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Abstract. The paper links four conjectures:
(1) (Rota’s bases conjecture): For any system A = (1A, . . . ,n A) of non-singular real valued matrices the

multiset of all columns of matrices in A can be decomposed into n independent systems of represen-
tatives of A.

(2) (Alon-Tarsi): For even n, the number of even n×n Latin squares differs from the number of odd n×n
Latin squares.

(3) (Stones-Wanless, Kotlar): For all n, the number of even n × n Latin squares with the identity per-
mutation as first row and first column differs from the number of odd n × n Latin squares of this
type.

(4) (Aharoni-Berger): Let M and N be two matroids on the same vertex set, and let A1, . . . , An be sets
of size n + 1 belonging to M∩N . Then there exists a set belonging to M∩N meeting all Ai.

Huang and Rota [9] and independently Onn [14] proved that for any n (2) implies (1). We prove equivalence
between (2) and (3). Using this, and a special case of (4), we prove the Huang-Rota-Onn theorem for n odd
and a restricted class of input matrices: assuming the Alon-Tarsi conjecture for n− 1, Rota’s conjecture is
true for any system of non-singular real valued matrices where one of them is non-negative and the remaining
have non-negative inverses.
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1. Introduction

Given a system F = (F1, F2, . . . , Fn) of not necessarily disjoint sets, a rainbow (multi)set is a multiset
consisting of one element from each Fi. A famous conjecture of Rota [9] is that if M is a matroid and F is
a system of independent sets of size n, then

⋃F , viewed as a multiset, can be decomposed into n rainbow
independent sets belonging to M (in particular, having no repeating elements). Here is the linear case of
the conjecture, over the reals, in an equivalent formulation:

Conjecture 1.1. The sets of columns of a system of n non-singular n × n real valued matrices have n
disjoint rainbow bases of Rn.

Given a Latin square L we write sign(L) for the product of all signs of its rows and columns (where the
sign of a permutation is 1 if the permutation is even, and −1 if it is odd). Let Λ be the set of Latin squares
of order n (we suppress the dependence on n), and write

L(n) =
∑

L∈Λ

sign(L).

The Alon-Tarsi conjecture [4] is:

Conjecture 1.2. If n is even then L(n) 6= 0.

Since exchanging two rows in a Latin square of odd order reverses its sign, for n odd L(n) = 0. Huang
and Rota [9] and independently Onn [14] proved the following reduction:

Theorem 1.3. If L(n) 6= 0 then Conjecture 1.1 is true for n.

In [5] an intriguing online version of this theorem is proved.
In this paper we show:
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Theorem 1.4. If n is odd and L(n− 1) 6= 0 then the sets of columns of a system of n non-singular n× n
real valued matrices have n− 1 disjoint rainbow bases of Rn.

and:

Theorem 1.5. If L(n − 1) 6= 0 then Conjecture 1.1 is true for any system of n non-singular n × n real
matrices such that 1U ≥ 0 and iU−1 ≥ 0 for all i > 1.

Here ≥ 0 is taken in the meaning of elementwise inequality.

Both results are based on showing that L(n−1) 6= 0 if and only if `(n) 6= 0 for an Alon-Tarsi like parameter
`(n) defined in [17, 10] (see the beginning of Section 3 for its definition). Theorem 1.4 follows directly from
this fact, and a result proved in [3]. Theorem 1.4 demands the proof of an identity, similar to that proved
by Onn [14] (see (1) below).

Drisko [7] proved Conjecture 1.2 for n = p + 1 and Glynn [8] proved it for n = p− 1 (here p is prime). It
follows that the “n − 1 disjoint rainbow bases” conclusion in Theorem 1.4 is true for n = p and n = p + 2.
Similarly, the conclusion of Theorem 1.5 is true for these values of n.

1.1. Notation. The ith component of a vector θ is sometimes denoted by θ(i) and sometimes by θi, de-
pending on whether the expression includes already many parentheses or many subscripts. By θ̃ we denote
the multiset consisting of the entries of θ.

The ith row of a matrix A will be denoted by Ai, and the j-th column by Aj . The i, j-th element of A is
sometimes denoted by A(i, j) and sometimes by Aj

i . Let A(\i) (respectively A(\j)) be the matrix obtained
from A be removing the ith row (respectively the j-th column). Following common notation (see e.g. [13])
we write A(i | j) for A

(\j)
(\i) . Given a sequence ζ of length m of indices we write Aζ for the matrix having

as rows Aζ(k), 1 ≤ k ≤ m. When reading the notation AC care should be applied to notice whether C is a
single index, in which case AC is a row vector, or C is a sequence of indices, in which case AC is a matrix.
Given a sequence A = (1A, . . . ,m A) of matrices, we write AT for the sequence (1AT , . . . ,m AT ) and if the
matrices iA are non-singular then we write A−1 = (1A−1, . . . ,m A−1). We denote by DET (A) the product∏

i≤m det(iA).

2. Permutation systems, decompositions and hyperdeterminants

For natural numbers n and k we denote by Γn,k the set of all sequences γ̄ = (γ1, γ2, . . . , γn) of permutations
of the set [k] := {1, . . . , k}. By Γn,k

r (the subscript r standing for “restricted”) we denote the set of all
permutation systems γ̄ ∈ Γn,k with γ1 the identity permutation. The sign of γ̄, denoted sign(γ̄), is defined
as

∏
i≥1 sign(γi).

Assuming that n is fixed and known, we write Γ for Γn,n.
Given a system of matrices U = (1U, 2U, . . . ,n U), a decomposition into rainbow sets of columns can be

represented by a system γ̄ = (γ1, γ2, . . . , γn) ∈ Γ, where γi dictates how to distribute the columns of iU
among the rainbow sets jR: the ith column of jR is iUγi(j). We denote this decomposition (namely, the
sequence of matrices obtained) by Dγ̄(U).

Rota’s conjecture is tantamount to the claim that DET (Dγ̄(U)) 6= 0 for some γ̄ ∈ Γ. Assuming the Alon-
Tarsi conjecture, for even n this follows from an identity which is the crux of Onn’s proof that Alon-Tarsi
implies Rota:

(1)
∑

γ̄∈Γ

sign(γ̄)DET (Dγ̄(U)) = L(n)DET (U).

Onn’s elegant proof of this identity is based on the double role played by permutation systems, as deter-
mining the decompositions Dγ̄ and in the calculation of determinants, and on reversing the order of these
two roles. With the aim of putting the identity in a more general context, we give here a proof based on an
identity on hyperdeterminants.
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A tensor T of dimension n and size k is a k×k× . . .×k (n-fold product) array of numbers. The (i1, . . . , in)
element of T (where ij ≤ k) is denoted by Ti1,...,in

. The hyperdeterminant of T , denoted by hypdet(T ), is
defined by:

hypdet(T ) =
∑

γ̄∈Γn,k

sign(γ̄)
∏

1≤i≤k

Tγ1(i),γ2(i),...,γn(i)

The restricted hyperdeterminant of T , denoted by hypdetr(T ), is

hypdetr(T ) =
∑

γ̄∈Γn,k
r

sign(γ̄)
∏

1≤i≤k

Tγ1(i),γ2(i),...,γn(i)

Remark 2.1. For every permutation σ, it is true that

(2) hypdet(T ) =
∑

γ̄∈Γn,k

sign(γ̄)
∏

1≤i≤k

Tσγ1(i),σγ2(i),...,σγn(i)

Since for n odd and σ odd sign(σγ1, σγ2, . . . , σγn) = −sign(γ1, γ2, . . . , γn), it follows that for n odd
hypdet(T ) = 0. Therefore hypdetr is customarily used in the odd case. For n even, (2) implies that
hypdet(T ) = n!hypdetr(T ), and hence it is possible to use the restricted hyperdeterminant also there. This
is actually the common definition of the determinant for n = 2.

Hyperdeterminants have the same properties as determinants:

Observation 2.2.
(1) Let i ≤ n, j ≤ k. If T ′ is obtained by multiplying all entries in T having j as their ith coordinate by

a constant α then hypdet(T ′) = αhypdet(T )
(2) Let p ≤ n, let j1, j2 ≤ k, and let β be a real number. Let T ′ be obtained from T by adding βTi1,...,j1,...in

(where j1 appears in the pth coordinate) to Ti1,...,j2,...in for all sequences of indices (it | t ≤ n, t 6= p),
where again j2 appears in the pth coordinate. Then hypdet(T ′) = hypdet(T ).

For a system U = (1U, 2U, . . . ,n U) of matrices let T = T (U) be defined by

Ti1,...,in = det(1U i1 ,2 U i2 , . . . ,n U in)

Observation 2.3. [Zappa] hypdet(T (I, I, . . . , I)) = L(n).

Proof. Write T = T (I, I, . . . , I). Let γ̄ be any element of Γ. If p 6= q and γp(i) = γq(i) for some i, then
Tγ1(i),...,γn(i) = 0 since it is a determinant of a matrix with two identical columns. So, the only systems
γ̄ contributing to the hyperdeterminant satisfy γp(i) 6= γq(i) whenever p 6= q, meaning that the matrix
whose columns are the permutations γi is a Latin square L = L(γ̄), and clearly sign(γ̄)

∏
i≤n Tγ1(i),...,γn(i) =

sign(L). ¤

Given two systems of matrices U = (1U, 2U, . . . ,n U) and V = (1V, 2V, . . . ,n V ) we write V · U for the
system (1V 1U, 2V 2U, . . . ,n V nU).

Observation 2.4. hypdet(T (V · U)) = hypdet(T (V))DET (U).

Proof. It suffices to show the equality when iU = I for all but one i. Since every matrix is the product of
elementary matrices of column operations, it suffices to assume that for this i the matrix iU is elementary.
For this case, the observation follows from Observation 2.2, since an elementary column operation on iV
translates into a corresponding elementary column operation on T (U).

¤

Applying Observation 2.4 to the systems V = (I, I, . . . , I) and the given system U and using Observation
2.3 yields (1).

Notation 2.5. Given a sequence A = (1A, . . . ,n A) of n× n matrices and a sequence j̄ = (j1, . . . , jn) of not
necessarily distinct indices, we write A[j̄] for the n× n matrix whose ith column is iAji .
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3. Alon-Tarsi like parameters

In this section we introduce some Alon-Tarsi like parameters, and prove links between them.
Define:

Λ′ = {L ∈ Λ, L1 = (L1)T = (1, 2, . . . , n)}
Namely, a Latin square belongs to Λ′ if its first row and first column are the identity permutation. Let

`(n) =
∑

L∈Λ′
sign(L).

This parameter was defined and studied in [17] and in [10]. In [17] the following conjecture was proposed:

Conjecture 3.1. `(n) 6= 0 for all n ≥ 1.

In [3] the following was proved, where as usual the collection of columns of the system is considered as a
multiset.

Theorem 3.2. If `(n) 6= 0 then any system of n non-singular n× n matrices has a system of n− 1 disjoint
rainbow bases of Rn.

For n even, permuting columns in a Latin square does not change its sign. Since the number of possible
first row and first column configurations in a Latin square is n!(n−1)!, it follows that L(n) = n!(n−1)!`(n).
So, Conjectures 1.2 and 3.1 are equivalent for even n. We shall show that in fact they are equivalent in
general, by proving:

Theorem 3.3. If n is odd then L(n− 1) = (n− 1)!`(n)

which obviously yields:

Corollary 3.4. If n is odd then `(n) = 0 if and only if L(n− 1) = 0.

This, together with Theorem 3.2, yields Theorem 1.4.
The rest of this section is devoted to the proof of Theorem 3.3.
Given an n× n matrix M in which all rows Mi, i > 1, and all columns M j , j > 1, are permutations of

[n], we write signr(M) for
∏

i>1 sign(Mi)×
∏

j>1 sign(M j) (as before, the r subscript is for “restricted”).

Notation 3.5. Denote by Ω = Ω(n) the set of (n− 1)× (n− 1) matrices indexed by (2, . . . , n)× (2, . . . , n),
having entries in [n], and not having repeating entries in any row or in any column.

For a matrix W ∈ Ω define vectors θ = θ(W ) and ψ = ψ(W ) on the indices 2, . . . , n by the rule that
θ(i) is the element of [n] missing in row i of W , and ψ(j) is the element of [n] missing in column j of W .
Recalling that θ̃(W ) (respectively ψ̃(W )) is defined as the multiset composing θ(W ) (respectively ψ(W )),
the elements of θ̃(W ) are precisely those elements of [n] that appear fewer than n− 1 times in W , and the
same goes for ψ̃(W ). Hence:

Observation 3.6. θ̃(W ) = ψ̃(W ).

Call a matrix W ∈ Ω standard if the 1 entries in θ(W ) form an initial segment.
Let Υ be the set of those matrices W ∈ Ω for which θ̃(W ) contains at most one copy of every element

i > 1. For m ≤ n− 1 let Υm the set of those matrices W ∈ Υ for which θ̃(W ) contains precisely m copies of
the element 1. Write ΥS

m for the set of standard elements of Υm, namely those matrices W ∈ Υ for which
θ(M) has 1s precisely in its first m coordinates.

For a matrix W ∈ Ω let Aug(W ) be the n× n matrix obtained from W by attaching to it ψ(W )T as row
1, and θ(W ) as column 1. Note that the (1, 1) entry in Aug(W ) is not defined, but we do not need it. Define
sign(W ) as signr(Aug(W )). Let

Lr(n,m) =
∑

W∈Υm

sign(W ).

Examples:
(1) L(3, 0) = 4, L(3, 1) = 8, L(3, 2) = 2.
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(2) A matrix W belonging to Υ0 means that W contains 1 in each row and column. For any k ∈
{2, . . . , n}, replacing all 1s in W by k and vice versa results in a matrix belonging to Υ1 (remember
that θ(W ) contains only one copy of k). This map is injective. It is also sign preserving since all signs
of all rows and all columns are reversed. Since every matrix in Υ1 is obtained from some W ∈ Υ0 by
performing this operation for some k > 1, there exists an n−1 to 1 sign preserving function between
Υ0 and Υ1. Hence Lr(n, 1) = (n− 1)Lr(n, 0).

(3) A matrix W belonging to Υn−1 means that W is a Latin square with elements in {2, . . . , n}. Hence
Lr(n, n− 1) = L(n− 1).

(4) We have Lr(n, n − 2) = (n − 1)2L(n − 1). To see this, note that a matrix W ∈ Υn−2 has a single
1 entry, say W (i, j). Replacing this entry by θ(W )i results in a Latin square W ′ of order n − 1
with symbols 2, . . . , n. Note also that sign(Aug(W ′)) = sign(Aug(W )), since Aug(W ′) is obtained
from Aug(W ) by two transpositions, one in row i and one in column j. There are (n− 1)2 ways of
choosing an entry in a Latin square of order n− 1 with symbols 2, . . . , n and replacing it by 1, hence
the identity above.

(5) If n is even, then permuting any fixed pair of rows of W is a sign reversing involution. Hence
Lr(n,m) = 0.

The following observation ensues from the fact that the signs of the first column and first row of Aug(W )
are not taken into account in the calculation of sign(W ).

Observation 3.7. For n odd, permuting rows or columns in a matrix W ∈ Ω does not change sign(W ).

Observation 3.8. For n odd Lr(n, 0) = (n− 1)!2`(n).

Proof. Every Latin square L ∈ Λ′ gives rise by permuting its columns and its rows to (n − 1)!2 matrices
of the form Aug(W ), W ∈ Υ0. By Observation 3.7 each of these matrices has the same restricted sign as
L. ¤

For the convenience of reference, here is Example (3) above as an observation:

Observation 3.9. Lr(n, n− 1) = L(n− 1).

Theorem 3.10. Let n be odd and 0 ≤ m < n− 1. Then

Lr(n,m) =
(m + 1)2

n− 1−m
Lr(n,m + 1).

Note that this is consistent with the examples above ((2) is obtained by taking m = 0, and the case
m = n− 2 follows from (4)).

Theorem 3.10 will follow from:

Observation 3.11. There is a partition ΥS
m = Y ∪ Z so that

(¨)
∑

W∈Y sign(W ) = 0, and
(¨¨) There is f : Z → ΥS

m+1 so that for each W ∈ ΥS
m+1, |f−1(W )| = m + 1 and sign(W ) = sign(W ′) for

each W ′ ∈ f−1(W ).

Proof. We construct the partition into Y,Z, the function f , and a sign inverting function g : Y → Y ,
together, by the following algorithm.

Let W ∈ ΥS
m, and let a be the first entry of θ(W ) that is different from 1, namely a = θ(W )m+1.

Let j1 be such that ψ(W )j1 = a, meaning that the j1 column of W does not contain a. We start
constructing an a ↔ 1 alternating path in W , namely a path of entries that alternate between a and 1. Since
ψ(W )j1 6= 1 there exists i1 such that W (i1, j1) = 1. If θ(W )i1 = a (meaning, in fact, that i1 = m + 1) then
we stop the process, having obtained the alternating path (0, j1) − (i1, j1) − (i1, 0) . If θ(W )i1 6= a, then
there exists j2 such that W (i1, j2) = a. We continue alternating this way between a and 1, until one of the
following happens:

(1) θ(W )ik
= a for some k (meaning that ik = m + 1 - remember that the rows of W are indexed by

2, . . . , n), or
(2) ψ(W )jk

= 1.
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In both cases we terminate the process, and in both we apply the alternating path obtained to W ,
meaning that each a entry of the path is replaced by 1 and vice versa. Let W ′ be the resulting matrix. In
case (2), W ′ ∈ ΥS

m, and sign(W ′) = −sign(W ) since W’ is obtained from W by applying an even number
of transpositions in total to permutations of the set consisting of the rows 2, . . . , n and the columns 2, . . . , n
of Aug(W ). (Remember that the transposition of 1 and a in the first row of Aug(W ′) is not taken into
account in the calculation of the sign). Define then g(W ) = W ′. Inverting the alternating path takes W ′ to
W , showing that g is injective. Let Y be the set of all W ∈ Υm for which case (2) happens. Then g is a
sign inverting involution on Y with no fixed points (the latter is clear by the definition of g or by the sign
inversion), implying (¨).

In case (1) W ′ ∈ ΥS
m+1, and sign(W ′) = sign(W ) since W’ is obtained from W by applying an even

number of transpositions in total to permutations of the set consisting of the rows 2, . . . , n and the columns
2, . . . , n of Aug(W ). Define then f(W ) = W ′.

The proof will be complete if we show that for every U ∈ ΥS
m+1 there exist precisely m + 1 matrices

W ∈ ΥS
m such that f(W ) = U . For each a ∈ [n] \ (θ̃(W ) ∪ {1}) there exists an entry (m + 2, j) for which

W (m + 2, j) = a. Construct a 1 ↔ a alternating path in Aug(W ), starting at the 1 in position m + 1 of
θ(W ), going on to the a in entry (m + 2, j), and so on. Such a path must end, and this must happen when
a column jk is reached that does not contain 1, and then the next and last entry in the path is the jk entry
of ψ(W ), which is 1. Let P be the alternating path obtained this way. Then applying P to U results in
a matrix W ∈ ΥS

m such that f(W ) = U , and this is the unique matrix satisfying this condition for which
θ(W )m+2 = a.

Since [n] \ (θ̃(W ) ∪ {1}) contains m + 1 elements, this argument shows that |f−1(W )| = m + 1, proving
(¨¨).

¤

Corollary 3.12.
∑

W∈ΥS
m

sign(W ) = (m + 1)
∑

W∈ΥS
m+1

sign(W ).

Together with Observation 3.7 this implies:

Observation 3.13. For every k < n− 1 we have Lr(n, k) =
(
n−1

k

)∑
W∈ΥS

k
sign(W ).

Theorem 3.10 now follows upon applying the observation to k = m and to k = m+1, and using Corollary
3.12.

Recalling Observation 3.9, that stated that Lr(n, n− 1) = L(n− 1), we obtain:

Corollary 3.14. Lr(n,m) = L(n− 1)
∏n−m−1

r=1
(n−r)2

r .

In particular we have:

Corollary 3.15. Lr(n, 0) = (n− 1)!L(n− 1).

Combining this with Observation 3.8 yields:

`(n) =
Lr(n, 0)
(n− 1)!2

=
L(n− 1)
(n− 1)!

.

This completes the proof of Theorem 3.3.

4. Joint independent systems of representatives

A famous conjecture of Ryser-Brualdi-Stein [15], [6], [16] is that every n×n Latin square has a transversal
(set of entries with distinct symbols, distinct rows and distinct columns) of size n− 1. See [18] for a survey
on this conjecture and related results. In [1] (Conjecture 2.3) this was strengthened as follows:

Conjecture 4.1. A set of n matchings in a bipartite graph, each of size n + 1, has a rainbow matching (a
matching consisting of one edge from each of the given matchings).

See [2, 11] for partial results.
This conjecture can be generalized to:
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Conjecture 4.2 (Aharoni and Berger). Let M and N be two matroids on the same vertex set, and let
A1, . . . , An be sets of size n + 1 belonging to M∩N . Then there exists a set belonging to M∩N meeting
all Ai.

In Conjecture 4.1 the two matroids are the partition matroids on the edge set of the graph, the parts in
one being the stars in one side, and the parts in the other the stars in the other side. The case of linear
matroids of Conjecture 4.1 is:

Conjecture 4.3. Let A = (1A, . . . ,n A) and B = (1B, . . . ,n B) be two systems of non-singular n×n matrices.
Then there exists an n− 1 joint ISR, namely a pair k̄ = (ki | i ≤ n− 1), j̄ = (ji | i ≤ n− 1) such that both
sets {jiAki | i ≤ n− 1} and {jiBki | i ≤ n− 1} are linearly independent.

We shall need a special case of this conjecture, in which iB = (iA−1)T . In this case, it turns out that
there is even a full (size n) joint ISR.

Theorem 4.4. Let A = (1A, . . . ,n A) be a system of non-singular n × n matrices, and let B = (A−1)T .
Then A and B have a joint ISR, namely a sequence j̄ = (ji | i ≤ n) such that both A[j̄] and B[j̄] are linearly
independent.

The proof will require a notion concerning pairs of subspaces of Rn:

Definition 4.5. Two subspaces K, L of Rn of the same dimension are called bi-independent if K∩L⊥ = {0}.
The relation of bi-independence is symmetric, as can be realized for example from the following observa-

tion:

Lemma 4.6. Let K,L be subspaces of Rn of dimension k, let C and D be respective bases of K and L, and
let X and Y be matrices whose column sets are, respectively, C and D. Then K,L are bi-independent if and
only if XT Y is non-singular.

Proof. Suppose that XT Y is singular, and choose a non-zero vector ~u ∈ Rm is a column vector such that
~uT XT Y = 0. Then XT ~u is a non zero vector in K ∩ L⊥. Conversely, a linear combination XT ~u of the
columns of X that belongs to L⊥ satisfies ~uT XT Y = 0. ¤
Theorem 4.7. Let ei, i ≤ n be the standard vector with 1 in the ith coordinate and 0 elsewhere. If K, L
are bi-independent subspaces of Rn of dimension k < n then there exists j such that K + sp(ej), L + sp(ej)
are bi-independent of dimension k + 1.

For the proof of the theorem we shall need the following lemma. Here Ik is the identity k × k matrix:

Lemma 4.8. If A is a k × k matrix of rank 1 and Ik −A is singular, then tr(A) = 1.

Proof. Since rank(A) = 1, there exist column vectors of length k, ~x and ~y, so that A = ~x~yT . The vector ~x is
proportionate to the columns of A, and the vector ~yT is proportionate to the rows of A. Let Z = support(~x)∩
support(~y) (here support(~u) = {i : ui 6= 0} for any vector ~u)). Define a matrix C by C(i, j) = A(i, j) for
i, j ∈ Z and C(i, j) = 0 if i /∈ Z or j /∈ Z. Then C = ~u~vT where ~u and ~v are obtained from ~x and ~y,
respectively, by making all non-Z coordinates 0.

It is possible transform Ik−A to the matrix Ik−C by elementary row and column operations. To do this,
for every j ∈ support(~x) \ support(~y) use the j-th column of Ik − A, which is identical to the j-th column
of Ik, to annul all elements of Ik − A in the j-th row, apart form the j-th element. Similarly, use each i-th
row, for all i ∈ support(~y) \ support(~x), to annul all elements in the i-th column except for the i-th.

This implies that Ik−C is also singular, which means that Ik[Z | Z]−C[Z | Z] is singular. So, the matrix
C[Z | Z] satisfies the conditions of the lemma with k replaced by |Z|. Since tr(C[Z | Z])) = tr(C) = tr(A),
this means that without loss of generality we may assume that support(~x) = support(~y) = [k].

Let D be the diagonal matrix whose (i, i)-th element is xi, and let A′ = D−1AD. Then A′ is of rank 1
and I −A′ = D−1(I −A)D is singular. Thus A′ can replace A in the theorem. But in A′ every column is a
constant vector (remember that in A every column is proportionate to ~x). Hence may as well assume that
~x = ~1, the all 1 vector, and so A = ~1~yT . Since A is singular, there exists a non-zero column vector ~z such
that ~zT (I −~1~yT ) = ~0, namely

(3) ~z = (~1T~z)~y
7



This implies that ~1T~z 6= 0. Multiplying both sides of (3) by ~1 we get:

~zT~1 = (~1T~z)(~yT~1)

Since as noted above ~1T~z 6= 0, this implies ~yT~1 = 1. But tr(A) = tr(~1~yT ) = tr(~yT~1), and thus tr(A) =
1. ¤

Corollary 4.9. Let n > k be two integers. If B1, B2, . . . , Bn are k×k matrices of rank 1 and rank(
∑

i≤n Bi) =
k then there exists j ≤ n such that rank(

∑
i≤m i 6=j Bi) = k.

Proof. Applying simultaneous row operations to the Bis, we may assume that
∑

i≤n Bi = I. Assume for
contradiction that for every j ≤ n we have rank(

∑
i≤n i 6=j Bi) = k − 1. By the lemma, tr(Bj) = 1, but this

means that tr(
∑

i≤n Bi) = n, contradicting the assumptions that
∑

i≤m Bi = Ik and n > k. ¤

Proof of Theorem 4.7
Let X,Y be n× k matrices whose column sets are bases of K and L, respectively, and let ~xi (i ≤ n) and

~yi, (i ≤ n) be their rows, transposed so as to make them column vectors. Then XT Y =
∑

i≤n ~x~yT , and
by Lemma 4.6, rank(XT Y ) = k. By Corollary 4.9 there exists j ≤ n such that rank(

∑
i≤n, i 6=j ~x~yT ) = k.

We claim that this means that K + sp(ej), L + sp(ej) are bi-independent. To see this, add ej as a column
to X and to Y , and subtract its multiples from all columns of X and of Y , so as to reach in both a zero
jth row. The two n × (k + 1) matrices obtained, say X ′ and Y ′, have column sets that are bases for
K + sp(ej), L + sp(ej), respectively. The matrix X ′T Y ′ is obtained from XT

(\j)Y(\j) =
∑

i≤n, i 6=j ~x~yT by
adding as row k + 1 the vector (0, . . . , 0, 1), and as column k + 1 the vector (0, . . . , 0, 1)T (recall that X(\j)
is obtained from X by deleting row j, and similarly for Y .) Hence rank(X ′T Y ′) = k + 1, as desired.

We say that a sequence of pairs of vectors (~ai,~bi), i ≤ p is bi-independent if for every k ≤ p the spaces
sp(~ai | i ≤ k), sp(~bi | i ≤ k) is bi-independent of dimension k.

Theorem 4.4 will clearly follow from:

Theorem 4.10. Let (Ai, Bi), 1 ≤ i ≤ n be pairs of n× n matrices, where Bi = (A−1
i )T . Then there exists

a rainbow bi-independent sequence (~ai,~bi), i ≤ n, where ~ai is a column of Ai and ~bi is a column of Bi.

Proof. We show by induction on k that it is possible to choose bi-independent pairs (~ai,~bi), i ≤ k, repre-
senting Ai and Bi, respectively. Suppose that we have chosen ~ai, ~bi, for i < k. Let P = A−1

k . By Lemma
4.6 the sequence (P~ai, (P−1)T~bi), i < k is bi-independent. By Lemma 4.7 it follows that there exists an
index j such that {(P~ai, (P−1)T~bi) | i < k} ∪ {(ej , ej)} is bi-independent. Let ~ak = Aj

k, and ~bk = Bj
k. Since

(ai, bi), i ≤ k is obtained from {(P~ai, (P−1)T~bi) | i < k} ∪ {(ej , ej)} by multiplying the first vector in each
pair by P−1 and the second vector by PT , it follows that (~ai,~bi), i ≤ k is bi-independent, as desired. ¤

5. An identity on restricted permutations for odd n

Throughout this section we are assuming that n is an odd integer. Let j̄ be a sequence of length n of
indices, satisfying j1 = 1 and let Γ(j̄) be the set of permutation systems γ̄ for which γi(1) = ji for each
1 ≤ i ≤ n.

As recalled, for a given γ̄, the k-th matrix in the sequence Dγ̄(U) has as columns iUγi(k). By the definition
of the determinant, the determinant of this matrix is

∑
σ∈Sn

sign(σ)
∏

i≤n
iU

γi(k)
σ(i) . Hence:

(4) DET (Dγ̄U) =
∑

σ̄∈Γ

sign(σ̄)
∏

i,k

(iU)γi(k)
σk(i)

Here, as before, σ̄ = (σ1, σ2, . . . , σn). Let:

δ(j̄,U) =
∑

γ̄∈Γ(j̄)

(
∏

i>1

sign(γi))DET (Dγ̄(U))

We wish to show, under special conditions on U and j̄, that if L(n − 1) 6= 0 then δ(j̄,U) 6= 0. This will
imply the conclusion of Rota’s conjecture for this case.
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For fixed σ̄ write

(5) V (σ̄, j̄,U) =
∑

γ̄∈Γ(j̄)

∏

i>1

sign(γi)
∏

1≤i,k≤n

(iU)γi(k)
σk(i)

Then, changing the order of summation

(6) δ(j̄,U) =
∑

σ̄∈Γ

sign(σ̄)V (σ̄, j̄,U)

Given σ̄ ∈ Γ we write M(σ̄) for the n × n matrix whose ith column is the permutation σi. For i > 1
let τi = τi(σ̄) be the ith row of M(σ̄), namely τi(k) = σk(i). Note that τi is not necessarily a permutation.
Note also that (τ1(2), . . . , τ1(n)) = ψ(M(σ̄)(1 | 1)).

Studying the expression for V (σ̄, j̄,U) we see that it is the product of the following terms:

• ∏
i≥1

iU
ji

σ1(i), which comes from the elements in the first rows, namely k = 1 in (5), as chosen by γi.
• (−1)1+ji × det(iUτi

(1 | ji)) for i > 1. These appear since the permutations γi in the expression
all satisfy γi(1) = ji, and thus the permutation submatrix of iU determined by γi is in fact a
permutation in the matrix iUτi

(1 | ji), and the sign of this permutation is (−1)1+ji × sign(γi).
• per(1Uτ1(1 | j1)) The reasoning is similar, but here it is the permanent and not the determinant,

because sign(γ1) does not appear in the expression for V (σ̄, j̄,U).
(Recall that iUτi is the matrix having iUτi(k) =i Uσk(i) as its k-th row).
Summarizing:

(7) V (σ̄, j̄,U) = (−1)
∑

1<i≤n(1+ji)per(1Uτ1(1 | j1))×
∏

i≥1

iU
ji

σ1(i) ×
∏

i>1

det(iUτi(1 | ji)).

Notation 5.1. Let Φ be the set of those σ̄ ∈ Γ for which M(σ̄)(1 | 1) ∈ Ω (where Ω is defined in Notation
3.5). We also denote θ(M(σ̄)(1 | 1)) by θ(σ̄).

The presence of the determinant terms in (7) implies:

Corollary 5.2. If V (σ̄, j̄,U) 6= 0 then σ̄ ∈ Φ. Hence δ(j̄,U) =
∑

σ̄∈Φ sign(σ̄)V (σ̄, j̄,U).

Given i > 1 let ζi be the ith row of Aug(M(σ̄)(1 | 1)). Namely, ζi is obtained by replacing the first entry
of τi by θ(σ̄)i. By a well known formula for the inverse of a matrix,
(8)
(−1)1+ji×det(iUτi(1 | ji)) = (−1)1+ji×det(iUζi(1 | ji)) = ((iU−1

ζi
)T )ji

1 det(iUζi) = ((iU−1
ζi

)T )ji

1 sign(ζi) det(iU).

For an invertible matrix A and a permutation ζ we have (A−1
ζ )T = (A−1)T

ζ (to see this, write P for the
permutation matrix representing ζ, and then Aζ = PA, and hence (A−1

ζ )T = P (A−1)T = (A−1)T
ζ .) Thus

(iU−1
ζi

)T )ji

1 = ((iU−1)T )ji

ζi(1)
= ((iU−1)T )ji

θ(i).
Implementing this observation in (8) yields, for i > 1:

(−1)1+ji det(iUζi(1|ji)) = ((iU−1)T )ji

θ(i)sign(ζi) det(iU)

Combining this with (7), and writing θ for θ(σ̄), we get:

(9) V (σ̄, j̄,U) = per(1Uτ1(1|j1))×
∏

i≥1

iU
ji

σ1(i) ×
∏

i>1

((iU−1)T )ji

θ(i) ×
∏

i>1

sign(ζi) det(iU)

Our next step is to consider a special case, in which 1U = I.

Theorem 5.3. Assuming 1U = I, we have:

δ(j̄,U) = `(n)× (n− 1)!× per((U−1)T [j̄])× det(U [j̄])×DET (U)

(See Notation 2.5 for the meaning of U [j̄].) For the proof, note first:

Observation 5.4. Suppose that V (σ̄, j̄,U) 6= 0. Then:
9



• Since 1U = I, the fact that 1U j1
σ1(1)

6= 0 implies that σ1(1) = τ1(1) = j1 = 1.
• Again, since 1U = I, the permanent in (9) being non-zero, together with the fact that τ1(1) = j1,

imply that τ1 is a permutation.

Write Φ0 for the set of those permutation systems σ̄ that besides belonging to Φ satisfy also the above
conditions, namely (a) σ1(1) = j1 = 1 and (b) τ1 is a permutation. Let us extend θ(σ̄) to a permutation by
letting θ(σ̄)(1) = 1. We again denote θ(σ̄) by θ if convenient. Since 1U = I and j1 = 1 = σ1(1), if σ̄ ∈ Φ0

then per(1Uτ1(1|j1)) = 1, and ((1U−1)T )j1
θ(1) = 1. Then:

Observation 5.5. Since 1U = I, if σ̄ ∈ Φ0 then per(1Uτ1(1|j1)) = 1.

By these observations,

(10) δ(j̄,U) =
∑

σ∈Φ0

sign(σ̄)V (σ̄, j̄,U) =
∑

σ∈Φ0

DET (U)signr(M(σ̄))× sign(σ1)
∏

i≥1

iU
ji

σ1(i) ×
∏

i≥1

((iU−1)T )ji

θ(i)

For a permutation θ, let Λ(θ) be the set of n× n Latin squares having θ as their first column.

Lemma 5.6.
∑

L∈Λ(θ) signr(L) = (n− 1)!`(n).

Proof. Let Λd(θ) be the set of Latin squares having θ as both first row and first column. Clearly,
∑

L∈Λd(θ) signr(L) =
`(n). Since n is odd, permuting columns, other than the first, in L ∈ Λd(θ) does not change signr(L), and
every L ∈ Λd(θ) gives rise by permutations of columns 2, . . . , n to (n−1)! distinct Latin squares in Λ(θ). ¤

We let L = {(L, α); L1
1 = α(1) = 1, L latin square, α permutation}.

Lemma 5.7. There is a bijection f : Φ0 → L such that, if f(σ̄) = (L, α) then L1 = θ(σ̄), α = σ1 and
signr(M(σ̄)) = signr(L).

Proof. Given σ̄, we let α = σ1 and obtain L from M(σ̄) by replacing its first column (equal to σ1) by
θ(σ̄). ¤

Proof of Theorem 5.3 By (10), Lemma 5.6 and Lemma 5.7,

δ(j̄,U) =
∑

σ∈Φ0

DET (U)signr(M(σ̄))× sign(σ1)
∏

i≥1

iU
ji

σ1(i) ×
∏

i≥1

((iU−1)T )ji

θ(i) =

∑

(L,σ1)∈L
DET (U)signr(L)× sign(σ1)

∏

i≥1

iU
ji

σ1(i) ×
∏

i≥1

((iU−1)T )ji

L1(i) =

DET (U)[
∑

α∈Sn,α(1)=1

sign(α)
∏

i≥1

iU
ji

α(i)]× [
∑

θ∈Sn,θ(1)=1

∏

i≥1

((iU−1)T )ji

θ(i)]× [
∑

L;L1=θ

signr(L)] =

DET (U)× det(U [j̄])× per((U−1)T [j̄])× `(n)× (n− 1)!
¤

Proof of Theorem 1.5. Since L(n− 1) = 0 for n even, we may assume that n is odd. Since the validity of
Rota’s conjecture is invariant under simultaneous elementary row operations, we can multiply all matrices
iU on the left by 1U−1. This operation changes the matrices (iU−1)T , i ≥ 1, as well. Namely, each new
(iU−1)T is obtained by left-multiplication of the old (iU−1)T by (1U)T . By the assumption of Theorem 1.5,
we obtain a sequence of matrices, which we still call iU , such that 1U = I and (iU−1)T ≥ 0 for all i ≥ 1.
By Theorem 4.4 there is a sequence of indices j̄ so that det((U−1)T [j̄])× det(U [j̄]) 6= 0. Since the matrices
(iU−1)T , i ≥ 1, are non-negative, also per((U−1)T [j̄]) × det(U [j̄]) 6= 0. We can clearly assume j1 = 1. By
Theorem 5.3 and Corollary 3.4, δ(j̄,U) 6= 0. Hence

0 6= δ(j̄,U) =
∑

γ̄∈Γ(j̄)

(
∏

i>1

sign(γi))DET (Dγ̄(U))

and thus there is γ̄ so that DET (Dγ̄(U)) 6= 0, meaning that Dγ̄(U) is a decomposition of the columns of U
into non-singular rainbow sets, as desired.

¤
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Remark 5.8. It is not true that it is possible to choose a sequence j̄ of of indices so that both per((U−1)T [j̄])
and det(U [j̄]) are non-zero. An example, taken from [19], is obtained by taking all iUs to be the direct sum

of n
2 copies of the matrix

[
1 1
1 −1

]
.
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