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In the text, I describe how to use the method of conjugate gradients to
solve and system of linear equations Ax = b, where b is and given vector
and A is symmetric and positive definite real matrix. The method is iterative:
starting from an arbitrary point xq in the corresponding Euklidean space, we will
subsequently visit (by repeating always the same computation) points x1, X2, . . .,
until we eventually reach a point that is the solution of the system, or it is so
close to the solution that the value will be sufficiently good approximate solution
of the system of equations.

1 Solution of a system of linear equations
by minimizing a quadratic functional

Let us define a functional f as follows:

1
f(z) = ixTAx —xTb for each x € E,,.
Lemma 1 The unique solution Xso; of the system Ax = b is the unique mini-

mum of the functional f.

Dukaz: Consider a vector x € F, and the solution x,,; of the system Ax = b.
Put e = x — x4,;. Then

f(X) = f(xsol + e) = %(Xsol + e)TA(Xsol + e) - (Xsol + e)Tb =

1
= i(xsTolesol +x% Ae+ el Ax,y +eTAe) —xI b—elb=

1
= (§XzolAXsol — xfolb) +elAe+ eT(Axsol —b) = f(xso1) + el Ae,

because xsTolAe = eT Ax,,; and therefore %(xsTolAe +eTAx,y) = el Ax,y.

Since A is positive definite, the value of the expression e’ Ae is always non-
negative and it is equal to 0 (the smallest possible value) if and only if e = 0,
which is when X = x,;. &



2 Minimalization of the functional in a given di-
rection

Now, let us assume that we are in a point x and we will start to travel in the
direction given by a vector p (we may travel in te forward and the backward
direction). This means that we may visit points x+ap, where « is a real number.
Our goal is to determine, where on this path the functional f is minimized. The
value of the functionalu f on the path is

f(x+ap) = %(x + ap)TA(x +ap)— (x+ ap)b =

1 1
= ixTAx +aplTAx + §a2pTAp —xTb —ap®b=U + aV + o®W,

where U = %XTAX —xTb, V=pTAx —p™b, W = %pTAp.

Gien a fixed z and p, U, V and W are constants and the expression f(x+ap)
is a quadratic function of a. It is known that this funcion has its minimum, when
its derivative by « is equal to 0. The derivative is generally equal to 2Wa + V
and hence the minimum is obtained for a = —%, in other words

p’(b - Ax)
-~ plAp

The mimimum on the path x + ap is in the point

Tb— A
X+p(T X)
ptAp

3 The steepest descent direction

Now, let us imagine that we are in the point x and we want to travel in the
direction of the steepest descent of the functional f. What is this direction?
Take a vector e of the length 1 and let us start to travel from x in this
direction. Put ¢(a) = f(x + «e). For fixed e the rate of the change of the
functionalu f in the point x when traveling in the direction e is equal to the
value of the derivative of the function ¢ podle o v bodé av = 0. Let us calculate:

1
pla) = f(x+ae) = §XTAX +aeTAx + a’eTAe — x"b — ae’b

0
M =elAx+20eTAe —e’b
Oa
and therefore the value of the derivative for o« = 0 is
9p(c) —elAx —e'b = —e’(b - Ax).
oo |,_

Now, let us try to find out, in which direction has the smallest (the most
negative) value, i.e., when the scalar product e’ (b — Ax) hes the largest value.
It is clear that this happens when e goes in the direction b — Ax.



4 The method of the steepest descent

If we have to solve the equation Ax = b, it is sufficient to find the minimum
of the functional f(z) = 1x7Ax — x”b, that can be looked for iteratively as
follows: start in an arbitrary point that is denoted as xy. Often, we choose
xg = 0, unless there is a good reason to choose another point. Start from this
point in the direction of the steepest descent of the functional f, which is the
direction given by the vector ro = b — Axy (unless we arrived to the solution of
Az = b - and the computation finishes - the vector has positive length). Move
in this direction to get as low as possible (withrespect to f). Where to move is
described above.

Using the procedure of the preceding paragraph, we move to a point that will
be denoted as xi, and the procedure is repeated again and again. This means
that if we are in x;, we put r; = b — Ax; (note that r; also shows how far we
are with the computation, how far Ax; is from the vector b; if the difference is
very small, we may decide to halt). We move in the direction r;, again to the
point that minimizes the functional f on this path and we denot it as x;1, etc.
We continue until r; (which is usually called i-th residuum, this is why we use
“r”) is not equal to 0 (the solution found) or at least sufficiently small (a good
approximation solution found).

This method is called the method of the steepest descent.

5 The methoda of conjugated gradients

In 1952 Magnus Hestenes and Eduard Stiefel noticed that in the ellipsoidal
geometry of positive definite matrices it is more convenient to proceed in a way
that differs from the steepest descent and, perhaps surprisingly, behaves better:
the method is now called Conjugated Gradient Method or CG or CGM.

It is well known that if A is a positive definite and symmetric real matrix,
then the formula (x,y) = x Ay has properties of scalar product, i.e., (x,x) > 0
with the equation only if x = 0, the operation is symmetric and (ax,y) =
a(x,y). We will say that two vectors x and y are conjugated, if (x,y) = 0
(which means that they are “orthogonal” with respect to the scalar product
determined by the matrix A).

The method of conjugated gradients proceeds in a very similar way as the
steepest descent method, but we will try to make the directions, in which we
move in different rounds of iteration, mutually conjugated. The method that is
used is very similar to the well known Gram-Schmidt orthogonalization.

The method starts again in an arbitrary point xg and it creates a sequance
Xg,T0, Pk, X1,T1, P1,. - . in the following way:



Conjugated Gradient Method (unpolished)

Input data:

an integer n (dimension of the problem)

symmetric positive definite matrix A of the size n x n,

a vector b of dimension n (the right hand side of the system),
a starting vector xg.

pro k=0,1,2,... {

ry, = b—Ax;; ifrg=0,halt; (2)
k=1
r, Ap;
Pr = I‘k—z A Pj (3)
=0 Pj Ap;
T
Pr Tk
Xp+1 = Xp+ Pk ; (4)
Pj, Api
}

The first step is the same as in the steepest descent method; we start in the
direction pg that is equal to rg = b — Axg. However, if, after k iterations, we
arrive to the point x;, we are not going to proceed exactly in the direction of
the steepest descent given by the residuum rp = b — Axj, but in the direction
Pk, that is ri modified so that it is conjugated to all directions py,...,Px_1, in
which we have moved previously.

The modified direction p (p as ‘progress’) is obtained from ry, similarly as
in the Gramm-Schmidt ortogonalization by subtracting appropriate multiples
of the previous directions py = rg, p1,.--,Px—1 from ry to get a vector that is
conjugated to all pg = ro,p1,...,Pr_1, i.e., “orthogonal” in the sense of the
scalar product definovaned by the matrix A.

This means that for each j < k we want to subtract from the vector ry such
a multiple a; of the vector p;, that the result of the subtraction is conjugated
with p;. This implies the following equation for a;: (ry — oszj)TApj =0, or,
equivalently, I{Apj = ajp?Apj, which implies

o — TEAP;
' p]Ap;

This gives the formula (3) for pg, as used above.

If such a vector pj is not a zero vector, we move from x; in the direction
given by the vector pj to the point xx,; that minimizes the functional f alon
that line. In view of (1) we get the formula (4) for x41, as used above.

If it happens that ry is the zero vector, the computation halts, because in
such a caseé xy, is the solution of the system Ax = b and it is not necessary to
compute any more.



We can see one possible problem, namely that it will be px = 0, because in
the subsequent computation of x;41 in the formula (4) we would divide by 0.
However, it will be proved later that this could not happen.

Now, let us prove three simple lemmae that have several important con-
sequences.

Lemma 2 Ifp; is defined, then it is a linear combinations of vectorsrg,...,T.

Dikaz: The lemma is proved by induction by k. For £ = 0 the statement holds,
because pg = ro. And if it is satisfied for k£ — 1, then (3) immediately implies
that it is valid for k£ as well. &

Lemma 3 Ifryy1 is defined, then
Ip+1 =Ty — apApr, where ap =
Diikaz: In view of (4), it is

T
Py Tk
Xk+1 — Xk

= —7 Pk,
Py Apk

and therefore

T
P Tk

rg+1 — T = (b — Axk—H) — (b — Axk) = —(AXk+1 — Axk) = —TiApk.
Py Apy

&

Lemma 4 (Residua are mutually orthogonal)

Suppose that for some non-negative number k the following holds: x; and r;
are defined and r; # O for all j = 0,1,...,k, and, moreover, rl-Trj =0 for all
integers v and j such that 0 <1i < j <k.

Then pr # 0, which implies that X1 and ripy1 are well defined as well and
rgﬂrj =0 forj=0,1,... k.

Dikaz: Since the rezidua ry, . .., ry are non-zero and mutually orthogonal, they
are linearly independent. The sum in the formula (3) is a linear combination of
vectors pg,--.,Prk—1 and therefore, in view of the preceding lemmae, they are
also linear combinations of vectors ro, .. .,rp_1. In view of (3), py is a non-trivial
linear combination of vectors ro, ..., rx. This is why px can not be a zero vector.
And if pg # 0, then the vectors x41 and rpy1 are well defined as well.

Finally, let us compute the value rgﬂrj for a given integer j in the range
0<j<k:

Jj—1.T
ri; Ap;
rgﬂrj = (rk—akApk)Trj = r{rj—akpgA (pj + Z p]TAp-pZ) = r{rj—akpprj,
i=0 *1 g



where
o = P;;Fl“k
pi Apy’
because pj has been selected so that the following holds: pgApi =0 fori < k.
Now, we know that for j < k it is

i—1
-~ Ap;

T
Pk ="1j— E

“— p; Ap;

Pi = r;rg,

and

r. Ap;
piry=(rp— Y _ —& I;)j‘ p;) s =i

If now we have j < k, then the assumptions of the theorem imply that
rgrj =0 and pprj = 0, and therefore rfﬂrj = 0. If, conversely, j = k, then

T T T T k T T k
r,r; — app;p Apj =riry —pLr° =rjr; —rpr =0.

&

The lemma says that the residua are mutually orthogonal in the classical
sense (the standard scalar product), but not conjugated in general (the scalar
product induced by the matrix A).

One of the very important consequence of the lemma is the following theorem
(let us note that the theorem is valid under assumption of exact arithmetic,
without rounding errors):

Véta 1 The conjugated gradient method finds the exact solution of the system
Ax = Db of linear equations after at most n steps.

Dukaz: Assume that the conjungated gradient method does not halt after n
krocich. In such a case it would create non-zero vector rg,rq,...,r, that, ac-
cording to the previous lemma, are mutually orthogonal, and hence lineérly
independent, which is not possible in a space of the dimension n. &

Anothe very useful lemma says that in the formula (3) for computing of pg,
all terms in the sum, with the exception of the term corresponding to j = k —1,
are equal to 0, which makes it possible to simplify greatly the formula as follows:

Lemma 5
riAp; =0  for j=0,...,k—2

T T
1 APk T TR+1

P} Apk riTy

Dukaz: In view of the lemma 30 we know that

1

Q51

rgApj:rg(— (rj—rj_1)=0 for j =0,1,...,k—2



T T T
rp APy T APk-1 1Ty

PLAD:  ap_1P}_App-1 T Tro1
&
Dusledek 1
T
rpi1Th+1
Pk+1 = Tit1 + BkPks where B = ==
rkrk

Dikaz: &

Conjugated Gradient Method (with indices)

Input data:

an integer n (dimension)

a symmetric positive definite matrix A of size n X n,

a vector b of dimension n (the right hand side of the system),
a starting vector xg.

roiib‘*IXXO;

Po =To ;
for k=0,1,2,... {

zy = Apy;
r{rk
R = T 5
Py Zg
Xk+1 = Xp+ 0Pk ;
k11 = T — apZg; if rp = 0, halt;
T
6 rk+1rk+1 .
k pr— —_—
riry
Pr+1 = Tri1+ BePrk ;




Conjugated Gradient Method (final form)

Input data:

an integer n (dimension)

a symmetric positive definite matrix A of size n X n,

a vector b of dimension n (the right hand side of the system),
a starting vector xg.

r=b—Axg;
Irr =rTr;
p=r;
for k=0,1,2,... {
z = Ap;
lrr
a = —;
piz’
X = X+oap;
r = r—az ifr=0, halt;
rr = rlr;
7P
g = l_;
rr
lrr = rr
P = r+pp;




