
Chapter 1

Voronoi Diagram

Scene: Sites

Display shows black dots in the plane, that will be called sites. AND collection of sites represents input data
for and search of and Voronoi diagram. In this scene, we will just see how to manipulate the set of sites.

Here and in most of the following scenes it is possible to create new set of sites using the button New input,
its size can be set it the field net to the label N=. In scenes, where they are available, buttons Zvti and Zmeni
can be used to zoom the image, which often brings an interesting new view to the configuration.

In the control bar there is also a choice ot the mouse function (used in some other scenes):)
Choice Move diagram: Using the mouse, it is possible to move the plane, in which sites and the Voronoi
diagram are drawn.
Choice Move site: Using the mouse, it is possible to catch a site and drag it arbitrarily in the window.
Choice Add site: Clicking into an empty space in the display creates a new site.
Choice Delete site: Delete an existing site by clicking onto it.

Scene: Voronoi diagram

This scene shows a Voronoi diagram of the selected set of sites. There is a region around any site in the
form of a convex polygon, bounded by black lines. Some of boundary lines are line segments of bounded length,
others are halflines.

Very exceptionally it can happen that the boundary is an infinite line (in this case the region is a halfplane)
or 2 parallel line (in this case the region is an infinite stripe), but if there are more than 2 sites, these cases are
very unlikely. The situations will be shown in the scene on degenerated examples.

Point of the plane aredivided into several categories:

• Interior of the region around a site s is composed of the points of the plane, that are closer to the site s

than to any other site of the site set.

• Points that belong to the boundary of the regions correspondint to sites s1 and s2 are points that are
equally close to s1 and s2 and closer to both s1 and s2 than to any other site. Such points belong to
dividing line segments, halflines or lines, but there are not their end-points.

• Finally the diagram contains points that belong in the same time to boundaries of regions of three different
sites s1, s2 and s3. Such points have the same distance from sites s1, s2 and s3, which is smaller that the
distance to any other site. Such points are end-points of the boundary line segments and halflines.

• I general, there can be even points x having four or more nearest sites. However, such a case is very
unlikely for a randomly constructed set of sites. A point x would belong to a boundary of at least four
regions (similarly as the Four Corners point on the boundary of Arizona, Colorado, New Mexico and
Utahu in the USA) and all of its nearest sites would belong to the same circle vit the center x. Such and
other degenerated cases are discussed in detail later.

Points tha belong to boundary of three or more regions are called Voronoi points.
Change the set of sites by moving, adding and deleting of sites and observe changes of the diagram.

1



2 CHAPTER 1. VORONOI DIAGRAM

Scene: Algorithm animation

This applet shows, how a Voronoi diagram is constructed by an algorithm that was described by S. Fortune.
In the next two scenes the algorithm will be presented using a 3D drawing. To avoid possible misunderstanding
concerning the meaning of “up” and “down” the upper part of the display will be called “north” and the lower
part of the display will be “south”, using a convention common in the cartography. The terms “upper” and
“lower” will be used in the 3D representation only, where I assume that the situation is observed from above,
and hence “upper” will mean “closer to the observer” and “lower” will mean “farther from the observer.”

Fortune’s algorithm is a “sweep line” algorithm. After certain time a line appears in the display, which
“sweeps” the plane from south to north and, at each moment, it shows a Voronoi diagram of site that have
already been reached by the sweep line - more precisely that part of the diagram that will not change any more
during the computation and will stay as a part of the resulting diagramu of the whole set of sites. The sweep
line is not explicitly drawn and it is given by a moving boundary between the light and the dark of the plane.

A computation of the algorithm can be stopped by the button Halt and restarted using the button Forward
or run backwards using the button Backward. It is also possible to jump to the end of the computation using
the button Finish or go back to the beginning using the button Reset and then to start the algorithm again
using the button Forward or Backward. Sweep line can also be moved using the mouse: push the mouse
button outside of the control bar; the sweep line jumps to meet the point of the mouse push and remains
attached to the cursor when the mouse button remains to be pressed.

There is a strange red surved line south of the sweep line. Due to its shape, the red cureve is usually called
a “beach line” in the anglo-saxon literature. The Voronoi diagram is drawn in the region south of the beach
line. This is because (as shown below) that the shape of the resulting diagram in the region south of the beach
line is given only by sites that have already been “swept” by the sweepline, while the form of the diagram in
the region between the beach line and the sweep line can still the sweep line. Of course, note that nothing of
the diagram could be determined in the region north of the sweep line.

When observed more closely, it can be found that the beach line is made of several arcs (it will be shown
later that the arcs are parabolic arcs) and the points, where the arsc meet, draw the Voronoi diagram. The
reason for this fact will become obvious in the following scenes.

Scene: Cones

This scene and the next one bring an alternative view of the situation that has been described in the previous
scenes. The view can make it much easier to understand the algorithmic idea of the Fortune’s algorithm, but I
have found that certain readers have difficulties to understand it. Since the scenes are not absolutely necessary
for the explanation of the algorithm, it is possible to skip tham and possibly go back later, even though I think
3D view makes the understanding easier and deeper.

The 3D scenes are computationally intensive, and hence there might be certain delays on older computers.

This scene shows the same situation as the previous one, but represented in three-dimensional space. The
planes involving all the input sites is embedded into the space in such a way that it is horizontal and observed
from above. we assume that is observed from a big distance (perhaps from the infinity) and consequently effects
of perspective are suppressed and the display shows a parallel vertical projection into the plane of input sites.

Every site is the top of a cone with a vertical axis and shaded as if there was a source of the light on the
left. The surface lines of the cones have a declination 45 degrees. What we get is a mountain range, where
particular mountains have the same regular shape and their tops (our sites) are in the same altitude. Viewed
fromanother cone.

When the mouse moves up end down having the left button pressed, the mountains start to incline - observe
them from a side view. Moving the mouse left or right rotates the mountain. (Only part of the mountain is
shown - its cutout that was visible in the window when observing it vertically; during tests most users claimed
this method as easier to be understood). Clicking the button Vertical it is possible to restore the original
vertical position.

[Sorry: Triangles explained in the following paragraphs of the scene are not yet implemented]

Click now by the right button of the mouse to any point of the surface of the cone moutains. A rectangular
equilateral triangle appears with different colors of its sides (if you see just a red line or if the triangle is too
narrow rotate the mountains to see the triangle better). A green hypotenuse of the triangle shows a descent from
the top of the cone that bears the selected point on its surface, along the spdov line of the cone to the selected
point. A red triangle base is the projection of the green hypotenuse into the horizontal site plany. Finally a
yellow height side shows how deep is the selected point below the site plane. The triangle is rectangular, because



3

the yellow height is perpendicular to the site plane and hence perpendicular to the red base as well, and since
the declination of cone surface lines is 45 degrees, the triangle is also equilateral.

Move the cursor having the right mouse button pressed to see the triangle in different positions, possibly
moving the mountains to a different position to make the triangle better visible (having the left mouse button
pressed). Finally let the mountains move back to the initial position (e.g., using the button Vertical) to verifz
that what can bee seen in this position as a line segmant connecting the top of the cone and the selected point
is in fact the projection of their true connection in the space.

You have perhaps noticed that if the selected point belongs to an intersection of two cones, two triangles
appear (and three or even more triangles can appear in Voronoi points of the diagram). Put the selected point
to a visible intersection of two different cone surfaces and rotate the mountains so the triangles are well visible.
Both triangles are rectangular and equilateral ant thez have a common yellow side. As a consequence, the
triangles are identical and hence their red sides have the same length. Put now the mountains again to their
initial position and observe them vertically. Now, red triangle bases give distances of the selected point, as
they appear in their projections to the site plane. This proves what, I guess, is already clear to anybody: the
projections of the visible cone intersections is exactlz the Voronoi diagram of the set of the input sites (cone
tops).

To hide the triangles, uncheck the checkbox Triangle. If Triangle is checked again, it is necessary to click
somewhere by the red mouse button to have the triangle displayed again.

Scene: Sweep plane

Let us now imagine that the mountains of the previous scene is “swept”, but by a green plane rather than
by line. The plane declination is 45 degrees (only rectangular section of the plane is shown). Parts of the
mountains that are below the plane are blue (from light to dark blue), while parts above the sweep plane are
gray (again from light to dark). The intersection of the green plane anf the cone surfaces is red.

Push button Ahead and observe the plane movement. The sweep plane slowly uncovers parts of the cones.
Wait until the plane is approximately in the middle of the mountains and push the button Halt. After a
thorough inspection of the way the mountains are cut by the sweep plane (possibly rotating the mountains),
push the button Vertical. The mountains return to the initial position known from the previous scenes, when
the cones are observed vertically from above in the direction parallel with their axis.

When the mountains are viewed in their initial position, the intersection of the sweep plane with the hori-
zontal site plane represents the sweep line from the previous 2D scene. You obviously see that the intersection
of the sweep plane and the visible cone surfaces (or, more precisely, its projection to the site plane) is the beach
line that was shown in the original 2D animation of the algorithm. Points that are south of the beach line in
the 2D scenes are projections of points of the visible parts of the cone surfaces that are above the sweep plane
in the 3D scene. Points that are north of the beach line in the 2D scenes are projections of points of the visible
parts of the cone surfaces that are below the sweep plane in the 3D scene.

The first moment, when the sweep plane touches a cone of some site, is the moment, when the plane touches
the top of the cone (i.e., a site). In the same time the plane touches a cone in a surface halfline that goes from
the top down to the south.

Now it is clear, how the sweep line is constructed: it is the projection of the intersection of the sweep plane
and visible parts of the cone surfaces. Since the sweep plane is parallel to a surface halfline of a cone, the
intersections of the sweep place and cone surfaces is a parabola and ist projecton to the site plane is a parabola
as well. This shows that the beach line in 2D scenes is really composed of parabolic arcs.

Valeys of the cone mountains are points, the projections of which form boundary segments of regions of a
Voronoi diagram in 2D. These points are also points, where visible intersections of the cone surfaces meet the
sweep plane. This is why meeting points of arcs of the beach line in 2D reprezentaci “draw” the boundaries of
Voronoi regions: all are projections of points of valey bottoms.

Scene: Single parabola

In previous scene we explained the meaning of the beach line using a 3D view of the configuration. In this
and the following scenes we explain the meaning of the beach line once more, but using its planar drawing. We
will again meet cone sections, in particular parabolas, but not as an intersection of a cone and a plane, but as
a set of points equidistant from a point and a line.

As I have already explained above, the algorithm tries to construct a part of the Voronoi diagramu that
can be determined using just knowledge of sites, that have been swept (or at least touched) by the sweep line.



4 CHAPTER 1. VORONOI DIAGRAM

Such sites will be called known sites. Sites that are still in the dark north region (north of the sweep line) are
unknown sites.

The figure shows all sites and the sweep line. Click on known site. The site is emphasized and a pink region
apears. The region is upper bounded by a parabolic curve. The boundary is a set of all points, that have the
same distance from the selected site and the sweep line (in its actual position). It is known that such a curve
is a parabola that has a focus in the selected site; the sweep line is the directrix of the parabola. The parabola
is open southward and the points of the pink region are the points that are closer to the focus than to the
directrix, while points that are not pink and do not belong to the parabola are (regardless of their position with
respect to the sweep line) closer to the directrix of the parabola (i.e., the sweep line) than to the focus.

Note that the point of the parabola that is north of the selected site is the point that is in the middle of the
distance from the focus to the directrix.

Choose another known site; again you obtain a parabola and a pink region of points closer to the selected
focus than to the directrix. The directrix (sweep line) can be moved by the buttons of the control bar as in the
previous scenes. A movement stops when the selected site is hit by the sweep line (to prevent its passing to the
region of unknown sites). The sweep line can not be dragged by the mouse to avoid colision with selecting sites
by the mouse.

Observe changes of a parabola shape when the sweep line, representing the directrix of the parabola, moves.
If the directrix is close to the focus, the parabola is very narrow, but opens as the directrix moves northward.

A special situation occurs when the focus (i.e., the selected site) belongs to the directrix. In this case the
set of points that are equidistant from the focus and the directrix is not a parabola, but a line passing through
the focus and perpendicular to the directrix. This case is also important for the computation according to the
Fortune’s algorithm and occurs during so called site event. In the present setting we are only interested in a
part of the line (a halfline) that starts in the focus and extends to the south. We can view of this halfline as a
degenerated parabole of the zero width. The above mentioned pink region is now void; when the focus belongs
to the directrix, no point can be closer to the focus than to the directrix.

Note that the degenerated situation of the preceeding paragraph can be explained in 3D setting as well: in
this case the sweep plane includes the top vertex of a cone (a site) and touches the cone surface in a single
halfline, while later it intersects the surface in a proper parabola.

Scene: Parabolae together

In this scene all parabolae of known sites, as explained in the previous scene, are shouwn in the same time.
The pink region in the display is the union of the pink regions of all known sites. The pink region is the set of
points of the plane that are closer to one of the known sites than to the sweep line.

Red points are points of a parabola of some known site that are not elements of the pink region of any other
known site. Such points are points such that the distance to the nearest known site is the same as the distance
to the sweep line. It is clear that this set is the beach line of the previous scenes.

Remaining points north of the beach line are points that are closer to the sweep line than to the nearest
known site. Note that in this case it is possible that the sweep line hides an unknown site that is closer than any
of the known sites. This is why the form of the Voronoi diagram can not be determined in the region between
the beach line and the sweep line, assuming that we are not allowed to use information about unknown sites.

[Sorry: The scene “Beachline” that is still in the applet was deleted from the guide]

Scene: Events

The shape of the beach line always changes as it moves to the north, but the number of arcs and their
foci change only infrequently. Momnts when the beach line substantially changes are called events. This scene
animates sweeping the sites using buttons Upwards and Dawnwards similarly as in the third scene, but the
movement automatically stops not only when the button Halt is pressed, but also when an event occurs.

Let the sweep line move to the north and observe events that breaks the computation. There are two cases:

• Site event: The sweep line hit another site (which explains the name of the event type). A new but
degenerated “arc” appeared in the beach line. In fact, the “arc” is a line segment that is a part of the
halfline representing e degenerated parabola of the new known site that belogs to the sweep line in the
moment of the site event. The “arc” cuts into two parts an arc that is below the new know site on the
original beach line.



5

• Circle event: One of the arcs of the beach line has been “oppressed” by two neighboring arcs, its width
decreased and the arc completely disappeared in the moment of an event. (The name of this type of event
will be explained later).

Occasionally some other types of events can occur. Certain among them can be viewed as a simultaneous
occurence of two or more simple events; e.g. erasing of two or more contiguous or non-contiguous arcs in the
same time. In the case of a site event, it can happen that a vertical halfline starting in a new know site hits the
beach line not in the middle of an arc, but in the point where two arcs meet. The latter event must be dealt
with in a special way. Such configurations are discussed in a special scene later.

Play with the applet and observe situations that occur during events. I recommend observing configurations
that appear just before or after an event (in particular before a circle event and after a site event).

Scene: Site event

The scene is similar to the previous one, but the sweep line halts at site events only.
Observe what happens in the moment of a site event and immediately after it. Before a site event nothing

signals that a new event occurs. The situation north of the sweep line is unknown and there is no possibility to
find that the line aproaches an unknown site.

In the moment of an event a new site appears on the sweep line. A new degenerated parabole is included
into the list of arcs of the beach line. Assuming a usual site event, the halfline of the degenerated parabola cuts
certain arc of the beach line into two parts and is inserted between them. The cut point has the same distance
to the newly discovered site on the sweep line and to the focus of the parabolic arc that has been cut. This
is why a new segment of the Voronoi diagram starts in the cut point. At the moment of a site event the new
Voronoi segment is represented by a single point, the cut point.

Now, using the mouse, move the sweep line very slowly to the north. The degenerated parabola becomes
an extremely narrow proper parabola. However, the parabola opens very quickly. Intersection of the branches
of the parabola with the west and the east parts of the cut arc of the original beach line move swiftly in the
opposite directions and draw a new segment of the Voronoi diagram. It is obvious that the intersection points
move along the line which is the axis of the line segment connecting the new know site and the focus of the arc
that was split.

When writing a code for a computer, it is convenient to assume that the new segment of the Voronoi diagram
is not drawn in two directions, but that they are two new segment, starting in the point where a degenerated
parabola of the new site cut the arc. The new segments are both drawn unidirectionally by intersection points
of the branches of the parabola having the new site as a focus with the arc that has been split. Activate the
checkbox Halflines to illustrate this approach. The two segments are drawn as arrows having an explicitly
marked starting point.

Scene: Circle event

Roughly speaking, a circle event is a decay of certain arc of the beach line, when its neighbors touch in the
point where the arce has disappeared. It is possible to say that the arc died due to expansion of its neighbors.

Unlike in the case of a site event, a circle event can be forecasted sometimes long time before. However, it
can happen that a planned circle event would not occur, because another event unplanned event takes place
and changes the situation in such a way that the planned event is meaningless (e.g., it can happen than an
aggressive neighbor arc is eliminated before it kills the squeezed arc).

Let the sweep line move (the buttons Forward or Backward) until it halts in the moment of a circle event,
and then move it slightly back.

Now, we observe the situation just before a circle event that is going to eliminate a short arc α having
the focus sα, which is squeezed by neighboring arcs β and γ having respective foci sβ and sγ . The lines that
represent axis of the line segments sα − sβ and sα − sγ are lines that guide the meeting points of the respective
arc pairs (α, β) and (α, γ). The lines intersect in the point in which the arc α disappears soon.

[Sorry: The following interaction is not yet fully functional in the applet] Let the sweep line to move again;
the circle event happens. At this moment activate the checkbox Parabolae. Two full parabolae appear that are
determined by the sites sβ and sγ , and that involve the arcs β and γ, the killers of the arc α. The intersection
point, where the arc α disappeared, is also on the parabola with the focus sα. The parabola is represented
as well (but using the green color), because the arc α is still in fact a part of the beach line, even though it
degenerated to a single point. Hence, the point c, where the arc α disappeared, belongs in the same time to
three parabolae with the foci α, β and γ.



6 CHAPTER 1. VORONOI DIAGRAM

This implies that the distances from the intersection point c to all three sites sα, sβ and sγ are the same as
the distance from the point c to the sweep line. It follows that the circle with the center c and passing through
sα passes through the sites sβ and sγ as well. Moreover, in the moment of the site event the sweep line touches
the upper point of above mentioned circle. To show the circle check the checkbox Show circle.

Now, it is already clear how to forecast a circle event that kills an arc α having neighbors β and γ (unless
invalidated by an earlier event):

1. draw a circle passing through sites sα, sβ and sγ ; the arc α is supposed to disappear when the center of
the circle is in a point that will be hit by the beach line in the future;

2. if the arc α disappears, it is eliminated in the center of the circle;

3. if the arc α disappears, the event occurs in the moment when the sweep line touche the uppermost
point of the circle, i.e., when the y-coordinate of the points of the (horizontal) sweep line is equal to the
y-coordinate of the circle center plus r, where r is the radius of the circle.

A role of a circle when forecasting a circle event explains the name of the event.

[Sorry: The following three scenes are not yet implemented]

Scene: Circle event - planning

When the computation is interupted, select the choice One circle and click certain arc of the beach line.
If it appears that the selected arc would disappear as a result of a future circle event, a circle appears that
passes through the foci of the selected arc and its neighbors in the beach line. The circle can be understood as
a forecast of a future circle event.

However, if the selected arc expands as long as the sweep line mves to the north (i.e., the distance of its
end-points gets larger), no circle appears.

When selecting the choice All circles, the circles of all expected future circle events appear in the same
time. The figure is usually a bit messy, but it gives an idea of how many circle events are planned.

Scene: Failed circle event

This scene shows several model configurations where the emphasized arc of the beach line is supposed to
disappear, but finally the planned event does not occur. The corresponding circle is shown as well.

In the example 1 the emphasized central arc is cut by a parabola of a site that appears at the moment of
an earlier site event.

In the examples 2 and 3 the neighbors of the emphasized central arc are eliminated by earlier site events.
However, one can argue that these two cases mean that the original circle events are preserved in a modified
form - a neighbor arc that have been cut during a site event is replaced by its part that is adjacent with the
emphasized central arc. Note that the original neighbor and its part have the same focus, and therefore the
replacement event has the same circle and hence it happens in the same time and the arc is planned to disappear
in the same place.

In the examples 4 and 5 the neighbors of the emphasized central arc are eliminated by earlier circle events.
In this case the originally planned event is replaced by another circle event, too. However, unlike in the previous
case, the replacement is substantial - a replacement neighbor arc has a different focus and hence the circle of
the event is quite different.

In the examples 6 and 7 an earlier site event occurs and its degenerated parabola hit the beach line in the
points where the emphasized central arc of the planned event meets with its neighbor. Once again, the central
arc gets a substantially different neighbor arc having a different focus. Thus, the planned circle event is replaced
by a circle event that has a different circle.

Scene: Event calendar

In order to schedule events, the algorithm uses an event calendar. In the previous scenes we have implicitly
assumed that the computation is performed on-line and the sites become known only when the sweep line
encounters them. However, if solved off-line, a complete set of sites is given at the beginning of the computation.
In such a case all sites can be inserted into the event calendar according to y-coordinates of sites, which tell us
when the sweep line hits them.

Circle events are inserted when a change occurs on the beach line such that it is possible to expect that a
circle event will occur in the future. Data describing a single circle event involve an information on foci of 3 arcs,



7

and the center and the radius of the corresponding circle. A data record is stored according to the y-coordinate
of the upper point of the circle (i.e., the y-coordinate of the circle center plus the circle radius), which gives the
position of the sweep line in the moment of the corresponding event.

In the display, the calendar is represented by black and magenta items drawn in the right part of the
window. Black items correspond to site events and a nib on the left side of an item gives the y-coordinate of
the corresponding site (and hence it determines the position of the sweep line in the moment when the event
occurs). When clicked, a calendar item is emphasized together with the corresponding site. Tha same happens
when a site is clicked.

Magenta items correspond to circle events; the set of planned circle events change during the computation.
A nib of an item determines the y-coordinate of the upper point of the corresponding circle (and hence it
determines the position of the sweep line in the moment when the event occurs). When clicked, a calendar item
is emphasized together with the central arc of the event, and the event circle is shown. The same happens when
the central arc of the event is clicked.

As already explained, certain planned circle events are erased from the event calendar before they occur
during an earlier site or circle event. On the other hand, certain new circle events must be planned during
events. Thus, when an event occurs, both events to be erased and new events to be planned are displayed. The
former ones have temporarily gray color, the latter ones are green. Of course, after the event the gray calendar
items disappear and the green ones get their normal magenta color of circle events.

It happens quite often that events are planned so that the corresponding calendar items overlap and the
calendar becomes messy. In such a case it is possible to deactivate the checkbox Exact position and the
calendar items are re-arranged vertically so that they do not overlap. However, in this case the vertical position
of the items doesn’t correspond to the position of the sweep line in the moment of the event (and hence nibs
on the left side of items are not shown). The correspondence of events with sites or circles and arcs, activated
by mouse clicking, is preserved.

Scene: Degenerated events

This scene shows 8 different site configurations that generate degenerated events. Configuration are selected
by choosing Example xx in the control bar. After having chosen an example, use the button Forward to
animate a computation that halts at all events.

Example 0 shows two southernmost sites. Start an animation. When the sweep line arrives to the sites,
the beach line is represented by two separated parallel halflines oriented to the south, but not intersecting.
After having moved an infinitesimally small distance to the north, two halflines become two proper intersecting
parabolae. Their unique intersection arrives quickly from the infinity as long as the sweep line slowly moves
to the north. This is the only case, when a halfline that makes a part of the Voronoi diagram is drawn “from
the infinity”. When writing a code, this case must be handled separately. In Example 0 drawing the halfline is
stopped by a circle event shortly after the sweep line hits the third site of the configuration.

In Example 1 when the sweep line hits the northernmost site, two events occur in the same time: a site
event corresponding to the site and a circle event. These two events are independent and could be processed
one after another in an arbitrary order.

In Example 2, a site event corresponding to the northermost site is of a special type. A halfline (degenerated
parabola) going south from the new site hits the beach line in an intersection of two arcs. In such a case
the segment that has been drawn by the intersection ends and two new Voronoi diagram segments start. The
segments are drawn by intersections of a parabolic art of the new site with two arcs of the original beach line.
This event must be handled in a special way.

Example 3 is similar, but the site event occur simultaneously with a circle event affecting one of the involved
arcs. In this case the circle event should be processed before the site event.

In Example 4 two circle event occur simultaneously and two adjacent arcs disappear. The events can be
processed in an arbitrary order.

In Example 5 all sites belong to one line. Such a configuration that must be processed separately results in
a Voronoi diagram that involves n − 1 parallel lines (where n is the number of sites) that divide the plane into
two halfplanes separated by n − 2 stripes of infinite length.

Example 6 is similar, but all sites have the same y-coordinates. Their Voronoi diagram is again represented
by n− 1 parallel lines that delimit two halfplanes and n− 2 stripes. This configuration that generates Example
0, must be handled separately and in a way different from the previous example.

Finely Example 7 brings nothing new, but it exhibits simultaneously 9 events that eliminate 9 adjacent arcs
simultaneously with a site event, the degenerated parabola of it hits the point, where all arcs disappeared. Even



8 CHAPTER 1. VORONOI DIAGRAM

though it looks quite complex, the combined event is processed by sequentially processing 9 circle events in any
order, followed by the site event.

Scene: Arc search

[Sorry: In the present scene the tree is correctly displayed, but after the last amendment of the code a

searching in the tree is not working]
When a site event occurss, it is necessary to determine an arc of the beach line that is below the new site.

Even though complex calculation is necessary to find arc intersection points, each intersection is evaluate in
constant time. However, the beach line generally involves a large number of arcs (proportional to the number
of sites in the worst case) and hence if arcs are inspected left to right, it takes long time to find the proper arc.

If the computational time is important, it is advantageous to build a binary search tree over the beach line
to speed up the arc search.

Leafs of the tree (orange dots) represent beach line arcs (each leaf is placed above the corresponding arc)
and internal nodes of the tree (gray dots) correspond to meeting points of adjacent arcs (an internal node of the
tree is always drawn above the corresponding meeting point of arcs). Any internal node includes an information
about foci of arcs, that meet in the point below the node (distinguishing the focus of the left arc from the focus
of the right arc).

Edges of the tree are green. The correspondence of tree nodes and elements of the beach line is marked
by vertical lines of orange and gray colors (the lines are not parts of the tree; they just illustrate a logical
correspondence of the tree nodes and beach line elements). Vertical lines and the tree itself could be hidden
using a proper choice in the control bar.

It is necessary to mention that the shape of the tree is not important for correct function of the algorithm.
Arcs of the beach line determine the set ot tree leafs, but it is not important how the structure of internal
nodes of the tree is built. However, in order to get a fast computation, it is advantageous when the tree is well
balanced.

Click the button Forward. After some while, an even occurs and the computation halts.
When a site event occured, standard animation buttons appear and you can use them to animate searching

for an arc below the site. The search starts in the root and a token moves as follows:

if the token is in an internal node of the tree, then the node corresponds to a meeting point of two adjacent
arcs of the beach line. If the x-coordinate of the arc meeting point below the node is smaller than the x-
coordinate of the site with the green background that has been found the sweep line then the token moves to
the right, if it is larger, the token moves to the left. In a rare case when the x-coordinates are equal, a special
case occured (see, e.g., Example 2 of the scene on degenerated events).

The token eventually reaches a leaf of the tree, and the leaf corresponds to the arc below the event site that
we have been looking for.

When the arc is found, it is necessary to update the tree by splitting the arc below the site into two parts
and inserting a new arc (at the moment degenerated) between them, using the button Update. This operation
increases both the number of arcs of the beach line and the number of leafs of the tree by two (one arc split, one
added). This also induces increase of the number of internal nodes of the tree by two. After the arc below site
is found and the tree updated, click the button Finish or Reset to continue (the later one undoes the changes
made in the tree).

Of course, if a special site event occurs (the site exactly above the meeting point of arcs), only one arc, one
tree leaf and one tree internal node are added.

When using a tree, the number of steps that have to be performed during an arc search is proportional to
the depth of the tree rather than the number of arcs of the beach line (i.e., the number of leafs of the tree).

In the optimal case the tree depth is proportional to the logarithm of the number of arcs of the beach line; it
is obvious that a substantial speed-up of the arc search is obtained. If an unbalanced tree is used, it can happen
that the tree depth becomes much higher than the optimal value. In order to prevent this, it is possible to use
some kind of balanced trees, e.g., an AVL-tree or a red-black tree, see Capter 2. In the present scene balancing
of a tree is not implemented, and a simple BVS is used.

Scene: Meeting of beach line arcs

[Sorry: This is a new scene that has not yet been implemented in the applet]
This scene is a small technical detour. It shows how one can find coordinates of a point, where two adjacent

beach line arcs meet. The scene shows the sweep line, given as a boundary of a light and a dark region of the



9

window and two sites that have respectively red and green color. Let us suppose that we know numeric values
of the position of the sweep line and both sites.

As it has already been said, an equation of a parabola with a given focus and a given directrix can be
determined quite easily: if F = [fx, fy] is the focus, d is the y-coordinate of the sweep line that is north of the
focus (i.e., fy < d, and P = [x, y] is a general point of the parabole, then
d − y is the distance of P from the directrix,
√

(x − fx)2 + (y − fy)2 is the distance of P from F ,
and hence the equation of the parabola is

(d − y)2 = (x − fx)2 + (y − fy)
2,

which gives

y =
−x2 + 2fxx − (f2

x + f2

y − d2)

2(d − fy)
.

Since we have two sites, we have also two paraboles and two equations. Equality of right hand sides of
equations give a quadratic equation for the x-coordinate of the intersection, and y-coordinate is computed from
the above equation. The quadratic equation has generally two solutions and it is a bit complicated to determine
the righ one.

When the scene is opened, the y-coordinates of both red and green sites are the same. In this case both
parabolae are open in the same way and the quadratic equation has just a single solution (of multiplicity 2).
There is no problem to determine the meeting point of arcs.

Now use the mouse to move the red site to the north (increase its y-coordinate). The parabola with the red
focus gets narrower and cuts a section of the parabola of the green focus and a red arc in inserted into the space
obtained in thic way. In this case the beach line consists of a green (unbounded) arc, a red arc and another
green arc. If we know that two adjacent arcs of the beach line are green and red, then if a green arc is on the
west of the intersection point, and a red arc is on the east, then the intersection is given by the smaller solution
of the quadratic equation. On the other hand, if red is on the west and green is on the east, we have to use the
larger solution. Recall that red corresponds to the focus which is more to the north, green is southern.

Change the position of sites so that northern site is green. In this case the situation is quite opposite. An arc
of the southern site on the west (east, resp.) corresponds to the smaller (larger, resp.) solution of the quadratic
equation.

Scene: Nearest point

The fundamental application of Voronoi diagram is a problem of finding the nearest element from a given
set of sites for a given point x of the plane. A set of sites is often fixed, but a large number of queries for the
nearest sites must be solved. In such a case it is convenient to pre-process the site set in such a way that nearest
site queries are performed as quickly as possible.

It is recommended to pre-process the site set as follows:
First, construct a Voronoi diagram of the site set as shown in the display.
Then draw vertical lines through end-points of all segments of the Voronoi diagramu. Choose Vertical lines

in the control bar to show the lines.
The lines divide the plane into vertical stripes, and the stripes are cut by segments of the Voronoi diagramu

into trapezoidal regions (in some cases a trapezoid degenerates to a triangle, but we will use always the term
trapezoid).

Now, choose One stripe to emphasize partition of one vertical stripe; click stripes and observe how they
are partitioned to regions. Finally choose All stripes to color all trapezoidal regions.

The way how trapezoidal regions were constructed is such that any region is whole a part of a Voronoi region
of certain site, and hence all internal points of any trapezoid have the same nearest site. The same site is also
the nearest site of points of the trapezoid perimeter, but is is not generally the unique nearest site.

A line segment on the perimeter can be within a Voronoi region of some site or it can be a part of a segment
of a Voronoi diagram that is an intersection of Voronoi regions of two sites. In both cases all points ot the
interior of a side of a trapezoid have the same information about the nearest site(s).

Finally there is a finite list of points of the plane that are vertices of trapezoids. For each such vertex we
determine easily two or more nearest sites..

The pre-processing finishes by associating trapezoids and their parts (interior, sides, vertices) with the
information about the nearest site(s).



10 CHAPTER 1. VORONOI DIAGRAM

When processing a nearest site query for a give point ot the plane, it is sufficient to determine the trapezoid
that includes the point and read the associated information.

In order to determine the trapezoid, a vertical stripe containing the input point is determined first. This
task can advantageously be found by halving. Let x1 < · · · < xℓ be x-coordinates of vertical lines dividing the
stripes. The x-coordinate of the query point is compared with xℓ/2; depending of the outcome that tells us
whether the query point is located left or right to the middle vertical line (or on it) the x-coordinate of the
query point is compared with either xℓ/4 or x3ℓ/4 etc., and after at most ⌈log

2
ℓ⌉ steps the stripe including the

query point is identified.
Then, within the determined stripe, a trapezoid including the query point is found using similar, but more

complicated halving scheme; again, it is possible to identify the trapezoid in logarithmic number of steps.
Thus, if the site set is pre-processed in a proper way, each subsequent nearest site query is answered in

logaritmic numbero of steps..

Scene: Delaunay triangulation

Un this scene I will show a Delaunay triangulation of a set of sites in the plane. The triangulation is a dual
graph to the graph represented by a Voronoi disgram. Roughly speaking, two sites are connected by a blue line
segment if and only if their Voronoi regions have a common side (one common point is not enough).

If four corner Voronoi points do not exist, then the blue lines of the Delaunay diagram divide the plane into
triangular regions, and hence the diagram is called Delaunay triangulation.

Using checkboxes Voronoi and Delaunay it is possible to show and hide both diagrams. Show them in
the same time and decide whether you would be able to draw a Delaunay triangulation if a Voronoi diagram is
known.

This scene is just an information about an important notion; a construction, properties and applications of
Delaunay triangulations are not discussed in details.

Scene: Original Fortune’s algorithm

The article of Steve Fortune described algorithm for construction of a Voronoi diagramu in a different way.
In order to show his approach, we will use 3D visualization once more. Mountains of cones is first show in the
same way as when the scene “Cones” opened, that is vertical view. However, the mountains immediately start
to incline, and the movement halts when the view angle is 45 stup, see a small head in the corner. This means
that at the end we observe the mountains in the direction of the south surface lines of cones (from the infinity
or from a very large distance to avoid efects of perspective).

The selected angle of view has one advantage and one disadvantage.
An advantage is that we observe the mountains in the direction that is parallel with the sweep plane that

was shown in the scene “The sweep plane”. Instrad of a plane, we see a single line, and all points of the plane
are projected to the observed line. In particular, this means that the beach line is projected to the observed
line as well, because it is an intersection of the sweep plane and cone surfaces.

Thus, in the original version of the Fortunes algorithm there is no separated beach line no dead region
between the sweep line and the beach line, that was in the “swept” region, but still potentially influences by
yet unknown sites. For this reason the original algorithm was a pure sweep line algorithm as it is known from
many other problems in the computational geometry.

On the other hand segment and region boundaries of a Voronoi diagramu become represented by curves
of degree 2. In the 3D visualization Voronoi segments, separating regions of sites, are not line segments, but
hyperbolic arc, that are intersections of surfaces of two cones with parallel axis. They look like line segments
only when observed vertically, but Fortunes direction of view is not vertical and hyperbolic curves do not project
as line segments, but as proper curves. As a consequence Voronoi regions of sites are deformed in a special way.

It is important that the south surface lines of cones (that involve the cone top a site) look as points when
observed according Fortune. Moreover and proto se kad site jev jako nejni point sv regioni. Hence a site looks as
the southernmost point if its region, which is hit as soon as the sweep line touches the region. In this way, when
the algorithm starts to draw a region of certain site, the information obout the site is available. On the other
hand, when observed vertically, the sweep line traverses a large part of a Voronoi region before it encounters
the corresponding site.

It might seem that the computation according to original algorithm is extremely difficult, because boundaries
of Voronoi regions are complex curves, but in fact we need to know just end points of the segments that are
determined during events, and hyperbolic curves of 3D situation are not needed. At the end of the computation
all segment end-points are transformed in an easy way to vertical view and connect by line segments.



11

The view direction can be controlled by the mouse in the same way as previously, and the respective buttons
Vertical and Fortune set the view angle to vertical/Fortune direction.


