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Abstract

Jaeger’s directed cycle double cover conjecture can be formulated as a problem of existence of special perfect

matchings in a class of graphs that we call hexagon graphs. A hexagon graph can be associated with any cubic

graph. We show that the hexagon graphs of cubic bridgeless graphs are braces that can be generated from the

ladder on 8 vertices using two types of McCuaig’s augmentations.

1 Introduction

The long-standing Jaeger’s directed cycle double cover conjecture [1] (DCDC conjecture in short) is broadly con-

sidered to be among the most important open problems in graph theory. A typical formulation asks whether

every 2-connected graph admits a family of cycles such that one may prescribe an orientation on each cycle of the

family in such a way that each edge e of the graph belongs to exactly two cycles and these cycles induce opposite

orientations on e. In order to prove the DCDC conjecture, a wide variety of approaches have arisen [1, 7], including

a topological approach. The topological formulation of the DCDC conjecture is as follows: every cubic bridgeless

graph admits an embedding in a closed Riemann surface such that every edge belongs to exactly two distinct face

boundaries defined by the embedding; that is, with no dual loop.

In this work, we formulate the DCDC conjecture as a problem of existence of special perfect matchings in a

class of graphs that we call hexagon graphs. Our initial motivation for the formulation of the DCDC conjecture

using hexagon graphs are critical embeddings [2, 5], which are embeddings with no dual loop, in particular.

The main goal of this work is to discuss recent progress on the study of the structure and generation of hexagon

graphs. The class of the hexagon graphs of the cubic bridgeless graphs turns out to be a subclass of braces.

The class of braces, along with bricks, are a fundamental class of graphs in matching theory, mainly because

they are building blocks of a perfect matching decomposition procedure, namely of the tight cut decomposition

procedure [3]. In [4], McCuaig introduced a method for generating all braces starting from a large base set of

graphs and recursively making use of 4 distinct types of operations. In this paper, we show that the hexagon

graphs arising from cubic bridgeless graphs are braces that can be generated from the ladder on 8 vertices using 2

types of McCuaig’s operations.
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2 Preliminaries

2.1 Braces and McCuaig’s operations

A brace is a simple (i.e. no loops and no multiple edges), connected, bipartite graph on at least six vertices such

that for every pair of non-adjacent edges, there is a perfect matching containing the pair of edges. In [4], McCuaig

presented a method for generating braces. He showed that all braces can be constructed from a base set using four

operations. In the following we sketch McCuaig’s method for generating braces.

Let H be a bipartite graph and x be a vertex of H of degree at least 4. Let N1, N2 be a partition of NH(x)

such that |N1|, |N2| ≥ 2. Let {x1, v, x2} be a set of vertices such that {x1, v, x2} ∩ V (H) = ∅. The expansion of

x to x1vx2 is the operation composed of the following three steps: (i) delete x, (ii) add the new path x1vx2, and

(3) connect every vertex of N1 (N2, respectively) to the vertex x1 (x2, respectively). Note that if H ′ is a graph

obtained from H by the expansion of a vertex, then H ′ is also bipartite.

Augmentations. If H ′ is a bipartite graph obtained from H by adding a new edge, then we say that H ′ is obtained

from H by a type-1 augmentation. Let x and w be two vertices in the same partition class of H such that x has

degree at least 4. If H ′ is obtained from H expanding x to x1vx2 and adding the new edge vw, then we say that H ′

is obtained from H by a type-2 augmentation. Let x and y be two vertices of H of distinct partition classes such

that dH(x), dH(y) ≥ 4. Let H ′ be the bipartite graph obtained from H expanding x and y to x1vx2 and y1uy2

respectively, and adding the new edge vu. If x and y are not connected in H, the operation for obtaining H ′ from

H is called a type-3 augmentation, otherwise it is called a type-4 augmentation.

If H ′ is obtained from H by a type-i augmentation for some i ∈ {1, 2, 3, 4}, then we say that H ′ is obtained

from H by an augmentation. If i ∈ {1, 2}, then we say that H ′ is obtained from H by a simple augmentation (see

Figure 1).
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Figure 1: Simple augmentations

Let B be the infinite set consisting of all bipartite Möbius ladders, ladders, and biwheels. In [4, § 2], the set B
is depicted.

Theorem 1 (McCuaig). Let H be a bipartite graph. Then H is a brace if and only if there exists a sequence

H0, H1, . . . ,Hk of bipartite graphs such that H0 ∈ B, Hi may be obtained from Hi−1 by an augmentation for each

i ∈ {1, . . . , k}, and Hk = H.

2.2 Rotation systems and embeddings without dual loops

We briefly recall a combinatorial representation of embedding of graphs on closed Riemann surfaces, namely rotation

systems. Let G be a graph. For each v ∈ V (G), let πv be a cyclic permutation of the edges incident with v. A

collection π = {πv : v ∈ V (G)} is called a rotation system of G. The proof of the following seminal theorem of

Edmonds can be found in [6, §3.2].

Theorem 2 (Edmonds). Let π be a rotation system of a graph G. Then π encodes an embedding of G on a closed

Riemann surfaces with set of face boundaries

{e1e2 · · · ek : ei = vivi+1 ∈ E(G), πvi+1(ei) = ei+1, ek+1 = e1 and k minimal}. (1)

Moreover, the converse holds. That is, every embedding of G on a closed Riemann surface defines a rotation system

π of G, where the set of face boundaries is given by the set described in (1).
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3 Hexagon graphs

In this section we introduce hexagon graphs associated with cubic graphs. We refer to the complete bipartite graph

K3,3 as a hexagon and say that a bipartite graph H has a hexagon h if h is a subgraph of H. For a graph G and

a vertex v of G, let NG(v) denote the set of neighbors of v in G.

Definition 1. Let G be a cubic graph with vertex set V and edge set E. A hexagon graph of G is a graph H

obtained from G following the next rules:

1. We replace each vertex v in V by a hexagon hv so that for every pair u, v ∈ V , if u 6= v, then hu and hv are

vertex disjoint. Let V (H) = {V (hv) : v ∈ V }.

2. For each vertex v ∈ V , let {vi : i ∈ Z6} denote the vertex set of hv and {vivi+1, vivi+3 : i ∈ Z6} its edge

set. With each neighbor u of v in G, we associate an index iv(u) from the set {0, 1, 2} ⊂ Z6 so that if

NG(v) = {u,w, z}, then iv(u), iv(w), iv(z) are pairwise distinct.

3. (See Figure 2). Let X = ∪v∈V {v2i : i ∈ Z6} and Y = ∪v∈V {v2i+1 : i ∈ Z6}. We replace each edge

uv in E by two vertex disjoint edges euv, e′uv so that if both viv(u)
, uiu(v)

belong to either X or Y , then

euv = viv(u)
uiu(v)+3, e′uv = viv(u)+3uiu(v)

. Otherwise, euv = viv(u)
uiu(v)

, e′uv = viv(u)+3uiu(v)+3. Let E(H) =

{E(hv) : v ∈ V } ∪ {euv, e′uv : uv ∈ E}.

v5

v3 v4

v1
u4u1

u5

u3

u0

u2

v2

e′uv

euv

w4

w5w0

w1

w2 w3ewv

e′wv

z2z5

z3

ezv
z0 z1

z4

e′zv

v0

Figure 2: Local representation of a hexagon graph H of a cubic graph G. The hexagon hv is associated with vertex v,

where NG(v) = {u,w, z}. Red edges are depicted as red lines, blue edges are depicted as blue lines and white edges as black

lines. The set X is represented by white vertices and the set Y by black vertices.

We say that hv is the hexagon of H associated with the vertex v of G and that {hv : v ∈ V } is the set of

hexagons of H. We shall refer to the set of edges
⋃

v∈V {vivi+3 : i ∈ Z6} as the set of red edges of H, to the set

of edges {euv, e′uv : uv ∈ E} as the set of white edges of H, and finally to the set of edges
⋃

v∈V {vivi+1 : i ∈ Z6}
as the set of blue edges of H (see Figure 2). Moreover, we shall say that a perfect matching of H containing only

blue edges is a blue perfect matching.

Let G be a cubic graph and H be a hexagon graph of G. We observe two important properties: (i) H is

bipartite; and (ii) if H ′ is another hexagon graph of G, then H and H ′ are isomorphic.

Below we reformulate the topological statement of the DCDC conjecture, saying that every cubic bridgeless

graph admits an embedding on a closed Riemann surface without dual loops, as the existence of special perfect

matching in hexagon graphs.

Let M be a blue perfect matching of H and let W be the set of white edges of H. Each cycle C in M∆W

induces a subgraph in G defined by the set of edges {uv ∈ E(G) : euv ∈ C or e′uv ∈ C}. In the next theorem we
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state that each blue perfect matching of a hexagon graph of a cubic graph G defines an embedding of G on closed

Riemann surfaces, and vice versa. The proof is based on a natural bijection between blue perfect matchings and

rotation systems.

Theorem 3. Let G be a cubic graph, H the hexagon graph of G, and W the set of white edges of H. Each blue

perfect matching M of H encodes an embedding of G on a closed Riemann surface with set of face boundaries the

set of subgraphs of G induced by the cycles in M∆W . Moreover, the converse holds. That is, each embedding of G

on a closed Riemann surface defines a blue perfect matching M of H, where the set of subgraphs of G induced by

all cycles in M∆W coincides with the set of face boundaries of the embedding.

The following result is crucial for our approach.

Proposition 4. Let G be a cubic graph, H the hexagon graph of G, M a blue perfect matching of H, and W the

set of white edges of H. The embedding of G encoded by M has a dual loop if and only if there is a cycle in M∆W

that contains both end vertices of a red edge.

Proof. An embedding of G has a dual loop if and only if there is an edge uv ∈ E(G) that belongs to exactly one

face boundary, say C ′. The face boundary C ′ is a subgraph of G induced by a cycle C of M∆W . We have C ′ is

the only subgraph induced by a cycle of M∆W that contains uv if and only if euv and e′uv belong to C. The result

follows.

Motivated by Proposition 4, we shall say that a blue perfect matching M is safe if no cycle of M∆W contains

the end vertices of a red edge. As a direct consequence of Theorem 3 and Proposition 4, we establish the following

formulation of the DCDC Conjecture on hexagon graphs.

Corollary 5. A cubic graph G has a directed cycle double cover if and only if its hexagon graph H admits a safe

perfect matching.

4 Main Results

In this section we describe the structure and generation of hexagon graphs of cubic bridgeless graphs.

Theorem 6. Let G be a cubic graph. Then the hexagon graph H of G is a brace if and only if G is bridgeless.

Proof. Let B, W , and R denote the set of blue, white, and red edges, respectively. Moreover, a blue edge is denoted

by b, a white edge by w, and a red edge by r. Each pair of disjoint edges, {b, b′}, {r, r′}, or {b, r}, can be simply

extended to a perfect matching of H.

We note that each component of W ∪R is a cycle on four vertices, a square. Let w,w′ be a pair of disjoint white

edges. The edges w,w′ belong to the same square of W ∪ R, or to two different squares of W ∪ R. In either case

w,w′ can be naturally extended to a perfect matching of H. Similarly, each edge of a pair w, r of disjoint white

and red edge belongs to different square of W ∪R, and therefore it can be completed into a perfect matching of H.

Finally we consider a pair b, w of disjoint white and blue edge. If the hexagon with b does not contain an

end vertex of w, then it is not difficult to extend b, w to a perfect matching of H. Hence, let hu be the hexagon

that contains b and an end vertex of w, and let hv be the hexagon that contains the other end vertex of w. Let

b = uiui+1, w = ukvj , where i, j, k ∈ Z6.

If k /∈ {i+ 3, i+ 4}, then b, w can be completed into a perfect matching of H that contains the edges b, w, and

ui+3ui+4.

Hence, without loss of generality we can assume that k = i+ 3. Let euv = uivj+3 and euz = ui+1zl (notation as

in Definition 1.3 ), where z is the neighbor of v in G such that the white edge with an end vertex ui+1 has an end
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vertex in hz, and l ∈ Z6. Given that in G, edges uv, uz have a common end vertex u represented by hexagon hu,

edge b = uiui+1 can be seen as the transition between uv, uz, while ukuk+1 can be seen as this transition reversed.

Now let G be bridgeless. We observe that two adjacent edges in a cubic bridgeless graph belong to a common

cycle. Let C be such a cycle for uv, uz.

The two possible orientations of C correspond to two disjoint cycles Cb, Cw in H, where b ∈ Cb and w ∈ Cw;

they contain the transition and transition reversed (between uv, uz), respectively. Let Mb be the perfect matching

of Cb consisting of all blue edges and Mw be the perfect matching of Cw consisting of all white edges. In particular,

b ∈Mb and w ∈Mw. Since each hexagon of H is intersected by Cb ∪ Cw either in a pair of disjoint blue edges, or

in the empty set, Mb ∪Mw can be extended to a perfect matching of H.

On the other hand, if G has a bridge e = {u, v}, then let V1 be the component of G − e containing u. Any

perfect matching of G extending b, w must induce a perfect matching of ∪x∈V1hx \ {ui+3}, but this set consists of

an odd number of vertices and thus no perfect matching containing b, w can exist.

The following is the main result of this work.

Theorem 7. Let G be a cubic bridgeless graph and L8 denote the ladder on 8 vertices. There is a sequence

H0, H1, . . . ,Hk of braces such that H0 = L8, Hi can be obtained from Hi−1 by a simple augmentation for each

i ∈ {1, . . . , k}, and Hk is the hexagon graph of G.

The crucial ingredients in the proof of Theorem 7 are ear decompositions of cubic bridgeless graphs. We give

only a rough sketch of the proof, due to space limitation. Let G be a cubic bridgeless graph, H be its hexagon

graph, and Gi = {x}
⋃i

j=0 Pj , i ∈ {0, . . . , p} be an ear decomposition of G. With each intermediate subgraph Gi of

the ear decomposition of G we associate an auxiliary graph H ′i. In particular, with (the cycle) G0 we associate the

ladder L8. For each i ∈ {1, . . . , p}, the auxiliary graph H ′i contains the hexagons hv of H such that v has degree

3 in Gi. Hence, H ′p contains all hexagons of H and indeed (by construction) it turns out to be isomorphic to H.

The proof is based on the fact that for each i ∈ {1, . . . , p}, it is possible to generate H ′i from H ′i−1 by a sequence

of simple augmentations.
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