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In the text, I describe how to use the method of conjugate gradients to
solve and system of linear equations Ax = b, where b is and given vector
and A is symmetric and positive definite real matrix. The method is iterative:
starting from an arbitrary point x0 in the corresponding Euklidean space, we will
subsequently visit (by repeating always the same computation) points x1,x2, . . .,
until we eventually reach a point that is the solution of the system, or it is so
close to the solution that the value will be sufficiently good approximate solution
of the system of equations.

1 Solution of a system of linear equations
by minimizing a quadratic functional

Let us define a functional f as follows:

f(x) =
1

2
xTAx− xTb for each x ∈ En.

Lemma 1 The unique solution xsol of the system Ax = b is the unique mini-
mum of the functional f .

Důkaz: Consider a vector x ∈ En and the solution xsol of the system Ax = b.
Put e = x− xsol. Then

f(x) = f(xsol + e) =
1

2
(xsol + e)TA(xsol + e)− (xsol + e)Tb =

=
1

2
(xTsolAxsol + xTsolAe + eTAxsol + eTAe)− xTsolb− eTb =

= (
1

2
xTsolAxsol − xTsolb) + eTAe + eT (Axsol − b) = f(xsol) + eTAe,

because xTsolAe = eTAxsol and therefore 1
2 (xTsolAe + eTAxsol) = eTAxsol.

Since A is positive definite, the value of the expression eTAe is always non-
negative and it is equal to 0 (the smallest possible value) if and only if e = 0,
which is when x = xsol. ♣
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2 Minimalization of the functional in a given di-
rection

Now, let us assume that we are in a point x and we will start to travel in the
direction given by a vector p (we may travel in te forward and the backward
direction). This means that we may visit points x+αp, where α is a real number.
Our goal is to determine, where on this path the functional f is minimized. The
value of the functionalu f on the path is

f(x + αp) =
1

2
(x + αp)TA(x + αp)− (x + αp)Tb =

=
1

2
xTAx + αpTAx +

1

2
α2pTAp− xTb− αpT b = U + αV + α2W,

where U = 1
2xTAx− xTb, V = pTAx− pTb, W = 1

2pTAp.
Gien a fixed x and p, U , V and W are constants and the expression f(x+αp)

is a quadratic function of α. It is known that this funcion has its minimum, when
its derivative by α is equal to 0. The derivative is generally equal to 2Wα + V
and hence the minimum is obtained for α = − V

2W , in other words

α =
pT (b−Ax)

pTAp
.

The mimimum on the path x + αp is in the point

x +
pT (b−Ax)

pTAp
p (1)

3 The steepest descent direction

Now, let us imagine that we are in the point x and we want to travel in the
direction of the steepest descent of the functional f . What is this direction?

Take a vector e of the length 1 and let us start to travel from x in this
direction. Put ϕ(α) = f(x + αe). For fixed e the rate of the change of the
functionalu f in the point x when traveling in the direction e is equal to the
value of the derivative of the function ϕ podle α v bodě α = 0. Let us calculate:

ϕ(α) = f(x + αe) =
1

2
xTAx + αeTAx + α2eTAe− xTb− αeTb

∂ϕ(α)

∂α
= eTAx + 2αeTAe− eTb

and therefore the value of the derivative for α = 0 is

∂ϕ(α)

∂α

∣∣∣∣
α=0

= eTAx− eTb = −eT (b−Ax).

Now, let us try to find out, in which direction has the smallest (the most
negative) value, i.e., when the scalar product eT (b−Ax) hes the largest value.
It is clear that this happens when e goes in the direction b−Ax.
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4 The method of the steepest descent

If we have to solve the equation Ax = b, it is sufficient to find the minimum
of the functional f(x) = 1

2xTAx − xTb, that can be looked for iteratively as
follows: start in an arbitrary point that is denoted as x0. Often, we choose
x0 = 0, unless there is a good reason to choose another point. Start from this
point in the direction of the steepest descent of the functional f , which is the
direction given by the vector r0 = b−Ax0 (unless we arrived to the solution of
Ax = b - and the computation finishes - the vector has positive length). Move
in this direction to get as low as possible (withrespect to f). Where to move is
described above.

Using the procedure of the preceding paragraph, we move to a point that will
be denoted as x1, and the procedure is repeated again and again. This means
that if we are in xi, we put ri = b −Axi (note that ri also shows how far we
are with the computation, how far Axi is from the vector b; if the difference is
very small, we may decide to halt). We move in the direction ri, again to the
point that minimizes the functional f on this path and we denot it as xi+1, etc.
We continue until ri (which is usually called i-th residuum, this is why we use
“r”) is not equal to 0 (the solution found) or at least sufficiently small (a good
approximation solution found).

This method is called the method of the steepest descent.

5 The methoda of conjugated gradients

In 1952 Magnus Hestenes and Eduard Stiefel noticed that in the ellipsoidal
geometry of positive definite matrices it is more convenient to proceed in a way
that differs from the steepest descent and, perhaps surprisingly, behaves better:
the method is now called Conjugated Gradient Method or CG or CGM.

It is well known that if A is a positive definite and symmetric real matrix,
then the formula 〈x,y〉 = xTAy has properties of scalar product, i.e., 〈x,x〉 ≥ 0
with the equation only if x = 0, the operation is symmetric and 〈αx,y〉 =
α〈x,y〉. We will say that two vectors x and y are conjugated, if 〈x,y〉 = 0
(which means that they are “orthogonal” with respect to the scalar product
determined by the matrix A).

The method of conjugated gradients proceeds in a very similar way as the
steepest descent method, but we will try to make the directions, in which we
move in different rounds of iteration, mutually conjugated. The method that is
used is very similar to the well known Gram-Schmidt orthogonalization.

The method starts again in an arbitrary point x0 and it creates a sequance
x0, r0,pk,x1, r1,p1, . . . in the following way:

3



Conjugated Gradient Method (unpolished)
Input data:
an integer n (dimension of the problem)
symmetric positive definite matrix A of the size n× n,
a vector b of dimension n (the right hand side of the system),
a starting vector x0.

pro k = 0, 1, 2, . . . {

rk = b−Axk ; if rk = 0, halt; (2)

pk = rk −
k−1∑
j=0

rTkApj
pTj Apj

pj ; (3)

xk+1 = xk +
pTk rk

pTkApk
pk ; (4)

}

The first step is the same as in the steepest descent method; we start in the
direction p0 that is equal to r0 = b −Ax0. However, if, after k iterations, we
arrive to the point xk, we are not going to proceed exactly in the direction of
the steepest descent given by the residuum rk = b−Axk, but in the direction
pk, that is rk modified so that it is conjugated to all directions p0, . . . ,pk−1, in
which we have moved previously.

The modified direction pk (p as ‘progress’) is obtained from rk similarly as
in the Gramm-Schmidt ortogonalization by subtracting appropriate multiples
of the previous directions p0 = r0,p1, . . . ,pk−1 from rk to get a vector that is
conjugated to all p0 = r0,p1, . . . ,pk−1, i.e., “orthogonal” in the sense of the
scalar product definovaned by the matrix A.

This means that for each j < k we want to subtract from the vector rk such
a multiple αj of the vector pj , that the result of the subtraction is conjugated
with pj . This implies the following equation for αj : (rk − αjpj)TApj = 0, or,
equivalently, rTkApj = αjp

T
j Apj , which implies

αj =
rTkApj
pTj Apj

.

This gives the formula (3) for pk, as used above.
If such a vector pk is not a zero vector, we move from xk in the direction

given by the vector pk to the point xk+1 that minimizes the functional f alon
that line. In view of (1) we get the formula (4) for xk+1, as used above.

If it happens that rk is the zero vector, the computation halts, because in
such a caseě xk is the solution of the system Ax = b and it is not necessary to
compute any more.
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We can see one possible problem, namely that it will be pk = 0, because in
the subsequent computation of xk+1 in the formula (4) we would divide by 0.
However, it will be proved later that this could not happen.

Now, let us prove three simple lemmae that have several important con-
sequences.

Lemma 2 If pk is defined, then it is a linear combinations of vectors r0, . . . , rk.

Důkaz: The lemma is proved by induction by k. For k = 0 the statement holds,
because p0 = r0. And if it is satisfied for k − 1, then (3) immediately implies
that it is valid for k as well. ♣

Lemma 3 If rk+1 is defined, then

rk+1 = rk − αkApk, where αk =
pTk rk

pTkApk
.

Důkaz: In view of (4), it is

xk+1 − xk =
pTk rk

pTkApk
pk,

and therefore

rk+1 − rk = (b−Axk+1)− (b−Axk) = −(Axk+1 −Axk) = − pTk rk
pTkApk

Apk.

♣

Lemma 4 (Residua are mutually orthogonal)
Suppose that for some non-negative number k the following holds: xj and rj
are defined and rj 6= 0 for all j = 0, 1, . . . , k, and, moreover, rTi rj = 0 for all
integers i and j such that 0 ≤ i < j ≤ k.
Then pk 6= 0, which implies that xk+1 and rk+1 are well defined as well and
rTk+1rj = 0 for j = 0, 1, . . . , k.

Důkaz: Since the rezidua r0, . . . , rk are non-zero and mutually orthogonal, they
are linearly independent. The sum in the formula (3) is a linear combination of
vectors p0, . . . ,pk−1 and therefore, in view of the preceding lemmae, they are
also linear combinations of vectors r0, . . . , rk−1. In view of (3), pk is a non-trivial
linear combination of vectors r0, . . . , rk. This is why pk can not be a zero vector.
And if pk 6= 0, then the vectors xk+1 and rk+1 are well defined as well.

Finally, let us compute the value rTk+1rj for a given integer j in the range
0 ≤ j ≤ k:

rTk+1rj = (rk−αkApk)T rj = rTk rj−αkpTkA

(
pj +

j−1∑
i=0

rTj Api

pTi Api
pi

)
= rTk rj−αkpTkApj ,
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where

αk =
pTk rk

pTkApk
,

because pk has been selected so that the following holds: pTkApi = 0 for i < k.
Now, we know that for j < k it is

pTj rk = rj −
j−1∑
i=0

rTj Api

pTi Api
pi = rjrk,

and

pTk rk = (rk −
k−1∑
j=0

rTkApj
pTj Apj

pj)
T rk = rTk rk.

If now we have j < k, then the assumptions of the theorem imply that
rTk rj = 0 and pTkApj = 0, and therefore rTk+1rj = 0. If, conversely, j = k, then

rTk rj − αkpTkApj = rTk rk − pTk rk = rTk rk − rTk rk = 0.

♣
The lemma says that the residua are mutually orthogonal in the classical

sense (the standard scalar product), but not conjugated in general (the scalar
product induced by the matrix A).

One of the very important consequence of the lemma is the following theorem
(let us note that the theorem is valid under assumption of exact arithmetic,
without rounding errors):

Věta 1 The conjugated gradient method finds the exact solution of the system
Ax = b of linear equations after at most n steps.

Důkaz: Assume that the conjungated gradient method does not halt after n
kroćıch. In such a case it would create non-zero vector r0, r1, . . . , rn that, ac-
cording to the previous lemma, are mutually orthogonal, and hence lineárly
independent, which is not possible in a space of the dimension n. ♣

Anothe very useful lemma says that in the formula (3) for computing of pk,
all terms in the sum, with the exception of the term corresponding to j = k−1,
are equal to 0, which makes it possible to simplify greatly the formula as follows:

Lemma 5
rTkApj = 0 for j = 0, . . . , k − 2

rTk+1Apk

pTkApk
=

rTk+1rk+1

rTk rk

Důkaz: In view of the lemma 30 we know that

rTkApj = rTk (− 1

αj−1
(rj − rj−1) = 0 for j = 0, 1, . . . , k − 2
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rTk+1Apk

pTkApk
=

rTk+1Apk−1

αk−1pTk−1Apk−1
=

rTk rk
rTk−1rk−1

♣

Důsledek 1

pk+1 = rk+1 + βkpk, where βk =
rTk+1rk+1

rTk rk

Důkaz: ♣

Conjugated Gradient Method (with indices)
Input data:
an integer n (dimension)
a symmetric positive definite matrix A of size n× n,
a vector b of dimension n (the right hand side of the system),
a starting vector x0.

r0 = b−Ax0 ;
p0 = r0 ;
for k = 0, 1, 2, . . . {

zk = Apk ;

αk =
rTk rk
pTk zk

;

xk+1 = xk + αkpk ;

rk+1 = rk − αkzk; if rk = 0, halt;

βk =
rTk+1rk+1

rTk rk
;

pk+1 = rk+1 + βkpk ;

}
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Conjugated Gradient Method (final form)
Input data:
an integer n (dimension)
a symmetric positive definite matrix A of size n× n,
a vector b of dimension n (the right hand side of the system),
a starting vector x0.

r = b−Ax0 ;
lrr = rT r;
p = r ;
for k = 0, 1, 2, . . . {

z = Ap ;

α =
lrr

pT z
;

x = x + αp ;

r = r− αz; if r = 0, halt;

rr = rT r ;

β =
rr

lrr
;

lrr = rr

p = r + βp ;

}
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