14 The spectrum of a real matrix is symmetric by the real axis. A
complex matrix can have an arbitrary set of n complex numbers as its spectrum.

Figure Spectrum of a real matrix.

Definition 10.15 (Companion matrix) Let p(x) = xn+an−1+ · · ·+a1x+a0 be
a polynomial. The companion matrix of the polynomial p(x) is an n×n matrix
defined as follows (see the Czech text):
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C(p) =


0 . . . . . . 0 −a0
1 . . . . . . . . . −a1
0 . . . . . . . . . −a2
. . . . . . . . . . . . . . .
0 . . . . . . 1 −an−1


Theorem 10.16 (On companion matrix) The characteristic polynomial of C(p)
verifies pC(p)(λ) = (−1)np(λ), and hence the eigenvalues of C(p) correspond to
the roots of the polynomial p(λ).

Proof.

pC(p)(λ) = det(C(p)− λIn) = det


−λ . . . . . . 0 −a0
1 . . . . . . . . . −a1
0 . . . . . . . . . −a2
. . . . . . . . . . . . . . .
. . . . . . . . . −λ −an−2
0 . . . . . . 1 −an−1


Add λ-times the last row to the previous one, then λ-times the second last

row to the previous one, etc. We ger

pC(p)(λ) = det


−λ . . . . . . 0 −p(λ)
1 . . . . . . . . . −a1
0 . . . . . . . . . −a2
. . . . . . . . . . . . . . .
. . . . . . . . . −λ −an−2 − an−1λ− λ2
0 . . . . . . 1 −an−1


The Laplacian evaluation by the first row gives

pC(p)(λ) = (−1)n+1(−p(λ)) det(In−1) = (−1)np(λ). ♣
The consequence of the theorem is that computing roots of real polynomials

and eigenvalues of matrices are mutually reducible problems. Theorem 10.5
reduces eigenvalue search to computing roots of a polynomial, and Theorem
10.16 is the converse. This means that there is no finite algorithm to compute
eigenvalues that can be evaluated only numerically.

10.2 Cayley-Hamilton theorem
Skipped

10.3 Diagonalization
Solving of systems of linear equations using Gauss-Jordan elimination used

elementary transformations. They do not change the set of solutions, and can
be used to modify a matrix to a form that makes it easy to get the solution. It
is therefore natural to look for similar transformations of a matrix that do not
change the spectrum. Elementary transformations do change the spectrum. A
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convenient transformation is so called silimarity, because it does not chnge the
spectrum. And if, using similarity, a matrix is transformed to a diagonal form,
we won / the diagonal is composed of eigenvalues.

Definition 10.20 (Similarity) Matrices A,B ∈ Cn×n are similar, if there is a
regular matrix S ∈ Cn×n such that A = SBS−1.

Insert
The following text is an insert, which is not contained in the original text,

where similarity is introduced without explaining why similarity preserves the
spectrum and how it was found. I’ll try to explain the underlying idea that
naturally leads to similarity.

The text explains eigenvalues and eigenvectors as properties of matrices. I am
strongly convinced that the true understanding of the spectral theory requires
viewing eigenvalues and eigenvectors as properties of linear mappings.

Imagine we have a linear mapping f : V 7→ V of a vector space V into
itself. In order to work with an abstract linear mapping f , we will represent
it by a matrix. To do this, we have to choose some basis B = b1, . . . ,bn of
V . Each vector v ∈ V can be uniquely represented as a linear combination
v = α1b1 + · · · + αnbn. The n-tuple (α1, . . . , αn)T will be denoted v|B, the
coordinates of v with respect to B. The symbol T denotes a “transposition”
and means that we will consider the n-tuple v|B as a column vector.

For each i = 1, . . . , n, the vector f(bi) of the basis B can be uniquely written
as a linear combination of the vectors of the basis v1, . . . ,vn, i.e.,

f(bi) = αi,1b1 + · · ·+ αi,nbn =

n∑
j=1

αi,jbj . (A)

Let us define a matrix A by Ai,j = αi,j , where αi,j are coefficients from the
previous paragraph.

I will prove that f(v)|B = A v|B , i.e., in order to get coordinates of f(v)

with respect to the basis B (considered as a column vector), we take v|B, the
coordinates of v with respect to the basis B and multiply the vector by the
matrix A.

In fact, v|B = (β1, . . . , βn)T means that v = β1b1 + · · · + βnbn. Now, in
view of linearity of f ,

f(v) = f

(
n∑
i=1

βibi

)
=

n∑
i=1

βif(bi) =

n∑
i=1

βi

n∑
j=1

αi,jbj =

=

n∑
i=1

n∑
j=1

βiαi,jbj =

n∑
j=1

n∑
i=1

βiαi,jbj =

n∑
j=1

(
n∑
i=1

αi,jβi

)
bj , (B)

which means that the coordinates of f(v) with respect to the base B are exactly
those that we get when we multiply the (column) coordinates or v with respect
to B by the matrix A.
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However, the representation of the mapping f by a matrix depends on a
choice of the basis B. How the matrix representing f changes when we choose
another basis of the space V , that we will denote by C and that is composed of
vectors c1, . . . , cn.

Each vector ci is a linear combination of the vector of the basis B. If we
denote j-th element of the coordinates of ci by σi,j , then

ci =

n∑
j=1

σi,jbj for i = 1, . . . , n. (C)

The numbers σi,j determine a matrix S such that Si,j = σi,j . The matrix S
is very useful: suppose that, for a given vector v ∈ V we know its coordinates
with respect to the basis C, but we want to know its coordinates with respect
to the basis B. Assume that v|C = (α1, . . . , αn)T . This implies that

v =

n∑
i=1

αici. (B)

Now,

v =

n∑
i=1

αici =

n∑
i=1

αi

n∑
j=1

σi,jbj =

n∑
i=1

n∑
j=1

αiσi,jbj =

=

n∑
j=1

n∑
i=1

αiσi,jbj =

n∑
j=1

(
n∑
i=1

σi,jαi

)
bj , (D)

which means that the coordinates of v with respect to the basis B we obtain
by multiplying the coordinates of v with respect to C by the matrix S, i.e.

v|B = S v|C . We immediately get also that v|C = S−1 v|B.

And now, we arrive to the main observation of this insert: Assume that we
know the matrix representation of a linear mapping f : V 7→ V with respect to
the basis B and we want to know the matrix representation of f with respect
to C. Let us do the following: v|C, the coordinates of V with respect to C, are
transformed by thier multiplying by the matrix S to the coordinates of v with
respect to B, i.e., v|B = S v|C. Then, by multiplying v|B by the matrix A,
representing the mapping f with respect to B, we get the coorinates of f(v)
with respect to B, which are subsequently transformed to the coordinates of
f(v) with respect to C by multiplying by the matrix S−1. In other words,

f(v)|B = A v|B (E)

implies that

f(v)|C = S−1 f(v)|B = S−1 A v|B = S−1 A S v|C = (S−1AS) v|C. (F )

On the ther hand, given a basis B represented by vectors b1, . . . ,bn and a
matrix S, define the basis C represented by vectors c1, . . . , cn as by the formula
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(C). Then, in the same way as above, it can be proved that the linear mapping,
represented by the matrix A with respect to the basis B is the same as the linear
mapping, represented by the matrix S−1AS with respect to the basis C.

What was said above shows that two matrices are similar if and only if they
represent the same linear mapping f : V 7→ V with respect to two basis of a
vector space V .

If B is a basis of a vector space V , f : V 7→ V is a linear mapping, and a
matrix A represents f with respect to B, then λ is an eigenvalue of the mapping
f if and only if λ is an eigenvalue of A and the corresponding eigenvector of A
is v|B, where v is the corresponding eigenvector of f :

f(v) = λv if and only if A v|B = f(v)|B = λv|B
It is therefore not surprising that similar matrices have the same eigenvalues

and there is a simple correspondence of their eigenvectors - they are represen-
tations of the same abstract linear mapping (with respect to differen basis).

End of insert

Example 10.21 Matrices (
1 0
0 0

)
and

(
0 0
0 1

)

are similar using S =

(
0 0
0 1

)
.

Theorem 10.22 (Eigenvalues of similar matrices) Similar matrices have the
same eigenvalues.

Proof. In view of similarity, there is a regular matrix S such that A = SBS−1.
Then

pA(λ) = det(A− λIn) = det(SBS−1 − λSInS−1) = det(S(B − λIn)S−1) =

= det(S) det(B − λIn) det(S−1) = det(B − λIn) = pB(λ). ♣

Let us note that the theorem says nothing about eigenvectors, they can be
different. What is unchanged is their number.

Insert
The relationship between eigenvectors of two similar matrices is in fact very

simple.

Theorem 10.22bis (Eigenvectors of similar matrices) If A = SBS−1, where S
is a regular matrix, and v is and eigenvector of A corresponding to an eiganvalue
λ, then S−1v is an eigenvector of B, corresponding to an eiganvalue λ.

Proof. If Av = λv, then SBS−1v = λv, i.e. BS−1v = λS−1v. ♣
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End of insert

Exercise 10.23 Show that similarity is a reflexive, symmetric and transitive
binary relation. This implies that the similarity is an equivalence.

Theorem 10.24 Let matrices A,B ∈ Cn×n are similar, and λ is their eigenva-
lue. Then the number of eigenvectors corresponding to λ is the same for both
matrices.

Proof. (Different than in the Czech text) If A = SBS−1, then S represents
an isomorphism (one-to-one linear mapping) of the vector space into itself that
maps eigenvectors of B corresponding to λ onto eigenvectors of A corresponding
to λ, see Theorem 10.22bis. ♣

Definition 10.25 (Diagonalizability) A matrix A is diagonalizable, if it is simi-
lar to some diagonal matrix.

Example 10.26 There are matrices that are not diagonalizable, e.g.

A =

(
0 1
0 0

)
is not diagonalizable. It has an eigenvalue 0, which has the multiplicity 2. If
A were diagonalizable, it would have been similar to the null matrix, i.e., A =
S0S−1 = 0, a contradiction. ♣

Theorem 10.27 (Characterization of diagonalizability). A matrix A ∈ Cn×n
is diagonalizable if and only if it has n linearly independent eigenvectors.

Proof. Implication “⇒”: A diagonal matrix has n eigenvectors e1, . . . , en
3 that

are linearly independent. A regular matrix S that brings similarity of A and a
diagonal matrix give an isomorphism of eigenvectors of the diagonal matrix and
eigenvectors of A, and hence A has n linearly independent eigenvectors as well.

Implication “⇐”: Let A has eigenvalues λ1, . . . , λn and corresponding linearly
independent eigenvectors x1, . . . , xn that are regarded as column vectors. Define
a regular matrix S = (x1 | · · · | xn) and a diagonal matrix Λ = diag)λ1, . . . , λn).
Then

AS∗j = AS∗j = Axj = λjxj = ΛjjS∗j = S(Λjjej) = SΛ∗j = (SΛ)∗j .

This implies that AS = SΛ, since the vectors x1, . . . , xn (that are columns of
S) are linearly independent, and hence S is regular, and therefore A = SΛS−1.
♣

The proof of the theorem is constructive, it shows how to diagonalize a
matrix if we know its eigenvalues and eigenvectors. Similarly the knowledge of
the diagonalization formula A = SΛS−1 it is easy to determine eigenvectors

3ej is a column vector that has the j-th element equal to 1 and the remainimg elements
equal to 0.
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(the eigenvectors are colums of S in the order of eigenvectors at the diagonal of
Λ).

Another view of diagonalization is geometric: we know that an eigenvector
represents an invariant direction of a linear mapping x 7→ Ax. Imagine that
A is a matrix of a linear mapping f : Cn 7→ Cn with respect to a basis B.
Diagonalization is a search of a basis of the vector space such that the matrix
representing f with respect to that basis is diagonal.

Example 10.28 (Geometric interpretation of diagonalization). Let

A =

(
3 1
1 3

)
.

Eigenvalues and eigenvectors of the matrix A are:

λ1 = 4 x1 = (1, 1)T , λ2 = 2, x2 = (−1, 1)T .

The diagonalization has form:

A = SΛS−1 =

(
1 −1
1 1

)(
4 0
0 2

)(
0.5 0.5
−0.5 0.5

)
.

Geometric interpretation: in the coordination system of eigenvectors of the
matrix the matrix of the mapping is diagonal and the mapping is just scaling
along axes. I the picture belowyou can see the unit square and its image by the
mapping x 7→ Ax. On the left, the situation, when we work in the coordination
system of the canonical basis, on the right, the situation in the soordination
system of the basis composed of the eigenvectors.

Figure at the page 126 of the Czech text

Now, we will show that eigenvectors corresponding to different eigenvalues are
linearly independent.

Theorem 10.29 (Eigenvectors of different eigenvalues) Let λ1, . . . , λk be mutu-
ally different eigenvalues (not necessarily all eigenvalues) of a matrix A ∈ Cn×n.
Then the corresponding eigenvectors x1, . . . , xk are linearly independent.

Proof. By mathematical induction on k. The theore is obvious for k = 1, because
an eigenvector is not a zero vector.

Induction step k ← k − 1. Consider a linear combination

α1x1 + · · ·+ αkxk = o. 10.1

Multiplying by the matrix A gives

A(α1x1 + · · ·+αkxk) = α1A(x1) + · · ·+αkA(xk) = α1λ1x1 + · · ·+αkλkxk = o.
10.2
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Subtracting the λk-times (10.1) from (10.2) gives

α1(λ1 − λk)x1 + · · ·+ αk−1(λk−1 − λk)xk−1 = o.

The induction hypothesis says that x1, . . . , xk−1 are linearly independent, which
implies α1 = · · · = αk−1 = 0. A substitution into (10.1) gives αkxk = o, which
implies αk = 0. ♣

Consequence 10.30 If a matrix A ∈ Cn×n has n different eigenvalues, then it
is diagonalizable.

Now, we will show several theoretical and practical applications of diagona-
lization.

Example 10.31 (The power of a matrix). Let A = SΛS−1 be a diagonalization
of the matrix A ∈ Cn×n. Then

A2 = SΛS−1SΛS−1 = SΛ2S−1.

In a more general way we get

Ak = SΛkS−1 = S

λ
k
1 0 0

0
. . . 0

0 0 λkn

S−1.

We can even study asymptotic behavior. Simplified:

lim
k→∞

Ak = S

limk→∞ λk1 0 0

0
. . . 0

0 0 limk→∞ λkn

S−1 =

=


0, ifρ(A) < 1,

diverges, ifρ(A) > 1,

converges/diverges, ifρ(A) = 1,

In general, the case ρ(A) = 1 can not be resolved: for A = In the powers of
A converge to In, while for A = −In the powers oscillate between In and −In.

It is again useful to follow the geometric view of the mapping x 7→ Ax. The
powers of the matrix A correspond to the composition of the matrix A with
itself. If absolute values of all eigenvalues are smaller than 1 (i.e., ρ(A) < 1),
then the linear mapping contracts distances and then it converges to zero for
k → ∞. If at least one eigenvalue is larger than 1, then the linear mapping
extends distances in the direction of the corresponding eigenvector, and hence
it diverges for k → ∞. The case ρ(A) = 1 is the most interesting. This case
occurs, e.g., for orthogonal matrices or for matrices of Markov chains, that will
be dealt with in Example 10.51.
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Theorem 10.32 Let A,B ∈ Cn×n. Then the matrices AB and BA have the
same eigenvalues, including their multiplicities.

Proof. The matrices (
AB 0
B 0

)
resp.

(
0 0
B BA

)
are block triangular, and therefore thay have the same eigenvalues as AB, resp.
BA, plus an eigenvalue 0 with multiplicity n. Now, it is sufficient to show that
the above block matrices have the same spectrum. The matrices are similar by
the matrix

S =

(
I A
0 I

)
,

because (
AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)
=

(
I A
0 I

)(
0 0
B BA

)
♣

The preceding theorem is valid for rectangular matrices A,BT ∈ Rm×n, but
only for non-zero eigenvalues; the multiplicity of zero eigenvectors can be (and
typically are) different.

Example 10.33 (Recurrent formulae and Fibonacci). Let us consider a sequence
a1, a2, . . ., given by a recurrent relation

an = pan−1 + qan−2,

where a1, a2 are given first two values of the sequence, and p, q are constants.
Let us show, how to “break” the recursion and to give an explicit form of the n-
th element of the sequence. The same method works even for more complicated
recursions, where an depends on more than two previous elements.

Let us express the recursion in a matrix form:(
an
an−1

)
=

(
p q
1 0

)(
an−1
an−2

)
.

If we denote

xn =

(
an
an−1

)
, A =

(
p q
1 0

)
,

the recursion has the form

xn = Ax)n− 1 = A2xn−2 = · · · = An−2x2.

Therefore we need to determine higher powers of the matrix A. We can use
the method of Example 10.31. Find a diagonal form A = SΛS−1, and then
xn = Sλn−1S−1x2. Now, we are finished, the explicit form of A −N is hidden
in the first element of the vector xn = SΛn−1S−1x2.

12



In particular, let us show this method for Fibonacci sequence, which is given
by an = an−1+an−2, and the first two elements of the sequence are a1 = a2 = 1.
Denote ϕ = 1

2 (1 +
√

5), which is the golden ratio. Now

x2 =

(
1
1

)
, A =

(
1 1
1 0

)
= SΛS−1,

where

S =

(
−1 ϕ
ϕ 1

)
, S−1 =

√
5

5

(
1− ϕ 1

1 ϕ− 1

)
, Λ =

(
1− ϕ 0

0 ϕ

)
.

Therefore

an = S1∗Λ
n−2S−1x2 =

5− 3
√

5

10
(1− ϕ)n−2 +

5 + 3
√

5

10
ϕn−2,

which can easily be rewritten to more usual form

an = −
√

5

5
(1− ϕ)n +

√
5

5
ϕn. ♣

10.4 Jordan normal form
The simplest form of a matrix that can be obtained by elementary row

transformations, is a reduced echelon form. But what is the simplest form of a
matrix that can be obtained by similarity? This form is not a diagonal form,
because we already know that not all matrices are diagonalizable. Nevertheless,
every matrix can be transform by similarity to a relatively simple form, which
is called Jordan normal form 4.

Definition 10.34 (Jordan cell (or block)). Let λ ∈ C, k ∈ N. The Jordan cell
Jk(λ) is a square matrix of order k defined as follows:

Jk(λ) =



λ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · · · · 0 λ


.

The Jordan cell has an eigenvalue λ, which has multiplicity k, but it has
only one corresponding eigenvector, because the matrix Jk(λ) − λIk has the
rank k − 1.

4The author is a French mathematician Marie Ennemond Camille Jordan. However, a
co-author of Gauss-Jordan elimination is someone else, a German geodet Wilhelm Jordan.
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Definition 10.35 (Jordan normal form). A matrix J ∈ Cn×n is in the Jordan
normal form, if it is in a block-diagonal form

J =


Jk1(λ1) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Jkm(λm)

 .

and the blocks on the diagonal are Jordan cells Jk1(λ1), . . . , Jkm(λm).
The values λi and ki need not be different. Similarly certain Jordan cell can

apperar many times. 5

Theorem 10.36 (On Jordan normal form). Every matrix J ∈ Cn×n is similar
to a matrix in the Jordan normal form. Up to the order of the Jordan cells, this
matrix is uniquely determined.
Proof.

For a full proof, see Bečvář 2005, Bican 2009, Horn and Johnson 1985. Here
we will say at least some ideas of the proof and the construction of a Jordan
normal form. We are looking for a basis, with respect to it the mapping x 7→ Ax
has the Jordan normal form. We will show how Jordan cells and the correspon-
ding part of the basis look for an eigenvalue λ. Without loss of generality, we
suppose that λ = 0, otherwise we will use the matrix A− λIn.

Let us consider the following subspaces of Cn:

Ker(A) $ Ker(A2) $ · · · $ Ker(Ap) = Ker(Ap+1) = · · ·

Let v ∈ Ker(Ap) − Ker(Ap−1) and consider the basis B represented by vectors
Ap−1v, . . . , Av, v. In the subspace generated by such vectors and with respect
to the basis B, the linear mapping x 7→ Ax has the matrix that is the Jordan
cell Jp(0).

Similarly we will get the remaining Jordan cells, but we have to generalize
slightly the method . Instead of a vector v, we will take a system v1, . . . , v` of
the size dim Ker(Ap)− dim Ker(Ap−1) that completes some basis of Ker(Ap−1)
to a basis of Ker(Ap). Every such vector vi is a source of a chain of vectors
Ap−1vi, . . . , Avi, vi that corresponds to the Jordan cell Jp(0); the number of
such cells is `. if`′ = dim Ker(Ap−1) − dim Ker(Ap−2) − ` > 0, we have to
complete vectors Av1, . . . , Av` by new vectors v`+1, . . . , v`+`′ to complete some
basis of Ker(Ap−2) to a basis of Ker(Ap−1). Such new vectors vj become sources
of chains Ap−2vj , . . . , Avj , vj that correspond to `′ Jordan cells Jp−1(0). The
procedure is repeated to the dimension 1.♣

5Remark L.K.: The identity matrix In is in the Jordan normal form, the diagonal consists
of n identical blocks equal to the matrix (1) of the rank 1.
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Example 10.37 A matrix
5 −2 2 −2 0
0 6 −1 3 2
2 2 7 −2 −2
2 3 1 2 −4
−2 −2 −2 6 11


has eigenvalues 5 (the multiplicity 2) and 7 (the multiplicity 3). Since 3 =

rank(A − 5I5) = rank(A − 5I5)2, we will look for two chains of the length
!. We will find two linearly independent vectors x1, x2 ∈ rank(A − 5I5), e.g.,
x1 = (−2, 1, 1, 0, 0)T and x2 = (−1, 1, 0,−1, 1)T that form the first two vectors
of the basis we are looking for.

Now, let us consider the eigenvector 7. We have rank(A − 7I5) = 3 and
3 = rank(A− 7I5)2 = rank(A− 7I5)3 = 2. We will choose x4 ∈ Ker(A− 7I5)2−
Ker(A − 5I5), e.g., x4 = (1, 0, 1, 0, 0)T and the corresponding part of the basis
is formed by the chain x3 = (A − 7I5)x4 = (0,−1, 2, 3,−4)T . The last vector
of the basis is a vector from Ker(A− 7I5) that is linearly independent with x3,
e.g., x5 = (0, 1, 1, 0, 1)T .

The basis we are looking for is represented by vectors x1, . . . , x5. If the
vectors are put to rows of a matrix S, we get

J = S−1AS =


5 0 0 0 0
0 5 0 0 0
0 0 7 1 0
0 0 0 7 0
0 0 0 0 7

 ,

which is the Jordan normal form of the matrix A.
The Jordan form of a matrix is unstable in the sense that a very small change

of elements of a matrix sometimes causes a complete change of the Jordan form
/ the Jordan form is not a continuous function of elements of a matrix. This
is reason whe the computing system Maple did not include computation of the
Jordan form to its library.

The proof of 10.36 suggest the method how to compute the Jordan normal
form of a given matrix A, but we will now concentrate to certain properties
of the Jordan form. From 10.24, we know that the number of eigenvalues and
eigenvectors is not changed by similarity transformations. Since every Jordan
cell corresponds to one eigenvector, we get

Theorem 10.38 The number of Jordan cells corresponding to λ is equal to the
number of eigenvectors for λ.

As a consequence we get that the (algebraic) multiplicity of every eigenvalue
λ is always greater or equal to the number of the corresponding eigenvetors (the
geometric multiplicity).

Consequence 10.39 The multiplicity of an eigenvalue λ is greater or equal to
the number of the eigenvetors that correspond to λ.
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However, such information is not sufficient to determine the Jordan normal
form. In general, we need to know more, e.g., as it follows from the next formula.

Remark 10.40 (Sizes and the number of cells) The number of cells Jk(λ) of a
matrix Cn×n in the resulting Jordan form is

rank
(
(A− λIn)k−1

)
− 2 rank

(
(A− λIn)k

)
+ rank

(
(A− λIn)k+1

)
.

Proof. See, e.g., Horn and Johnson [1985], Meyer [2000]. The formula can be
derived from the idea of the proof of 10.36 on the Jordan normal form.

Now, let us show several examples ofapplications of the Jordan normal form.

Example 10.41 (Powers of a matrix) In Example 10.31 we mentioned using
of the diagonalization for computing of powers of a matrix. Now, using the
Jordan normal form, we can generalize the statement of arbitrary A ∈ Cn×n.
Let A = SJS−1, then

Ak = SJkS
−1 = S


Jk1(λ1)k 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Jkm(λm)k

S−1.

Now, it is necessary to understand the behavior of Jordan cells Jki(λi)
k,

i = 1, . . . ,m. Asymptitically we get similarly as for diagonalizable matrices

lim
k→∞

Ak =


0, ifρ(A) < 1,

diverges, ifρ(A) > 1,

converges/diverges, ifρ(A) = 1,

Example 10.42 (Matrix function) Let us ask: how to define a matrix function,
e.g., cos(A), eA, etc.? For a real function f : R→ R and a matrix A ∈ Rn×n it
would be possible to define f(A) by applying f to each element of A separately,

f(A) =

f(a11) · · · f(a1n)
...

...
f(an1) · · · f(ann)

 , 10.3

but such a matrix will not have good properties. Let us do it in another way.
Suppose that the function f : R → R can be expressed as an infinite series
f(x) =

∑
i = 0∞aix

i; real analytical functions like sin(x), exp(x), etc. fulfill
this assumption. Then, it is natural to define f(A) =

∑
i = 0∞aiA

i, We can
compute powers of the metrix, and hence if A = SJS−1, then

f(A) =

∞∑
i=0

aiSJ
iS−1 = Sf(J)S−1.
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It is easy to see that

f(J) =


f(Jk1(λ1)) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 f(Jkm(λm))

 .

It remains to define the image of Jordan cells f(Jki(λi). This is trivial for ki = 1,
the cell is a matrix of order 1. If ki > 1, the image is more complicated [Meyer,
2000]:

f(J) =


f(λi) f ′(λi) · · · f(ki−1)(λi)

(ki−1)!

0
. . .

. . .
...

...
. . .

. . . f ′(λi)
0 · · · 0 f(λi)

 .

For example, the function f(x) = x2 has the matrix extension f(A) = A2, i.e.,
the classical matrix power. On the other hand, the formula 10.3 would compute
separate powers of particular elements of the matrix, which is not what we want.

Example 10.43 (A system of linear differential equations). Let us consider so
called system of linear differential equations

u(t)′ = Au(t) 10.4

where A ∈ Rn×n. Our goal is to find an unknown function u : R → Rn that
fulfills the system for certain boundary condition of the form u(t0) = u0. In the
case n = 1 the solution of a differential equation u(t)′ = au(t) is a function
u(t) = v · eat, where v ∈ R is an arbitrary number (to be selected so that the
boundary condition is fulfilled). This suggests a motivation (supported by a
deeper theory) to look for a solution of the general case in the form

u(t) = (u1(t), . . . , un(t)) = (v1e
λt, . . . , vne

λt) = eλtv,

where vi, λ are unknowns, i = 1, . . . , n. A substitution of u(t) = eλtv to 10.4
gives

λeλtv = eλtAv, which gives λv = Av.

This is immediately the problem of computing eigenvalues and eigenvectors.
Suppose that the matrix A has eigenvectors λ1, . . . , λn and the correesponding
eigenvectors x1, . . . , xn. Then the solution of 10.4 is u(t) =

∑n
i=1 αie

λitxi, where
αi ∈ R is obtained from the boundary conditions.

Let us consider a particular example:

u′1(t) = 7u1(t)− 4u2(t)
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u′2(t) = 5u1(t)− 2u2(t)

The matrix A =

(
7 −1
5 −2

)
has eigenvalues 2 and 3 and the corresponding

eigenvectors (4, 5)T and (1, 1)T . The solution of the problem has form(
u1(t)
u2(t)

)
= α1e

2t

(
4
5

)
+ α2e

3t

(
1
1

)
, α1, α2 ∈ R.

When solving linear differential equations, the knowledge of eigenvalues and
eigenvectors is important. The Jordan normal form is used in the case when the
matrix A is not diagonalizable and the defficiency of the number of eigenvalues
implies that the αi’s in the formula for u(t) are not scalars (i.e., numbers), but
polynomials of t of the oreder corresponding to the multiplicity of λi.

10.5 Symmetric matrices
Real symmetric matrices have several remarkable properties concerning ei-

genvalues. Their main properties are that they are always diagonalizable and
their eigenvalues are real. 6

Let us first look at the generalization of transposition and symmetry for
complex matrices.

Definition 10.44 (Hermitian matrix and transposition) A hermitian transpo-
sition 7 of a matrix A ∈ Cn×n is the matrix A∗ = (A)T . A matrix A ∈ Cn×n is
hermitian, if A∗ = A.

Let us recall that A is the matrix that results from replacing all elements of
A by the coresponding complex conjugates.

The hermitian transposition has similar properties as the classical transpo-
sition, e.g., (A∗)∗ = A, (αA)∗ = αA∗, (A+B)∗ = A∗ +B∗, (AB)∗ = B∗A∗.

Using hermitian transpozition, we can define unitary matrices (that gene-
ralize the notion of an orthogonal matrix for complex matrices, see Definition
8.46) as matrices Q ∈ Cn×n that fulfill Q∗Q = In.

Example 10.45 Given matrices(
2 1 + i

1 + i 5

)
,

(
2 1 + i

1− i 5

)
the first one is symmetric, but not hermitian, and the second one is hermi-

tian, but not symmetric. For real matrices both notions are the same.

Theorem 10.46 (Eigenvalues of symmetric matrices) Eigenvalues of real sym-
metric matrices and more generally complex hermitian matrices are real num-
bers.

6Remark L.K. And their eigenvectors corresponding to different eigenvalues are orthogonal.
7Charles Hermite (1822-1901) was a French mathematician. He proved, among others, that

e is transcenential, i.e., it is not a root of any polynomial with rational coefficients
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Proof.
Let A ∈ Cn×n be hermitian and let λ ∈ C is its eigenvalue and x ∈ Cn be

the corresponding eigenvectors of the unit length, i.e., ‖x‖2 = 1. Then Ax = λx,
after multiplying by x∗ we get x∗Ax = λx∗x = λ. Now,

λ = x ∗Ax = x∗A∗x = (x ∗Ax)∗ = λ∗.

This implies λ = λ∗, and hence λ ∈ R. ♣
Let us remark that complex symmetric matrices can have proper complex

eigenvalues.
The following theorem says that symmetric real matrices are diagonalizable.

8 Moreover, they are diagonalizable in a very specific way: it is possible to
construct an orthonormal basis that consists of their eigenvectors, which means
that the similarity matrix is orthogonal.

Theorem 10.47 (Spectral decomposition of symmetric real matrices) Given
a symmetric real matrix A ∈ Rn×n, there is an orthogonal Q ∈ Rn×n and a
diagonal Λ ∈ Rn×n such that A = QΛQT ..
Proof.

By the methematical induction by n. The case n = 1 is trivial: Λ = A and
Q = 1.

The induction step n ← n − 1. Let λ be an eigenvalue of A and x is the
corresponding eigenvector of the unit length, i.e., ‖x‖2 = 1. Let us complete
(see 8.23) the vector x, that represents an orthonormal system of one vector, to
an orthogonal matrix S = (x| · · · ). Because (A−λIn)x = o, we get (A−λIn)S =
(o| · · · ), which means that ST (A−λIn)S = ST (o| · · · ) = (o| · · · ). And since this
matrix is symmetric, we get

ST (A− λIn)S =

(
0 oT

o A′

)
,

where A′ is certain symmetric matrix of the order n−1. Using the induction
hypothesis, the matrix A′ has a spectral decomposition A′ = Q′Λ′Q′T , where λ′

is diagonal, and Q′ is orthogonal. The matrix and the equation can be extended
to the order n as follows:(

0 oT

o A′

)
=

(
1 oT

o Q′

)(
0 oT

o Λ′

)(
1 oT

o Q′T

)
,

which can easily be verified by simple multiplication. Let us denots

R =

(
1 oT

o Q′

)
, Λ′′ =

(
0 oT

o Λ′

)
.

The matrix R is orthogonal (Theorem 8.50 (4) ), the matrix Λ′′ is diagonal.
Now, we can write

8Augustin Louis Cauchy, 1829
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ST (A− λIn)S = RΛ′′RT ,

which implies

A = SRΛ′′RTST + λIn = SRΛ′′RTST + λSRRTST = SR(Λ′′ + λIn)RTST .

This gives the required decomposition A = QΛQT , where Q − SR is an
orthogonal matrix, and Λ = Λ′′ + λIn is diagonal. ♣

Similarly we can get a spectral decomposition of a hermitian matrix in the
form A = QΛQ∗, where Q is unitary matrix.

Remark 10.48 (Another form of a spectral decomposition) Let a symmetric
A ∈ Rn×n have eigenvalues λ1, . . . , λn and the corresponding orthonormal ei-
genvectors. This means that, in the spectral decomposition A = QΛQT it is
Λii = λi and Q∗i = xi. Let us write

A = QΛQT = Q

(
n∑
i=1

λieie
T
i

)
QT =

n∑
i=1

λiQeie
T
i Q

T =

n∑
i=1

λiQ∗iQ
T
∗i =

n∑
i=1

λixix
T
i .

The form A =
∑n
i=1 λixix

T
i is an alternative form of the spectral decomposi-

tion, where the matrix A is decomposed to a sum of n matrices of the rank 1
or 0. Moreover, xix

T
i is the matrix of the projection to the line span{xi}, which

means that, from geometric point of view, the mapping x 7→ Ax can be viewed
as a sum of n mapping, each of which is a projection to a line (orthogonal to
other lines) and scaling by the value of λi.

There is one nice (even though a bit theoretical) consequence of the spectral
decomposition that gives a formula for computing the largest and the smallest ei-
genvalue. 9 The consequence says that the largest, the smallest, resp., eigenvalue
is the largest, the smallest, resp., value of the quadratic function f(x) = xTAx
on the unit sphere.

Theorem 10.49 (Courant-Fischer). Let λ1 ≥ · · · ≥ λn be eigenvalues of a
symmetric matrix A ∈ Rn×n. Then

λ1 = max
‖x‖2=1

xTAx, λn = min
‖x‖2=1

xTAx.

Proof. The proof is given just for λ1, the second part is analagous.
The inequality “≤”: Let x1 be the eigenvector corresponding to λ with the

norm ‖x1‖2 = 1. Then Ax1 = λ1x1. Multiplying by xT1 from the left we get

9Ernst Fischer proved the formula in 1905, Richard Courant gave a generalization to ope-
rators of infinite dimansions in 1920. Their formula involves the intermediate eigenvalues
λ2, . . . , λn−1 as well, but this case is more complicated. The simple version is sometimes
called Ralyleigh-Ritz theorem.
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λ1 = λ1x
t
1x1 = xT1 Ax1 ≤ max

‖x‖2=1
xTAX.

The inequality “≥”: Let x ∈ Rn be an arbitrary vector such that ‖x‖2 = 1.
Denote y = QTx, and then ‖y‖2 = 1 (Theorem 8.50 (2)). Using the spectral
decomposition A = QΛQT we get

xTAx = xTQΛQTx = yTΛy =

n∑
i=0

λiy
2
i ≤

n∑
i=1

λ1y
2
i = λ1‖y‖22 = λ1.

10.6 Theory of non-negative matrices
Skipped

10.7 Computing eigenvalues
As it has already been mentioned (remarks to Theorem 10.16), eigenvalues

are computed by purely numerical iterative methods, and looking for them using
the characteristic polynomial of a matrix is not an effective procedure. In this
section we will show an easy estimation of eigenvalues, and an easy method of
computing the largest eigenvalue. Another method, the popular QR algorithm,
will be presented in 13.3. For very precise computation of eigenvalues of sym-
metric (especially positive definite) matrices one can use Jacobi method (see,
e.g., Rohn. 2004) and Lanczos method 10 (see Meyer, 2000) for very large sparse
symmetric matrices.
Gerschgoring disks skipped.

Now we will show a simple method for computing the dominant eigenvalue11.
Despite of its simplicity it became the basis of some numerical methods, e.g.,
inverse iteration method12 or the Rayleigh quotient iteration13 for symmetric
matrices.

Theorem 10.55 (The power method). Let A ∈ Cn×n.
1. Choose o 6= x0 ∈ Cn, i := 1;
2. while not a halting condition is not satisfied do
3. yi; = Axi−1,
4. xi := 1

‖yi‖2yi .
5. i := i+ 1,
6. end while

The output λ1 := xTi−1yi is an estimation of the eigenvalue, v1 := xi is an
estimation of the corresponding eigenvector.

10The algorithm was discovered by the Hungarian mathematician Cornelius Lanczos in 1950
11The power method was presented by the american mathematician and physicist Richard

Edler von Mises in 1929
12the author is the German mathematician Helhut Wielandt, 1944
13the author is the English physicist John William Strutt, lord Rayleigh, the Nobel price

winner in physics (1904)
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Example 10.56 Let

A =

1 4 2
4 2 2
2 2 −1

 , x0 = (1, 0, 1)T .

The course of the computation and the source code for Matlab / Octave (see
the Czech version of the lecture notes).

The method is interupted when the value of xTi−1yi or the vector xi are stable;
then xi ≈ xi−1 is an estimation of the eigenvector, and xTi−1yi = xTi−1Axi−1 ≈
xTi λxi−1 ≈ λ is an estimation of the corresponding eigenvector. The method
could be slow, it is difficult to estimate an error and the rate of convergence,
and, moreover, the behavior of the method strongly depends on the initial choice
of x0. On the other hand the method is robust (rounding error are not too
important) and the mtrhod can easily be applied to very large sparse metrices.
The method sometimes doesn’t converge, but the convergence can be guaranteed
under certain conditions.

Theorem 10.57 (The convergence of the power method). Let A ∈ Rn×n be
a matrix with eigenvalues |λ1| > |λ2| ≤ · · · ≤ |λn| and the corresponding ei-
genvectors v1, . . . , vn of the length 1. Let x0has a non-zero coordinate in the
direction of v1. Then xi converges (up to a signature) to the eigenvector v1 and
xTi−1yi converges to the eigenvalue λ1.
Proof. Let x0 =

∑n
j=1 αjvj , where α1 6= 0, see the assumptions. Then xi =

1
‖Aix0‖A

ix0 and

Aix0 = Ai

x0 =

n∑
j=1

αjvj

 =

n∑
j=1

αjA
ivj =

n∑
j=1

αjλ
i
jvj = λi1

α1v1 +

n∑
j=2

αj

(
λj
λ1

)i
vj

 .

since the vectors xi are always normalized, the multiplicative factor λi1 is

not interesting. The remaining vector converges to α1v1, because
∣∣∣λj

λ1

∣∣∣ < 1 and

therefore
∣∣∣λj

λ1

∣∣∣i → 0 for i→∞.

Suppose now that xi approximates well the eigenvector v1 Then xTi−1yi =
xTi−1Axi−1 = xTi−1λ1xi−1λ1‖xi−1‖22 = λ1. ♣

The power method computes just the dominant eigenvalue and eigenvector.
However, the following technique makes it possible to eliminate one eigenvalue,
e.g., the dominant one, and then we can use the power method recursively to get
the remaining eigenvalues. We give first a simple version for symmetric matrices,
and then, in Remark 10.59, the general method.

Theorem 10.58 (A deflation of an eigenvalue). Let A ∈ Rn×n be a symmetric
matrix, λ1, . . . , λn its eigenvalues and v1, . . . , vn the corresponding eigenvectors.
Then the matrix A − λ1v1v

T
1 has eigenvalues 0, λ2, . . . , λn, and eigenvectors

v1, . . . , vn.
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Proof. In view of Remark 10.48, we can write A =
∑n
i=1 λiviv

T
i . Then A −

λ1v1v
T
1 = 0v1v

T
1 +

∑n
i=2 λiviv

T
i , which is the spectral decomposition of the

matrix A−λ1v1vT1 , which is the spectral decomposition of the matrix A−λ1v1vT1 .

Remark 10.59 (A deflation of an eigenvalue of a general matrix). Let λ be an
eigenvalue and x be the corresponding eigenvector of the matrix A ∈ Rn×n. Let
x be completed to a regular matrix S so that S∗1 = x. Then

S−1AS = S−1A(x| · · · ) = S−1(λx| · · · ) = (λe1| · · · ) =

(
λ · · ·
o A′

)
.

In view of symmetry, A′ has the same eigenvalues as A, just the multiplicity
of λ is smaller by !. Thus, the remaining eigenvalues and eigenvectors of A can
be found using A′.

Example 10.60 (GoogleTM and PageRank14). Consider a web network with
the following parameters:
N web pages,
aij = 1 if j-th page points to i-th one, aij = 0 otherwise,
bj is the number of pointers from the j-th page,
xi is the importance of the i-th page.

The gpoal is to determine the importances x1, . . . , xn of particular pages. The
main idea of the Google PageRank is in determining the importance of the i-th
page so that it is proportional to the sum og the importances of pages, where
it is pointed. This means that we are solving the eguation xi =

∑n
j=1

aij
bj
xj ,

i = 1, . . . , N . In the matrix setting A′x = x, where a′ij :=
aij
bj

. This means that

x is the eigenvector of A that corresponds to the eigenvalue 1. The eigenvalue
1 is dominant, which can easily be seen from Gerschgoring disks of the matrix
AT (the sum of columns of the metrix A′ is 1, i.e., all Gerschgoring’s disks have
the rightmost end in the

14From 1997, the authors are Sergey Brin and Larry Page
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