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Abstract. A progress in complexity lower bounds might be achieved
by studying problems where a very precise complexity is conjectured.
In this note we propose one such problem: Given a planar graph on
n vertices and disjoint pairs of its edges p1, . . . , pg, perfect matching
M is Rainbow Even Matching (REM) if |M ∩ pi| is even for each
i = 1, . . . , g. A straightforward algorithm finds a REM or asserts that no
REM exists in 2g×poly(n) steps and we conjecture that no deterministic
or randomised algorithm has complexity asymptotically smaller than 2g.
Our motivation is also to pinpoint the curse of dimensionality of the
Max-Cut problem for graphs embedded into orientable surfaces: a basic
problem of statistical physics.

Keywords: matching · max cut · exponential time hypothesis · Ising
partition function.

1 Introduction

Given a graph G = (V,E), a set of edges M ⊆ E is called perfect matching
if the graph (V,M) has degree one at each vertex. In this paper we introduce
and study the following matching problems which, as far as we know, were not
studied before.

Given a graph G = (V,E) and disjoint pairs of its edges p1, . . . , pg, we say
that a perfect matching M is a Rainbow Even Matching (REM) if |M ∩pi| is
even for each i = 1, . . . , g. For example, let C be a cycle of length 8 consisting of
consecutive edges e1, e2, . . . , e8. If g ≥ 1 and p1 = {e1, e2} then there is no REM
and if g = 3 and p1 = {e1, e3}, p2 = {e2, e4}, p3 = {e5, e6} then both perfect
matchings of C are REM. We consider the following problems:

1. Decision Rainbow Even Matching problem (DREM): Given a pla-
nar graph G on n vertices and disjoint pairs of edges p1, . . . , pg, decide if there
is a REM.

2. Enumeration Rainbow Even Matching problem (EREM): Given
a planar graph G on n vertices and disjoint pairs of edges p1, . . . , pg, calculate
the number of REMs.

⋆ The author was partially supported by the H2020-MSCA-RISE project CoSP- GA
No. 823748.
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3. If an integer weight function is given on the edge-set of the graph G

then DREM has a natural weighted version, denoted by OptDREM, to find
the maximum total weight of a REM, and EREM is turned into the problem
denoted by GenREM to find the generating function of weighted REMs.

There is a straightforward algorithm of complexity 2gpoly(n) to solve Opt-
DREM: For each S ⊂ {1, . . . , g} we find a maximum weight extension of the the
set ∪i∈Spi into a perfect matching by edges of E \ ∪i≤gpi. The weighted perfect
matching algorithm does it.

There is also a straightforward algorithm of complexity 2gpoly(n) to solve
GenREM: For each S ⊂ {1, . . . , g} we calculate the generating function of the
REMs which contain all edges of ∪i∈Spi and no edge of ∪i/∈Spi. This can be done
by the method of Kasteleyn orientations briefly introduced in subsection 1.3.

Main contribution.

– We propose that the above standard algorithms are in fact optimal. Our
Frustration Conjecture 1 below states that up to a polynomial factor the
precise complexity of OptDREM with edge-weight in {−1, 0, 1} is 2g. This
is more tight complexity specification than the Strong Exponential Time
Hypothesis.

– We show that refuting the Frustration Conjecture 1 implies that in the class
of graphs where the crossing number is equal to the genus, the complexity of
the Max-Cut problem is smaller than the additive determinantal complexity
of cuts enumeration. At present, no natural class of embedded graphs with
this property is known.

1.1 The Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH) is an unproven computational hardness
assumption that was formulated by Impagliazzo and Paturi [7]. For each k let sk
be the infimum of reals s for which there exists an algorithm solving k−SAT in
time O(2sn), where n is the number of variables. ETH states that for each k > 2,
sk > 0. We note that 2−SAT can be solved in polynomial time. In the same
paper [7], the authors prove the Sparsification Lemma which implies that ETH
is equivalent to a potential strengthening of ETH where the k−SAT instances
have the number of clauses bounded from above by ckn for some constant ck; n
denotes the number of the variables.

The ETH was strengthened by Impagliazzo, Paturi and Zane [8] to the Strong
Exponential Time Hypothesis (SETH): For all d < 1 there is a k such that k-SAT
cannot be solved in O(2dn) time. No Sparsification Lemma is known for SETH.

Both ETH and SETH have a very natural role: they are used to argue that
known algorithms are probably optimal.

I believe that the method of Kasteleyn orientations provides optimal algo-
rithms for the Max-Cut problem in the classes of embedded graphs.

My motivation for introducing REM has been to pinpoint this ’curse of di-
mensionality’ by a problem formulated with no reference to the geometry.
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Conjecture 1 (Frustration Conjecture). No deterministic or randomised algo-
rithm can solve OptDREM with the edge-weights from {−1, 0, 1} in asymp-
totically less than 2g steps.

1.2 Justification for the Frustration Conjecture

An exponential lower bound for DREM is simply implied by ETH, see Corol-
lary 1. Next, Theorem 2 connects the Frustration Conjecture 1 to the additive
determinantal complexity of cuts enumeration.

A well-established way to approachmatching problems is to determine whether
some specific coefficient of the generating function of the perfect matchings (with
suitable substitutions) is non-zero. This can be achieved because of the Isolation
Lemma, see [13], by calculating a single Pfaffian of a matrix where the entries
are monomials in possibly more than one variable. The Pfaffian is a determinant
type expression which can be computed with essentially the same complexity
as that of the determinant (of the same matrix). The complexity of calculating
the determinant of matrices with polynomial entries essentially depends on the
number of the variables.

After many failed attempts to use this machinery to disprove the Frustration
Conjecture I am convinced that this approach will not beat the 2g lower bound.
However, I do not have at present a general theorem of this nature, only some
partial results.

We can reduce, in a simple way suggested by Bruno Loff, (1 in 3)-SAT to
DREM showing DREM is NP-complete.

Theorem 1. DREM is an NP-complete problem.

Proof. The reduction of (1 in 3)-SAT to DREM is best explained by an example.
If the input of (1 in 3)-SAT is (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x4) where the first
clause is denoted by C1 and the second clause by C2 then the input graph for the
corresponding DREM is depicted in Figure 1, with g = 2 and p11 = {e11, e

1
2}, p

2
1 =

{e21, e
2
2}. This simply generalises.

Let x1, . . . , xn be the variables and let C1, . . . , Cm be the clauses of a (1 in
3)-SAT input. (1) With each clause Cj we associate a copy S(j) of the star with
three leaves. (2) Let x(i, j) denote the appearance of variable xi in clause Cj . (3)
If x(i, j) is equal to xi then let P (i, j) be a copy of the path of three edges. (4)
If x(i, j) is equal to ¬xi then let P (i, j) be a copy of the path of five edges. (5)
Let variables xi1 , xi2 , xi3 appear in clause Cj . Then we identify the two leaves
of P (i1, j) (P (i2, j), P (i3, j) respectively) with two leaves of S(j) as indicated in
Figure 1. (6) Finally we specify g = 3m − n disjoint pairs of edges: Let i ≤ n

and let x(i, j1), . . . , x(i, jk) be all the appearances of veriable xi. For l = 1, . . . , k
let e(i, jl) be an edge adjacent to the middle edge of P (i, jl). For each i ≤ n and
l ∈ {1, . . . , k − 1} we will have edge-pair pil = {e(i, jl), e(i, jl+1)}.

(7) These pairs assure the following: Let M be a REM and 1 ≤ i ≤ n.
Then the middle edge of each P (i, j) belongs to M or the middle edge of no
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Fig. 1.

P (i, j) belongs to M . This simply implies that there is a REM iff there is a (1
in 3)-satisfying assignement.

Corollary 1. Let D be the infimum of reals d for which there exists an algorithm
solving DREM in time O(2dg), where g is the number of the input pairs of edges.
Let us assume that the Exponential time hypothesis holds. Then D > 0.

Proof. We first note that 3-SAT with n variables and m clauses can be reduced
to (1 in 3)-SAT with n + 6m variables and 5m clauses by a construction of
Schaefer [14]. By the discussion in 1.1 we can assume that m ≤ c3n. After this
reduction we use the construction of the proof of Theorem 1.

1.3 Kasteleyn Orientations and Optimisation by Enumeration

Let me state a curious phenomenon: There is a strongly polynomial algorithm
to solve the Max-Cut problem in the planar graphs based on a reduction to
the weighted perfect matching problem, see e.g. [10].

For the graphs of fixed genus g ≥ 1 the situation is different: There is a
weakly polynomial algorithm by Galluccio and Loebl ([4]; see also [5], [6]); it
was implemented several times and applied in extensive statistical physics cal-
culations (see [12]). Recently other related algorithms based on the Valiant’s
theory [16] of holographic algorithms appeared (see [1], [3]). All presently known
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approaches are of enumeration nature even for the class of the toroidal square
grids. The weakly polynomial optimisation by enumeration method of [4]
is as follows:

1. Let G = (V,E) be a graph. A set of edges E′ ⊆ E is called even if each
degree of the graph (V,E′) is even. A set of edges C ⊆ E is called an edge-cut
of G, if there is a V ′ ⊆ V so that C = {e ∈ E : |e ∩ V ′| = 1}. The Max-Cut

problem, one of the basic optimisation problems, asks for the maximum size of
an edge-cut in the input graph G, or, if weights on the edges are given, for the
maximum total weight of an edge-cut.

2. If a weight-function w : E → R and a set S of subsets of E are given then
the generating function of S is defined as

F(G,w, x) =
∑

A∈S

∏

e∈A

xw(e).

3. The generating function of the edge-cuts is simply equivalent to the Ising
partition function of the same graph, and it can be computed from the generating
function of the even sets by a theorem of Van der Waender (for the definitions,
theorems and their proofs see e.g. [10]).

4. The generating function of the even sets can be computed by the Fisher
construction described in 2.3 as the generating function of the perfect matchings
of a modified graph.

5. The seminal technical proposition was formulated by Kasteleyn [9] and
proved by Galluccio, Loebl [4] and independently by Tesler [15]:

The generating function of perfect matchings of a graph of genus g can be effi-
ciently written as a linear combination of 22g Pfaffians. Pfaffians are determinant
type expressions that can be computed efficiently by a variant of the Gaussian
elimination. Cimasoni and Reshetikhin [2] provided a beautiful interpretation of
the formula which then became known as the Arf invariant formula.

6. Summarising, the weakly polynomial algorithm solving the Max-Cut

problem for the graphs of genus g by Galluccio and Loebl consists in calculating
22g Pfaffians and produces the complete generating function of the edge-cuts of
the embedded graph.

1.4 Additive determinantal complexity

A recent result of Loebl and Masbaum [11] indicates that this might be optimum
for the cuts enumeration. It is shown by Loebl and Masbaum in [11] that, if
we want to enumerate the edge-cuts of each possible size of an input graph G

of genus g, then in a strongly restricted setting called additive determinantal
complexity the number of the Pfaffian calculations cannot be smaller than 22g.

This leads to a question: Is there an algorithm for solving the Max-Cut

problem in (a natural subclass of) the embedded graphs, whose complexity beats
the additive determinantal complexity of the cuts enumeration? At present no
such algorithm for a natural subclass of embedded graphs is known.
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I believe that the answer to this question is NO and in Theorem 2 below
we present a partial result. We show that the Frustration Conjecture implies
that for the class of embedded graphs where the crossing number is equal to the
genus, there is no algorithm to solve the Max-Cut problem whose complexity
beats the additive determinantal complexity bound. The proof of Theorem 2 is
included in Section 2.

Theorem 2. Let G be a graph with n vertices and embedded to the plane with
g crossings. One can efficiently construct planar graph G′ with edge-weights in
{−1, 0, 1} and a set of 2g disjoint pairs of edges of G′ so that finding the max-
imum size of an edge-cut in G is polynomial time reducible to determining the
maximum weight of a REM in G′.

Acknowledgement. This project initially started as a joint work with Mar-
cos Kiwi. I would like to thank Marcos for many helpful discussions.

2 Edge-Cuts in Embedded Graphs

Let G = (V,E) be a graph. A set of edges E′ ⊆ E is called even if each degree of
the graph (V,E′) is even. A set of edges C ⊆ E is called an edge-cut of G, if there
is a V ′ ⊆ V so that C = {e ∈ E : |e ∩ V ′| = 1}. The Max-Cut problem, one
of the basic optimisation problems, asks for the maximum size of an edge-cut in
the input graph G, or, if weights on the edges are given, for the maximum total
weight of an edge-cut.

2.1 Surfaces

We recall the following standard description of a genus g surface Sg with one
boundary component (we follow [10], [11]). (We reserve the notation Σg for a
closed surface of genus g.)

Definition 1. A 1-highway (see Figure 2) is a surface S̄g which consists of a
base polygon R0 and bridges R1, . . . , R2g, where

– R0 is a convex 4g-gon with vertices a1, . . . , a4g numbered clockwise.

– Each R2i−1 is a rectangle with vertices x(i, 1), . . . , x(i, 4) numbered clock-
wise and glued to R0. Edges [x(i, 1), x(i, 2)] and [x(i, 3), x(i, 4)] of R2i−1 are
identified with edges [a4(i−1)+1, a4(i−1)+2] and [a4(i−1)+3, a4(i−1)+4] of R0,
respectively.

– Each R2i is a rectangle with vertices y(i, 1), . . . , y(i, 4) numbered clockwise
and glued to R0. Edges [y(i, 1), y(i, 2)] and [y(i, 3), y(i, 4)] of R2i−1 are iden-
tified with edges [a4(i−1)+2, a4(i−1)+3] and [a4(i−1)+4, a4(i−1)+5] of R0, respec-
tively. (Here, indices are considered modulo 4g.)
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Fig. 2. A 1-highway.

Before proceeding, we point out a simple fact that we will soon exploit: the
boundary of a 1-highway is isotopic to the boundary of a disk.

Now assume the graph G is embedded into a closed orientable surface Σg of
genus g. We think of Σg as Sg union an additional disk δ glued to the boundary
of Sg. By an isotopy of the embedding, we may assume that G does not meet
the disk δ and that, moreover, all vertices of G lie in the interior of R0.

We may also assume that the intersection of G with any of the rectangular
bridges Ri consists of disjoint straight lines connecting the two sides of Ri which
are glued to the base polygon R0.

Next, follows the standard analogous description of a genus g surface Sg with
more than one boundary component.

Definition 2. A highway surface Sg is obtained from a 2-sphere Z with h dis-
joint polygons R1

0, . . . , R
h
0 specified, and h disjoint 1-highway surfaces S̄1

g1 , . . . , S̄
h
gh ,

where g = g1 + . . . + gh, by first identifying the base polygon of each S̄i
gi with

the polygon Ri
0, and then by deletion of the interiors of these polygons Ri

0

(i = 1, . . . , h).

Now assume the graph G is embedded into a closed orientable surface Σg of
genus g. We again think of Σg as Sg union h additional disks δi (i = 1, . . . , h),
glued to the h boundaries of Sg. By an isotopy of the embedding, we may assume
that G does not meet the disks δi’s and that, moreover, no vertex of G lies in a
bridge. We may also assume that the intersection ofG with any of the rectangular
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bridges Rj
i consists of disjoint straight lines connecting the two sides of Rj

i which
are glued to the base sphere Z.

2.2 Local non-planarity

We note that each embedding of a graph G into Σg defines its geometric dual,
usually denoted by G∗, as follows: the vertices of G∗ are the faces of the em-
bedding of G and for each edge e of G there is an edge e∗ of G∗ connecting the
faces which have e on their boundary. For example, each toroidal square grid is
self-dual. We note that a dual can have loops and multiple edges.

We consider simultaneous embeddings of the graph and its geometric dual
into Σg.

Definition 3. Let G = (V,E) be a graph. A simultaneous embedding of G into
Σg consists of (1) an embedding N of graph G, and (2) an embedding N∗ of the
geometric dual G∗ = (V ∗, E∗) of N . In addition, we require that (a) G is the
geometric dual of N∗, (b) each vertex of G∗ (of G respectively) is embedded in
the face of N (N∗ respectively) it represents, (c) each pair of dual edges e, e∗

intersects exactly once, and N,N∗ have no other intersections, and (d) both
N,N∗ are embeddings into Sg ⊆ Σg.

For a collection of edges S ⊆ E we denote by S∗ ⊆ E∗ the collection of dual
edges e∗ such that e ∈ S.

Since a simultaneous embedding of G into Σg is by definition a subset of
Sg ⊆ Σg, we will also call it simultaneous embedding into Sg.

We may also assume that the intersection of G with any of the rectangular
bridges Rj

i consists of disjoint straight lines connecting the two sides of Rj
i which

are glued to the base sphere Z.

Definition 4. We recall that the intersection of an embedding of G in Sg with

any of the rectangular bridges R
j
i of S)g consists of disjoint straight lines con-

necting the two sides of Rj
i which are glued to the base sphere.

Let G be embedded in Sg. An even set E′ ⊂ E of the edges of G of which
crosses each bridge of Sg by an even number of disjoint straight lines will be
called admissible.

A simultaneous embedding of G into Sg is called even if it holds that C ⊆ E

is an edge-cut of G if and only if C∗ ⊆ E∗ is an admissible even set of the
embedding of G∗.

A basic example of an even simultaneous embedding is a toroidal square grid
and its geometric dual.

Definition 5. We say that a simultaneous even embedding of a graph G into
some Sg is restricted if E∗ intersects each bridge by at most 2 disjoint straight
lines.

Definition 6. We say that graph G belongs to class Cg if G is drawn to the
plane with exactly g edge-crossings and for each crossing there is a planar disc
where the drawing looks as depicted in Figure 3.
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Theorem 3. If G ∈ Cg, then G admits a restricted even simultaneous embedding
into Sg.

Proof. We consider the simultaneous local embedding of the graph G as de-
scribed in Figure 4. The embedding is clearly restricted. We need to show that
the embedding is even.

We first observe that the set δ(v) of the edges of G incident with any vertex
v of G satisfies that δ∗(v) intersects each bridge in an even number of segments.
Since each edge-cut of G is the symmetric difference of some sets δ(v), v ∈ V ,
we get: If C is an edge-cut of G, then C∗ is admissible.

In order to prove that the embedding is even we need to show that each
admissible set C∗ of dual edges is a symmetric difference of faces of G∗; this
implies that C is an edge-cut ofG. We can assume that C∗ has empty intersection
with the bridges (depicted in Figure 4):

Consider the pair of bridges in Figure 4. There is a face F1 of G
∗ with exactly

2 edges on the vertical bridge and no edge on the horizontal bridge, and also a
face F2 of G∗ where the role of the two bridges is exchanged. We can use the
symmetric difference of C∗ with F1 or F2 to produce a new even set C∗

0 which has
empty intersection with each bridge. Moreover, if C∗

0 is a symmetric difference
of faces of G∗ then so is C∗.

It follows that C∗ is an even subset of an embedded planar subgraph of G∗.
For the planar graphs, the boundaries of faces generate all even sets of edges by
the symmetric difference operation. Hence the proof is finished if we show that
each face F of this planar subgraph is a symmetric difference of the faces of G∗:

Indeed, such F is either a face of G∗ itself, or it looks like the square of Fig-
ure 4 comprised of edges depicted as thick lines, which is the symmetric difference
of the dual faces encircling the three unlabelled vertices of G of Figure 4.
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Fig. 4. Simultaneous embedding of graph G ∈ Cg near a crossing. There is one pair
of bridges; the boundaries of the vertical bridge are depicted by dotted lines and the
boundaries of the horizontal bridge are not depicted to simplify the presentation. The
edges of G are depicted by normal lines and the dual edges are depicted by thick lines.

2.3 Proof of Theorem 2

We show that for a graph G = (V,E) with n vertices and embedded to the plane
with g edge crossings one can efficiently construct a planar graph H = (W,E′)
with edge-weights in {−1, 0, 1} and with 2g specified disjoint pairs of its edges
so that the maximum size of an edge-cut in G is equal to the maximum weight
of a REM in H . The construction goes as follows:

Step 1. We subdivide each edge of G near to each crossing; if e ∈ E got
subdivided into edges e1, . . . , ek which form the path (e1, . . . , ek) then we let the
weight of e1 equal to 1 and the weight of e2, . . . , ek equal to −1. The resulting
weighted graph will be denoted by G1. We note that the Max-Cut problem in
G is reduced to the weighted Max-Cut problem in G1.

Step 2. We add, for each edge crossing of G1, the four edges of weight zero
forming a 4−cycle ( denoted by uvwt in Figure 4) and further one new vertex
which we connect by four edges of weight zero to the two vertices near to this
crossing added in Step 1 so that the resulting graph, which we denote by G2,
is in Cg. We note that G2 is uniquely determined and the weighted Max-Cut

problem in G1 is reduced to the weighted Max-Cut problem in G2.
Step 3. We use Theorem 3. Let G∗

2 be the dual from the restricted simulta-
neous even embedding of G2 into Sg. The weight of each edge e∗ of G∗

2 is defined
to be equal to the weight of the corresponding edge e of G2. We specify 2g pairs
p1, . . . , p2g of edges of G∗

2:
each pair consists of the two edges embedded on one of the 2g bridges of Sg

(see Figure 4). We note that the weighted Max-Cut problem for G2 is reduced
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to the problem of finding maximum weight even set of G∗
2 which contains an

even number of elements of each pair pi, i = 1, . . . , 2g. Finally we note that G∗
2

is planar.
Step 4: Fisher’s construction. We transform G∗

2 into H by the Fisher’s
construction (see e.g. book [10]) described next.

Definition 7. Let G be a graph. Let σ = (σv)v∈V (G) be a choice, for every vertex
v, of a linear ordering of the edges incident to v. The blow-up, or ∆-extension,
of (G, σ) is the graph Gσ obtained by performing the following operation one by
one for each vertex v. Let e1, . . . , ed be the linear ordering σv and let ei = vui,
i = 1, . . . , d. We delete the vertex v and replace it with a path consisting of 6d
new vertices v1, . . . , v6d and edges vivi+1, i = 1, . . . , 6d− 1. To this path, we add
edges v3j−2v3j, j = 1, . . . , 2d. Finally, we add edges v6i−4ui corresponding to the
original edges e1, . . . , ed.

 

u1

u3

u2

v

u1

u2

Γv

v6

v7

v13
v12

v18

v1

u3

Fig. 5. For a node v with the neighborhood illustrated in 5(a) the associated gadget
Γv is depicted in 5(b).

The subgraph of Gσ spanned by the 6d vertices v1, . . . , vd that replaced a
vertex v of the original graph will be called a gadget and denoted by Γv. The edges
of Gσ which do not belong to a gadget are in natural bijection with the edges of
G. By abuse of notation, we will identify an edge of G with the corresponding
edge of Gσ. Thus E(Gσ) is the disjoint union of E(G) and the various E(Γv)
(v ∈ V (G)).

It is important to note that different choices of linear orderings σv at the
vertices of G may lead to non-isomorphic graphs Gσ. Nevertheless, one always
has the following:

Lemma 1. There is a natural bijection between the set of even subsets of G and
the set of perfect matchings of Gσ. More precisely, every even set E′ ⊆ E(G)



12 M. Loebl

uniquely extends to a perfect matching M ⊂ E(Gσ), and every perfect matching
of Gσ arises (exactly once) in this way.

It follows that if we set the weights of the edges of the gadgets of (G∗
2)

σ equal
to zero, we get that the value of the Max-Cut problem for G is equal to the
max REM of H = (G∗

2)
σ. This finishes the proof of Theorem 2.
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