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1. Beginning

The purpose of this note is to describe in passing some beautiful basic concepts interlac-
ing statistical physics, combinatorics and knot theory. There are many sources and the
time constraint prevented me from adding the references; this is just an informal write-
up, anyway. If you get hooked up in a topic, your library will have more detailed books
on the subject probably. I am also writing a book which shouldroughly cover the themes
of this paper.

A graph is a pair(V, E) whereV is a set ofverticesandE is a set of unordered pairs
from V , callededges. The notions of graph theory we will use are so natural there is no
need to introduce them.

1.1. Euler’s Theorem

Perhaps the first theorem of graph theory is the Euler’s theorem, and it is also about
walking.

THEOREM 1 A graphG = (V, E) has a closed walk containing each edge exactly once
if and only if it is connected and each vertex has an even number of edges incident with
it.

This theorem has an easy proof. Let us call a setA of edgesevenif each vertex of
V is incident with an even number of edges ofA. Connectivity and evenness are clearly
necessary conditions for the existence of such a closed walk. Sufficiency follows from
the following two lemmas.

LEMMA 1 Each even set of edges is a disjoint union of sets of edges of cycles.
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Science (ITI), Charles University, Malostranske n. 25, 11800 Praha 1, Czech Republic; E-mail:
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LEMMA 2 A connected set of disjoint cycles admits a closed walk whichgoes through
each edge exactly once.

The first lemma might be calledthe greedy principle of walking: to prove the first
lemma we observe first that each non-empty even set contains acycle; if we delete it, we
again get an even set and we can continue in this way until the remaining set is empty.
The proof of the second lemma is also simple: we can compose the closed walk by the
walks along the disjoint cycles.

1.2. Even sets of edges as a kernel

We will often not distinguish a subsetA of edges and its incidence vectorχA, i.e. 0, 1-
vector indexed by the edges ofG, with (χA)e = 1 iff e ∈ A. Let E(G) be the set of the
even subsets of edges of the graphG.

We denote byIG the incidence matrixof graphG, i.e. matrix with rows indexed by
V (G), columns indexed byE(G), and(IG)ve equal to one ifv ∈ e and zero otherwise.
We immediately have

Observation 1 E(G) forms theGF [2]-kernel ofIG, i.e. E(G) = {v; IGv = 0 modulo
2}.

What is the orthogonal complement ofE(G) in GF [2]E(G)? It is the setC(G) of
edge-cuts ofG; a setA of edges is callededge-cutif there is a setU of vertices such that
A = {e ∈ E; |e ∩ U | = 1}.

1.3. Max-Cut, Min-Cut problems

Max-Cut and Min-Cut problems belong to the basic hard problems of computer science.
Given a graphG = (V, E) with a (rational) weightw(e) assigned to each edgee ∈ E,
the Max-Cut problem asks for the maximum value of

∑

e∈C w(e) over all edge-cuts of
G, while the Min-Cut problem asks for the minimum of the same function.

Max-Cut problem is hard (NP-complete) for non-negative edge-weights and hence
both Max-Cut and Min-Cut problems are hard for general rational edge-weights. The
Min-Cut problem is efficiently (polynomially) solvable fornon-negative edge-weights.
This has been a fundamental result of computer science, and is known as ‘max-flow,
min-cut algorithm’.

Still, there are some special important classes of graphs where the Max-Cut problem
is efficiently solvable. One such class is the class of the planar graphs.

1.4. Max-Cut problem for planar graphs

A graph is calledplanar if it can be represented in the plane so that the vertices are
different points, the edges arearcs (by arc we mean an injective continuous map of the
closed interval[0, 1] to the plane) connecting the representations of their vertices, and
disjoint with the rest of the representation. We will also say that the planar graphs have
proper planar drawing, and a properly drawn planar graph will be calledtopological
planar graph. Let G be a topological planar graph and letγ be the subset of the plane
consisting of the planar representation ofG. After deletion ofγ, the plane is partitioned
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into ‘islands’ which are calledfacesof G. We letF (G) be the set of the faces ofG and
we will denote byv(G), e(G), f(G) the number of vertices, edges and faces ofG and
recall the Euler’s formula:v(G) − e(G) + f(G) = 2.

An important concept we need is that ofdual graphG∗ of a topological graphG.
It turns out convenient to defineG∗ as an abstract (not topological) graph. But we need
to allow multiple edges and loops which is not included in theconcept of the graph as a
pair (V, E), whereE ⊂

(

V
2

)

.
A standard way out is to define a graph as a triple(V, E, g) whereV, E are sets and

g is a function fromE to
(

V
2

)

∪ V which gives to each edge its terminal vertices. For
instancee ∈ E is a loop iffg(e) ∈ V .

Now we can defineG∗ as triple(F (G), {e∗; e ∈ E(G)}, g) whereg(e∗) = {f ∈
F (G); e belongs to the boundary off}.

If G is a topological planar graph thenG∗ is planar. There is a natural way to properly
draw G∗ to the plane: represent each vertexf ∈ F (G) as a point in the facef , and
represent each edgee∗ by an arc between the corresponding points, which crosses exactly
once the representation ofe in G and is disjoint with the rest of the representations ofG
andG∗.

We will say that a setA of edges of a topological planar graph isdual evenif {e∗; e ∈
A} is an even set of edges ofG∗.

Observation 2 The dual even subsets of edges ofG are exactly the edge-cuts ofG∗.

These considerations reduce the Max-Cut problem in the class of the planar graphs
to the following problem, again in the class of the planar graphs:

Maximum even subset problem. Given a graphG = (V, E) with rational weights
on the edges, find the maximum value of

∑

e∈H w(e) over all even subsetsH of edges.
Finally the following theorem means that the Max-Cut problem is efficiently solv-

able for the planar graphs.

THEOREM 2 The Maximum even subset problem is efficiently solvable for general
graphs.

1.5. Edwards-Anderson Ising model

The Max-Cut problem has a long history in computer science, but one of the basic ap-
plications comes from the study of theIsing model, a theoretical physics model of the
nearest-neighbor interactions in a crystal structure.

In the Ising model, the vertices of a graphG = (V, E) represent particles and the
edges describe interactions between pairs of particles. The most common example is a
planar square lattice where each particle interacts only with its neighbors. Often, one
adds edges connecting the first and last vertex in each row andcolumn, which repre-
sentperiodic boundary conditionsin the model. This makes the graph atoroidal square
lattice.

Now, we assign a factorJij to each edge{i, j}; this factor describes the nature of
the interaction between particlesi andj. A physical state of the system is an assignment
of σi ∈ {+1,−1} to each vertexi. This describes the two possible spin orientations the
particle can take. TheHamiltonian(or energy function) of the system is then defined as
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H(σ) = −
∑

{i,j}∈E

Jijσiσj

One of the key questions we may ask about a specific system is:

“What is the lowest possible energy (theground state) of the system?"

Before we seek an answer to this question, we should realize that the physical states
(spin assignments) correspond exactly to the edge-cuts of the underlying graph with
specified ‘shores’. Let us define:

V1 = {i ∈ V ; σi = +1}

V2 = {i ∈ V ; σi = −1}

Then this partition of vertices encodes uniquely the assignment of spins to particles.
The edges contained in the edge-cutC(V1, V2) are those connecting a pair of particles
with different spins, and those outside the cut connect pairs with equal spins. This allows
us to rewrite the Hamiltonian in the following way:

H(σ) =
∑

{i,j}∈C

Jij −
∑

{i,j}∈E\C

Jij = 2w(C) − W,

wherew(C) =
∑

{i,j}∈C Jij denotes the weight of a cut, andW =
∑

{i,j}∈E Jij is the
sum of all edge weights in the graph.

Clearly, if we find the value of MAX-CUT, we have found the maximum energy
of the physical system. Similarly, MIN-CUT (the cut with minimum possible weight)
corresponds to the minimum energy of the system.

The distribution of the physical states over all possible energy levels is encapsulated
in thepartition function:

Z(G, β) =
∑

σ

e−βH(σ).

The variableβ is changed forK/T in the Ising model, whereK is a constant andT is a
variable representing the temperature.

It follows from 1.4 that there is an efficient algorithm to determine the ground state
energy of the Ising model on any planar graph. In fact the whole partition function may
be determined efficiently for planar graphs, and a principalingredient is the following
concept of ‘enumeration duality’.
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1.6. An enumeration duality

It turns out that the Ising partition function for a graphG may be expressed in terms of
the generating function of the even sets of the same graphG. This is the seminal theorem
of Van der Waerden whose proof is so simple that we include it here. We will use the
following standard notations:sinh(x) = 1/2(ex − e−x), cosh(x) = 1/2(ex + e−x),
tanh(x) = sinh(x)

cosh(x) .

THEOREM 3 LetG = (V, E) be a graph with edge weightsJij , ij ∈ E. Then

Z(G, β) = 2|V |
∏

ij∈E

cosh(βJij)E(G, x)|xJij :=tanh(βJij)
.

Proof.We have

Z(G, β) =
∑

σ

eβ
P

ij
Jijσiσj =

∑

σ

∏

ij∈E

(cosh(βJij) + σiσj sinh(βJij)) =

∏

ij∈E

cosh(βJij)
∑

σ

∏

ij∈E

(1+σiσj tanh(βJij)) =
∏

ij∈E

cosh(βJij)
∑

σ

∑

A⊂E

∏

ij∈E

σiσj tanh(βJij) =

∏

ij∈E

cosh(βJij)
∑

A⊂E

(U(A)
∏

ij∈A

tanh(βJij)),

where

U(A) =
∑

σ

∏

ij∈A

σiσj .

The proof is complete when we notice thatU(A) = 2|V | if A is even andU(A) = 0
otherwise. �

We saw above thatZ(G, β) may be looked at as the generating function of the edge-
cuts with the specified shores. The theorem of Van der Waerdenexpresses it in terms of
the generating functionE(G, x) of the even sets of edges.

We can also consider the honestgenerating function of edge-cutsdefined by

C(G, x) =
∑

cutC

xw(C),

where the sum is over all edge-cuts ofG andw(C) =
∑

e∈C w(e).
It turns out thatC(G, x) may also be expressed in terms ofE(G, x). This is a conse-

quence of another seminal theorem, of MacWilliams which we explain now.
Let C ⊂ GF [2]n be abinary code, i.e. a subspace overGF [2]. Let Ai(C) denote

the number of vectors ofC with exactlyi occurrences of1. Theweight enumeratorof C
is defined as
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AC(y) =
∑

i≥0

Ai(C)yi.

let us denote byC∗ thedual code, i.e. the orthogonal complement ofC. MacWilliam’s
theorem reads as follows:

THEOREM 4

AC∗(y) =
1

|C|
(1 + y)nAC(

1 − y

1 + y
).

We saw before that the set of the edge-cuts and the set of the even sets of edges form
dual binary codes, hence MacWilliams’ theorem applies.

This theorem is true more generally for linear codes over finite fieldGF [q]; hence
it applies to the kernel and the image of the incidence matrixof a graph, viewed over
GF [q]. This is related to the extensively studied field ofnowhere-zero flows.

1.7. A game of dualities: critical temperature of 2D Ising model

We will end this introductory part by an exhibition of a game of dualities. We will assume
that our graphG = (V, E) is a planar square grid, and we denote byN its number of
vertices. This is a rude specialisation for the graph-theorists, but not for statistical physi-
cists since planar square grids are of basic importance for 2-dimensional Ising problem.
Moreover for simplicity we will have all the edges of the sameweight, i.e.Jij = J for
eachij ∈ E. Hence

Z(G, β) = Z(N, γ) =
∑

σ

eγ
P

ij∈E σiσj ,

whereγ = J/T andT represents the temperature.
We will take advantage of the interplay between the geometric duality and the enu-

meration duality (Theorem 3). LetG∗ denote the dual graph ofG. A great property of
the planar square grids is that they are essentially self-dual; on the boundary there are
some differences, but who cares, we are playing anyway. So wewill cheat and assume
thatG = G∗.

Low temperature expansion. Here we use the geometric duality. The statesσ cor-
respond to the assignments of+ or − to the plaquettes ofG∗. An edge ofG∗ will be
called frontal for this assignment if it borders two plaquettes with the opposite signs.
Now we observe that the set of the frontal edges for an assignment is even, and each
even set of edges ofG∗ corresponds to exactly two statesσ (which are opposite on each
vertex). Summarising,

Z(N, γ) = 2e|E|γ
∑

H

e−2|H|γ ,

where the sum is over all even subsets of edges ofG∗ = G.
If T goes to zero thenγ goes to infinity, and hence small cycles should dominate this

expression of the partition function. This is a good news forcomputer simulations, and
explains the name of this formula.
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High temperature expansion. Here we use Theorem 3. It honestly gives

Z(N, γ) = 2N cosh(γ)|E|
∑

H

tanh(γ)|H|,

where the sum is again over all even subsets of edges ofG.
If T goes to infinity thenγ goes to zero, and hence small cycles should dominate

this expression of the partition function.
Critical temperature of 2D Ising model. Let F (γ) be thefree energy per site, i.e.

−F (γ) = lim
N→∞

N−1 lnZ(N, γ).

At a critical point the free energy is non-analytic, soF will be a non-analytic function
of γ. Moreover weassumethat there is only one critical point. Then the expressions
above help us to locate it: Let

F ′(v) = lim
N→∞

N−1 ln(
∑

H

v|H|),

where the sum is over all even subsetsH ⊂ E(G). Let v = tanh(γ). Then

−F (γ) = 2γ + F ′(e−2γ) = ln(2 cosh(γ)) + F ′(v).

If we defineγ∗ by tanh(γ∗) = e−2γ , we get

F (γ∗) = 2γ + F (γ) − ln(2 cosh(γ)).

If γ is large,γ∗ is small. Hence the last equation relates the free energy at alow
temperature to that at a high temperature. Hence, if there isonly one critical valueγc,
then necessarilyγc = γ∗

c and this determines it.

1.8. ∆ − Y transformation

Let us try to apply the same trick to the honeycomb latticeH2N with 2N vertices. If we
disregard the boundary irregularities, its geometric dualis the triangular latticeTN with
N vertices. If we apply the high temperature expansion toH2N and the low temperature
expansion toTN , we get an expression ofZ(H2N , γ) in terms ofZ(TN , γ).

In order to extract the critical temperature, we need one more relation, and we will
get it from the∆ − Y transformation. This is one of these magic seminal simple local
operations. It consists in the exchange of a vertexl of degree3 connected to independent
verticesi, j, k (aY ), with three edges between verticesi, j, k which form∆ (a triangle).

We first note thatH2N is bipartite, i.e. its vertices may be uniquelly partitioned into
two setsV1, V2 so that all the edges go between them.

The new trick is to apply the∆ − Y transformationto all the vertices ofV1. The
result is again the triangular latticeTN . Now, if we want to transformZ(H2N , γ) into the
Ising partition function of this new triangular latticeTN , we get a system of equations
for the coupling constants ofTN , which has a solution, and this suffices to extract the
critical temperature forZ(H2N , γ).
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This system of equations in the operator form is the famousYang-Baxter equation.
It defines theTemperley-Lieb algebrawhich has been used to introduce and study the
quantum knot invariantslike Jones polynomial, with close connections to the topological
QFTs.

This connection between statistical physics, knot theory,QFT and combinatorics has
kept the mathematicians and physicists busy for more than a decade.

So, look where we arrived at from the Euler’s theorem. Next chapter starts with
another principle,of inclusion and exclusion.

2. Inclusion and Exclusion

Let us start with the introduction of a paper of Hassler Whitney, which appeared in
Annals of Mathematics in August 1932:

“Suppose we have a finite set of objects (for instance books ona table), each of
which either has or has not a certain given property A (say of being red). Letn be the
total number of objects,n(A) the number with the propertyA, andn(Ā) the number
without the propertyA. Then obviouslyn(Ā) = n − n(A). Similarly, if n(AB) denote
the number with both properties A and B, nadn(ĀB̄) the number with neither property,
thenn(ĀB̄) = n − n(A) − n(B) + n(AB), which is easily seen to be true.

The extension of these formulas to the general case where anynumber of proper-
ties are considered is quite simple, and is well known to logicians. It should be better
known to mathematicians also; we give in this paper several applications which show its
usefulness."

Indeed, we all know it, under the name ‘inclusion-exclusionprinciple’:
if A1, ..., An are finite sets, and if we let

⋂

(Ai; i ∈ J) = AJ then

∣

∣

∣

⋃

(Ai; i = 1, ..., n)
∣

∣

∣
=

n
∑

k=1

(−1)k−1
∑

J∈(n

k)

|AJ |.

It can also be formulated as follows:

THEOREM 5 Let S be an n-element set and letV be a2n−dimensional vector space
over some fieldK. We consider the vectors ofV indexed by the subsets ofS. Let l be a
linear transformation onV defined by

l(vT ) =
∑

T⊂Y

vY

for all T ⊂ S. Thenl−1 exists and is given by

l−1(vT ) =
∑

T⊂Y

(−1)|Y −T |vY

for all T ⊂ S.

The set of all subsets ofS equipped with the relation ‘⊂’ forms a partially ordered
set (poset) calledBoolean poset. TheMobius inversion formulaextends Theorem 5 from
the Boolean poset to an arbitrary ‘locally finite’ poset.
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2.1. Zeta Function of a Graph

The theory of the Mobius function connects the Principle of Inclusion and Exclusion
with a very useful concept of thezeta function of a graph. We will explain a seminal
theorem of Bass. You will see in the last section of the paper that it is closely related to
(several decades older) combinatorial solution to the 2D Ising model proposed by Kac,
Ward and Feynman.

Let G = (V, E) be a graph and letA = (V, A(G)) be an arbitrary orientation of
G; an orientationof a graph is a prescribtion of one of twodirectionsto each edge. If
e ∈ E thenae will denote the orientation ofe in A(G) anda−1

e will be the reversed
orientation toae. A ‘circular sequence’p = v1, a1, v2, a2, ..., an, (vn+1 = v1) is called
prime reduced cycleif the following conditions are satisfied:ai ∈ {ae, a

−1
e : e ∈ E},

ai 6= a−1
i+1 and(a1, ..., an) 6= Zm for some sequenceZ andm > 1.

DEFINITION 1 LetG = (V, E) be a graph. The Ihara-Selberg function ofG is

I(u) =
∏

γ

(1 − u|γ|)

and the zeta function ofG is

Z(u) = I(u)−1,

where the infinite product is over the set of the prime reducedcyclesγ of G.

The theorem of Bass reads as follows:

THEOREM 6

I(u) = det(I − uT ),

whereT is the matrix of the transitions between edges.

The above considerations are closely related to the MacMahon’s Master Theorem,
known also asboson-fermion correspondencein physics. Strong connections with quan-
tum knot invariants have been discovered recently.

THEOREM 7 The coefficient ofxm1
1 . . . xmn

n in

n
∏

i=1

(

n
∑

j=1

aijxj)
mi

is equal to the coefficient ofzm1
1 . . . zmn

n in the power series expansion of[det(δij −

aijzi)]
−1.
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3. The chromatic polynomial and the Tutte polynomial

In the before-mentioned paper, Whitney mentions a formula for the number of ways of
coloring a graph as one of the main applications of PIE. Let usagain follow the article
of Whitney for a while:

Suppose we have a fixed number z of colors at our disposal. Any way of assigning
one of these colors to each vertex of the graph in such a way that any two vertices which
are joined by an arc are of different colors, will be called admissible coloring, using z or
fewer colors. We wish to find the numberM(z) of admissible colorings, using z or fewer
colors. ... We shall deduce a formula forM(z) due to Birkhoff.

If there are V vertices in the graph G, then there aren = zV possible colorings,
formed by giving each vertex in succession any one of z colors. Let R be this set of
colorings. LetAab denote those colorings with the property that a and b are of the same
color, etc. Then the number of admissible colorings is

M(z) = n − [n(Aab) + n(Abd) + ... + n(Acf )]

+[n(AabAbd) + ...] − ...

+(−1)En(AabAbd...Acf ).

With each propertyAab is associated an arc ab of G. In the logical expansion, there
is a term corresponding to every possible combination of thepropertiesApq; with this
combination we associate the corresponding edges, forminga subgraph H of G. In par-
ticular, the first term corresponds to the subgraph containing no edges, and the last term
corresponds to the whole of G. We let H contain all the vertices of G.

Let us evaluate a typical termn(AabAad...Ace). This is the number of ways of col-
oring G in z or fewer colors in such a way that a and b are of the same color, a and d
are of the same color, ..., c and e are of the same color. In the corresponding subgraph
H, any two vertices that are joined by an edge must be of the same color, and thus all the
vertices in a single connected piece in H are of the same color. If there are p connected
pieces in H, the value of this term is thereforezp. If there are s edges in H, the sign of
the term is(−1)s. Thus

(−1)sn(AabAbd...Acf ) = (−1)szp.

If there are(p, s) (this is Birkhoff’s symbol) subgraphs of s edges in p connected
pieces, the corresponding terms contribute toM(z) an amount(−1)s(p, s)zp. Therefore,
summing over all values of p and s, we find the polynomial in z:

M(z) =
∑

p,s

(−1)s(p, s)zp.

This function is the well-knownchromatic polynomial. The proper colorings of
graphs appeared perhaps first with the famous Four-Color-Conjecture, which is now a
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theorem, even though proved only with a help of computers: Isit true that each planar
graph has an admissible coloring by four colors?

A graphG = (V, E) is connectedif it has a path between any pair of vertices. If
a graph is not connected then its maximum connected subgraphs are calledconnected
components. If G = (V, E) is a graph andA ⊂ E then letC(A) denote the set of
the connected components of graph(V, A) andc(A) = |C(A)| denotes the number of
connected components (pieces) of(V, A).

Let G = (V, E) be a graph. ForA ⊂ E let r(A) = |V | − c(A). Then we can write

M(z) = zc(E)(−1)r(E)
∑

A⊂E

(−z)r(E)−r(A)(−1)|A|−r(A).

This leads directly to Whitney rank generating functionR(G, u, v) defined by

R(G, u, v) =
∑

A⊂E

ur(E)−r(A)v|A|−r(A).

We start considering theTutte polynomial; it has been defined by Tutte and it may be
expressed as a minor modification of the Whitney rank generating function.

T (G, x, y) =
∑

A⊂E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).

T (G, x, y) is called theTutte polynomialof graphG.
Note that for any connected graph G,T (G, 1, 1) counts the number of spanning trees

of G: indeed, the only terms that count are those for whichr(A) = r(E) = |A|. These
are exactly the spanning trees of G.

The Tutte polynomial is directly related to the partition function of another basic
model of statistical physics, thePotts model. Potts specialises to Ising.

3.1. The dichromate and the Potts partition function

The following function calleddichromateis extensively studied in combinatorics. It is
equivalent to the Tutte polynomial.

B(G, a, b) =
∑

A⊂E

a|A|bc(A).

DEFINITION 2 Let G = (V, E) be a graph,k ≥ 1 integer andJe a weight (coupling
constant) associated with edgee ∈ E. The Potts model partition function is defined as

P k(G, Je) =
∑

s

eE(P k)(s),

where the sum is over all functions (states)s fromV to {1, . . . , k} and

E(P k)(s) =
∑

{i,j}∈E

Jijδ(s(i), s(j)).
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We may write

P k(G, Je) =
∑

s

∏

{i,j}∈E

(1 + vijδ(s(i), s(j))) =
∑

A⊂E

kc(A)
∏

{i,j}∈A

vij ,

wherevij = eJij − 1. The RHS is sometimes calledmultivariate Tutte polynomial; If all
Jij are the same we get an expression of the Potts partition function in the form of the
dichromate:

P k(G, x) =
∑

s

∏

{i,j}∈E

exδ(s(i),s(j)) =
∑

A⊂E

kc(A)(ex − 1)|A| = B(G, ex − 1, k).

3.2. The q-chromatic function and the q-dichromate

Here we study the followingq-chromatic function on graphs:

DEFINITION 3 LetG = (V, E) be a graph andn a positive integer. LetV = {1, . . . , k}
and letV (G, n) denote the set of all vectors(v1, . . . , vk) such that0 ≤ vi ≤ n − 1 for
eachi ≤ k and vi 6= vj whenever{i, j} is an edge ofG. We define the q-chromatic
function by:

Mq(G, n) =
∑

(v1...vk)∈V (G,n)

q
P

i
vi .

Note thatMq(G, n)|q=1 is the classic chromatic polynomial ofG.
An example.
We first recall some notation:
Forn > 0 let (n)1 = n and forq 6= 1 let (n)q = qn−1

q−1 denote aquantum integer. We
let (n)!q =

∏n
i=1(i)q and for0 ≤ k ≤ n we define thequantum binomial coefficientsby

(

n

k

)

q

=
(n)!q

(k)!q(n − k)!q
.

A simple quantum binomial formula leads to a well-known formula for the summation
of the products of distinct powers. This gives the q-chromatic function for the complete
graph.

Observation 3

Mq(Kk, n) = k!

(

n

k

)

q

qk(k−1)/2.

Let G = (V, E) be a graph andA ⊂ E with C(A) denoting the set of the connected
components of graph(V, A) andc(A) = |C(A)|. If W ∈ C(A) then let|W | denote the
number of vertices ofW . A standard PIE argument gives the following expression for
the q-chromatic function, which enables to extend it from non-negativen to the reals.
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THEOREM 8

Mq(G, n) =
∑

A⊂E

(−1)|A|
∏

W∈C(A)

(n)q|W | .

The formula of Theorem 8 leads naturally to a definition ofq-dichromate.

DEFINITION 4 We let

Bq(G, x, y) =
∑

A⊂E

x|A|
∏

W∈C(A)

(y)q|W | .

Note thatBq=1(G, x, y) = B(G, x, y) and by Theorem 8,Mq(G, n) = Bq(G,−1, n).
What happens if we replaceB(G, ex − 1, k) by Bq(G, ex − 1, k)? It turns out that

this introduces an additional external field to the Potts model.

THEOREM 9

∑

A⊂E

∏

W∈C(A)

(k)q|W |

∏

{i,j}∈A

vij =
∑

s

q
P

v∈V
s(v)eE(P k)(s),

wherevij = eJij − 1.

3.3. Multivariate generalisations

Let x1, x2, . . . be commuting indeterminates and letG = (V, E) be a graph. The q-
chromatic function restricted to non-negative integery is the principal specialization of
XG, thesymmetric function generalisation of the chromatic polynomial. This has been
defined by Stanley as follows:

DEFINITION 5

XG =
∑

f

∏

v∈V

xf(v),

where the sum ranges over all proper colorings ofG by{1, 2, . . .}.

ThereforeMq(G, n) = XG(xi = qi(0 ≤ i ≤ n − 1), xi = 0(i ≥ n)).
Further Stanley definessymmetric function generalisation of the bad colouring poly-

nomial:

DEFINITION 6

XBG(t, x1, . . . ) =
∑

f

(1 + t)b(f)
∏

v∈V

xf(v),

where the sum ranges over ALL colorings ofG by{1, 2, . . .} andb(f) denotes the num-
ber of monochromatic edges off .
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Noble and Welsh define theU-polynomial(see Definition 7) and show that it is
equivalent toXBG. Sarmiento proved that the polychromate defined by Brylawski is
also equivalent to the U-polynomial.

DEFINITION 7

UG(z, x1 . . . ) =
∑

S⊂E(G)

x(τS)(z − 1)|S|−r(S),

whereτS = (n1 ≥ n2 ≥ . . . nk) is the partition of|V | determined by the connected
components ofS, x(τS) = xn1 . . . xnk

andr(S) = |V | − c(S).

The motivation for the work of Noble and Welsh is a series of papers by Chmutov,
Duzhin and Lando. It turns out that the U-polynomial evaluated atz = 0 and applied to
the intersection graphs of chord diagrams satisfies the4T−relation of theweight systems.
Hence the same is true forMq(G, z) for each positive integerz since it is an evaluation
of UG(0, x1 . . . ):

Observation 4 Let z be a positive integer. Then

Mq(G, z) = (−1)|V |UG(0, x1 . . . )|xi:=(−1)(qi(z−1)+···+1).

Weight systems form a basic stone in the combinatorial studyof the quantum knot
invariants.

On the other hand, it seems plausible that the q-dichromate determines the U-
polynomial. If true, q-dichromate provides a compact representation of the multivariate
generalisations of the Tutte polynomial mentioned above.

4. Two combinatorial solutions to the 2D Ising model

In this section we describe two ways how to calculate the partition function of the Ising
model for any given planar graphG. We have seen in Theorem 3 that the Ising partition
function for graphG may be calculated from the generating functionE(G, x) of the even
subsets of edges of the same graphG.

4.1. The method of Pfaffian orientations

Let G = (V, E) be a graph. A subset of edgesP ⊂ E is called aperfect matching
or dimer arrangementif each vertex belongs to exactly one element ofP . The dimer
partition functionon graphG may be viewed as a polynomialP(G, α) which equals
the sum ofαw(P ) over all perfect matchingsP of G. This polynomial is also called the
generating function of perfect matchings. There is a simple local transformation of graph

G to graphG′ so thatE(G) = P(G′), andG′ is planar ifG is. Hence in order to calculate
E(G), it suffices to show how to calculateP(G) for the planar graphsG.

An orientation of a graphG = (V, E) is adigraphD = (V, A) obtained fromG by
assigning an orientation to each edge ofG, i.e. by ordering the elements of each edge of
G.
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Let G = (V, E) be a graph with2n vertices andD an orientation ofG. Denote by
A(D) the skew-symmetric matrix with the rows and the columns indexed byV , where
auv = αw(u,v) in case(u, v) is a directed edge ofD, au,v = −αw(u,v) in case(v, u) is
a directed edge ofD, andau,v = 0 otherwise.

DEFINITION 8 The Pfaffian is defined as

PfG(D, α) =
∑

P

s∗(P )ai1j1 · · · ainjn
,

where P = {{i1j1}, · · · , {injn}} is a partition of the set{1, . . . , 2n} into pairs,
ik < jk for k = 1, . . . , n, ands∗(P ) equals the sign of the permutationi1j1 . . . injn of
12 . . . (2n).

Each nonzero term of the expansion of the Pfaffian equalsαw(P ) or −αw(P ) where
P is a perfect matching ofG. If s(D, P ) denotes the sign of the termαw(P ) in the
expansion, we may write

PfG(D, α) =
∑

P

s(D, P )αw(P ).

The Pfaffians behave in a way very similar to determinants; inparticular there is an
efficient Gaussian elimination algorithm to calculate them.

Hence, if we can find, for a graphG, an orientationD such that the signs(D, P )
from 8 is the same for each perfect matchingP , then we can calculate the generating
function of the perfect matchings ofG efficiently. Such an orientation is calledPfaffian
orientation.

The following seminal theorem of Kasteleyn thus provides a solution of the 2D Ising
problem.

THEOREM 10 Each planar graph has a Pfaffian orientation.

We can draw graphs on more complicated 2-dimensional surfaces; let us consider
those that can be represented as the sphere with added disjoint handles (the torus is
obtained from the sphere by adding one handle). Thegenusof a graph is the minimum
number of handles needed for its proper representation. Kasteleyn noticed and Galluccio,
Loebl proved the following generalisation of theorem 10.

THEOREM 11 If G is a graph of genusg then it has4g orientationsD1, . . . , D4g so that
P(G, x) is a linear combination ofPfG(Di, x), i = 1, . . . , 4g.

As a consequence, the Ising partition function may be calculated in a polynomial
time for graphs on any fixed orientable surface. Hence also the Max-Cut problem is poly-
nomially solvable on any fixed surface, by exhibiting the whole density function of edge-
cuts weights. Curiously there is no other method known even for the torus. This brings a
curious restriction to the weights: in order to write down the whole density function, the
weights must be integers with the absolute values bounded bya fixed polynomial in the
size of the graph. Perhaps the most interesting open problemin this area is to design a
combinatorial polynomial algorithm for the toroidal Max-Cut problem.
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4.2. Products over aperiodic closed walks

The following approach has been developed by Kac, Ward and Feynman. It coincides
with the notions of 2.1. LetG = (V, E) be a planar graph embedded in the plane and
for each edgee let xe be an associate variable. LetA = (V, A(G)) be an arbitrary
orientation ofG. If e ∈ E thenae will denote the orientation ofe in A(G) anda−1

e

will be the reversed orientation toae. We letxae
= xa−1

e
= xe. A circular sequence

p = v1, a1, v2, a2, ..., an, (vn+1 = v1) is callednon-periodic closed walkif the following
conditions are satisfied:ai ∈ {ae, a

−1
e : e ∈ E}, ai 6= a−1

i+1 and(a1, ..., an) 6= Zm

for some sequenceZ andm > 1. We letX(p) =
∏n

i=1 xai
. We further letsign(p) =

(−1)n(p), wheren(p) is a rotation numberof p, i.e. the number of integral revolutions
of the tangent vector. Finally letW (p) = sign(p)X(p).

There is a natural equivalence on non-periodic closed walks: p is equivalent with
reversedp. Each equivalence class has two elements and will be denotedby [p]. We let
W ([p]) = W (p) and note that this definition is correct since equivalent walks have the
same sign.

We denote by
∏

(1 − W ([p]) the formal infinite product of(1 − W ([p]) over all
equivalence classes of non-periodic closed walks ofG.

The following theorem, proposed by Feynman and proved by Sherman, together
with a straightforward graph-theory transformation, provides an expression ofE(G, x)2

for a planar graphG in terms of a reformulation of the Ihara-Selberg function ofG by
Foata and Zeilberger (see definition 1). The theorem thus provides, along with theorem
6, another solution of the 2D Ising problem. Again, there is ageneralisation for graphs
with genusg.

THEOREM 12 LetG be a planar graph with all degrees equal to two or four. Then

E(G, x) =
∏

(1 − W ([p]).


