Book Title 1
Book Editors
10S Press, 2003

Some Discrete Tools in Statistical Physics

Martin Loebl!
Charles University, Prague

Abstract. We will be walking for some time where the connections betweam-
binatorics and statistical physics lead us.

Keywords. Graph, partition function, Ising problem, dimer arrangeineknot
diagram

1. Beginning

The purpose of this note is to describe in passing some Ieglchdsic concepts interlac-
ing statistical physics, combinatorics and knot theoryerEhare many sources and the
time constraint prevented me from adding the referencésijdljust an informal write-
up, anyway. If you get hooked up in a topic, your library wile more detailed books
on the subject probably. | am also writing a book which shoaldyhly cover the themes
of this paper.

A graphis a pai(V, E') whereV is a set ofverticesandE is a set of unordered pairs
from V, callededges The notions of graph theory we will use are so natural therei
need to introduce them.

1.1. Euler's Theorem

Perhaps the first theorem of graph theory is the Euler's #mpand it is also about
walking.

THEOREM1 A graphG = (V, E) has a closed walk containing each edge exactly once
if and only if it is connected and each vertex has an even nuoflegges incident with
it.

This theorem has an easy proof. Let us call asef edgesevenif each vertex of
V is incident with an even number of edgesAafConnectivity and evenness are clearly
necessary conditions for the existence of such a closed Balfficiency follows from
the following two lemmas.

LEMMA 1 Each even set of edges is a disjoint union of sets of edgeslekcy
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LEMMA 2 A connected set of disjoint cycles admits a closed walk wippas through
each edge exactly once.

The first lemma might be calletthe greedy principle of walkingo prove the first
lemma we observe first that each non-empty even set contayrde if we delete it, we
again get an even set and we can continue in this way untileimaining set is empty.
The proof of the second lemma is also simple: we can compeseldised walk by the
walks along the disjoint cycles.

1.2. Even sets of edges as a kernel

We will often not distinguish a subset of edges and its incidence vectpy, i.e.0, 1-
vector indexed by the edges @f with (x4). = 1iff e € A. Let£(G) be the set of the
even subsets of edges of the graph

We denote by theincidence matrivof graphG, i.e. matrix with rows indexed by
V (@), columns indexed by (G), and(I).. equal to one ifv € e and zero otherwise.
We immediately have

Observation 1 £(G) forms theGF[2]-kernel of I, i.e. £(G) = {v; Igv = 0 modulo
2}.

What is the orthogonal complement 8{G) in GF[2]"(%)? It is the seC(G) of
edge-cuts of7; a setA of edges is calleddge-cutf there is a setU of vertices such that
A={ee E;lenU|=1}.

1.3. Max-Cut, Min-Cut problems

Max-Cut and Min-Cut problems belong to the basic hard prollef computer science.
Given a graphG = (V, E) with a (rational) weightu(e) assigned to each edges E,
the Max-Cut problem asks for the maximum value)of. . w(e) over all edge-cuts of
G, while the Min-Cut problem asks for the minimum of the samection.

Max-Cut problem is hard (NP-complete) for non-negativeesdgights and hence
both Max-Cut and Min-Cut problems are hard for general raticedge-weights. The
Min-Cut problem is efficiently (polynomially) solvable favon-negative edge-weights.
This has been a fundamental result of computer science,sakdown as ‘max-flow,
min-cut algorithm’.

Still, there are some special important classes of graplesaxthe Max-Cut problem
is efficiently solvable. One such class is the class of thegylgraphs.

1.4. Max-Cut problem for planar graphs

A graph is calledplanar if it can be represented in the plane so that the vertices are
different points, the edges aagcs (by arc we mean an injective continuous map of the
closed interval0, 1] to the plane) connecting the representations of theircestiand
disjoint with the rest of the representation. We will alsg Hzat the planar graphs have
proper planar drawing and a properly drawn planar graph will be calkeghological
planar graph Let G be a topological planar graph and tebe the subset of the plane
consisting of the planar representatiorcafAfter deletion ofy, the plane is partitioned
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into ‘islands’ which are callefacesof G. We let F(G) be the set of the faces 6f and
we will denote byv(G), e(G), f(G) the number of vertices, edges and faces cdnd
recall the Euler’s formulay(G) — e(G) + f(G) = 2.

An important concept we need is thatadial graphG* of a topological graplit:.

It turns out convenient to defin@* as an abstract (not topological) graph. But we need
to allow multiple edges and loops which is not included in¢bacept of the graph as a
pair (V, E), whereE C (%).

A standard way out is to define a graph as a tr{pleE, g) whereV, E are sets and
g is a function fromFE to (‘2/) U V which gives to each edge its terminal vertices. For
instances € Eis aloopiffg(e) € V.

Now we can defingz* as triple(F(G), {e*;e € E(G)},g) whereg(e*) = {f €
F(G); e belongs to the boundary g¢f}.

If G is atopological planar graph thé# is planar. There is a natural way to properly
draw G* to the plane: represent each vertexe F(G) as a point in the fac¢, and
represent each edgéby an arc between the corresponding points, which crosseslgx
once the representation ©fn G and is disjoint with the rest of the representations-of
andG*.

We will say that a sefl of edges of a topological planar grapluisal everif {e*; e €
A} is an even set of edges 6f.

Observation 2 The dual even subsets of edges:aire exactly the edge-cuts 6f.

These considerations reduce the Max-Cut problem in the dfthe planar graphs
to the following problem, again in the class of the planapbsa

Maximum even subset problem. Given a graplG = (V, E) with rational weights
on the edges, find the maximum value)af . ;; w(e) over all even subsefd of edges.

Finally the following theorem means that the Max-Cut probie efficiently solv-
able for the planar graphs.

THEOREM2 The Maximum even subset problem is efficiently solvable émegl
graphs.

1.5. Edwards-Anderson Ising model

The Max-Cut problem has a long history in computer scienaephe of the basic ap-
plications comes from the study of th&ing mode| a theoretical physics model of the
nearest-neighbor interactions in a crystal structure.

In the Ising model, the vertices of a graph= (V, E) represent particles and the
edges describe interactions between pairs of particles.nidst common example is a
planar square lattice where each particle interacts ontly itd neighbors. Often, one
adds edges connecting the first and last vertex in each rovealndin, which repre-
sentperiodic boundary conditionis the model. This makes the graphogoidal square
lattice.

Now, we assign a factof;; to each edgégi, j}; this factor describes the nature of
the interaction between particleand;. A physical state of the system is an assignment
of o; € {+1, —1} to each vertex. This describes the two possible spin orientations the
particle can take. Thiedamiltonian(or energy functiohof the system is then defined as
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H(O’) = — Z Jija'io'j

{i,j}eFE
One of the key questions we may ask about a specific system is:
“What is the lowest possible energy (tgmund statg of the system?"

Before we seek an answer to this question, we should rehlit¢ite physical states
(spin assignments) correspond exactly to the edge-cutseofihderlying graph with
specified ‘shores’. Let us define:

1% Z{iEV;UiZ-Fl}

Vo={ieVioi=-1}

Then this partition of vertices encodes uniquely the assit of spins to particles.
The edges contained in the edge-€l{f/;, 12) are those connecting a pair of particles
with different spins, and those outside the cut connecspaith equal spins. This allows
us to rewrite the Hamiltonian in the following way:

H(o)= > Jy— Y, Jy=2w(C)-W,

{i,5}eC {i,j}€E\C

wherew(C) = 3y, jyec Jij denotes the weight of a cut, aiid = >, ., Ji; is the
sum of all edge weights in the graph.

Clearly, if we find the value of MAX-CUT, we have found the maxim energy
of the physical system. Similarly, MIN-CUT (the cut with nmmum possible weight)
corresponds to the minimum energy of the system.

The distribution of the physical states over all possiblergy levels is encapsulated
in the partition function

26,0 = e oo,

The variables is changed fo /T in the Ising model, wher&' is a constant and is a
variable representing the temperature.

It follows from 1.4 that there is an efficient algorithm to éehine the ground state
energy of the Ising model on any planar graph. In fact the wipalrtition function may
be determined efficiently for planar graphs, and a princdipgitedient is the following
concept of ‘enumeration duality’.
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1.6. An enumeration duality

It turns out that the Ising partition function for a graghmay be expressed in terms of
the generating function of the even sets of the same grafthis is the seminal theorem
of Van der Waerden whose proof is so simple that we includerie hWe will use the
following standard notationsinh(z) = 1/2(e* — e™®), cosh(z) = 1/2(e* + e~ %),

tanh(z) = 2K,

THEOREMS3 LetG = (V, E) be a graph with edge weight§;,ij € E. Then

Z(G,p) =2l H cosh(B8J55)E(G, )| 75— gann(s,)-
ijEE

Proof.We have

Z(G,ﬁ) = Z eﬁzij Jijoiog — Z H (COSh(ﬁJij) + 0i0; sinh(ﬁJij)) =

o ijeEE

H COSh(ﬁJij) Z H (1—|—0’i0'j tanh(ﬂn]ij)) = H COSh(ﬁJij) Z Z H 0;0; tanh(ﬁJij) =

ijEE o ijEE ijEE o ACEij€E

H cosh(3.J;5) Z (U(A) H tanh(3J;;)),

ijeEE ACE ijEA

where

U(A) = Z H 0i0;.

o ijeA

The proof is complete when we notice tiatA) = 2/V1if A is even and/(A) = 0
otherwise. O

We saw above thaf (G, 3) may be looked at as the generating function of the edge-
cuts with the specified shores. The theorem of Van der Waesdgrresses it in terms of
the generating functioéi(G, x) of the even sets of edges.

We can also consider the hongsnerating function of edge-cudefined by

C(G,z) = Z ()

cutC

where the sum is over all edge-cuts@andw(C) = > .- w(e).

It turns out thaC (G, =) may also be expressed in terms&gt, x). This is a conse-
guence of another seminal theorem, of MacWilliams which wman now.

Let C C GF[2]™ be abinary codei.e. a subspace ovétF'[2]. Let A;(C) denote
the number of vectors @' with exactly: occurrences of. Theweight enumeratoof C
is defined as
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Acly) = S AChy.

i>0

let us denote by’* thedual codegi.e. the orthogonal complement 6f MacWilliam’s
theorem reads as follows:

THEOREM4

1 " 1—-y

Ac+(y)
We saw before that the set of the edge-cuts and the set of éinesets of edges form
dual binary codes, hence MacWilliams’ theorem applies.
This theorem is true more generally for linear codes ovetefifield G F'[¢]; hence
it applies to the kernel and the image of the incidence matia graph, viewed over
GFlg]. This is related to the extensively studied fielchofvhere-zero flows

1.7. A game of dualities: critical temperature of 2D Isingarb

We will end this introductory part by an exhibition of a ganfeloalities. We will assume
that our graphG = (V, E) is a planar square grid, and we denoteMyts number of
vertices. This is a rude specialisation for the graph-tisénibut not for statistical physi-
cists since planar square grids are of basic importance-ém2nsional Ising problem.
Moreover for simplicity we will have all the edges of the saweight, i.e.J;; = J for
eachij € E. Hence

Z(G.B) = Z(N,y) = Y & Zuce 77,

o

wherey = J/T andT represents the temperature.

We will take advantage of the interplay between the geomdtrality and the enu-
meration duality (Theorem 3). L&t* denote the dual graph @f. A great property of
the planar square grids is that they are essentially salf-auw the boundary there are
some differences, but who cares, we are playing anyway. Seilveheat and assume
thatG = G*.

L ow temperature expansion. Here we use the geometric duality. The stateor-
respond to the assignments-pfor — to the plaquettes of#*. An edge ofG* will be
calledfrontal for this assignment if it borders two plaquettes with the agife signs.
Now we observe that the set of the frontal edges for an assghim even, and each
even set of edges @F* corresponds to exactly two stategwhich are opposite on each
vertex). Summarising,

Z(N,~) = 2¢/FI Z e 2HY,
H

where the sum is over all even subsets of edge&soE G.

If T goes to zero them goes to infinity, and hence small cycles should dominate this
expression of the partition function. This is a good newscfumputer simulations, and
explains the name of this formula.
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High temper ature expansion. Here we use Theorem 3. It honestly gives

Z(N,~) = 2" cosh(y)!?! Ztanh(w)‘m,
H

where the sum is again over all even subsets of edgés of

If T goes to infinity theny goes to zero, and hence small cycles should dominate
this expression of the partition function.

Critical temperatureof 2D Ising model. Let F'(v) be thefree energy per site.e.

—F(y) = lim N~ 'InZ(N,~).
N—o00
At a critical point the free energy is non-analytic,Bavill be a non-analytic function
of v. Moreover weassumehat there is only one critical point. Then the expressions
above help us to locate it: Let

F'(v) = Nlim N1 hl(z !,
— 00 H

where the sum is over all even subsEts- E(G). Letv = tanh(vy). Then
—F(y) =2y + F'(e®) = In(2cosh(y)) + F'(v).
If we definey* by tanh(y*) = e~27, we get
F(v") =2y + F(v) — In(2 cosh(v)).

If v is large,v* is small. Hence the last equation relates the free energyat a
temperature to that at a high temperature. Hence, if thevalisone critical valuey,,
then necessarily. = ~; and this determines it.

1.8. A — Y transformation

Let us try to apply the same trick to the honeycomb latfibg; with 2V vertices. If we
disregard the boundary irregularities, its geometric duthe triangular latticd’y with
N vertices. If we apply the high temperature expansioH1@ and the low temperature
expansion td’y, we get an expression &f( Ha v, v) in terms of Z(T, 7).

In order to extract the critical temperature, we need onesmaation, and we will
get it from theA — Y transformation This is one of these magic seminal simple local
operations. It consists in the exchange of a veteidegree3 connected to independent
verticesi, j, k (aY), with three edges between vertigeg, k¥ which formA (a triangle).

We first note thafi, y is bipartite, i.e. its vertices may be uniquelly partitidrieto
two setsVi, V5 so that all the edges go between them.

The new trick is to apply thé\ — Y transformationto all the vertices of;. The
result is again the triangular latti@g, . Now, if we want to transforn¥ (Ha v, ) into the
Ising partition function of this new triangular latticey, we get a system of equations
for the coupling constants dfy, which has a solution, and this suffices to extract the
critical temperature foZ (Han, ).
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This system of equations in the operator form is the fan¥argy-Baxter equation
It defines theTemperley-Lieb algebravhich has been used to introduce and study the
guantum knot invariantiike Jones polynomial, with close connections to the togiwal
QFTs.

This connection between statistical physics, knot the@RT and combinatorics has
kept the mathematicians and physicists busy for more thatace.

So, look where we arrived at from the Euler’s theorem. Nextptér starts with
another principlegf inclusion and exclusian

2. Inclusion and Exclusion

Let us start with the introduction of a paper of Hassler Wétrwhich appeared in
Annals of Mathematics in August 1932:

“Suppose we have a finite set of objects (for instance booka table), each of
which either has or has not a certain given property A (sayeafdred). Letn be the
total number of objects;(A) the number with the propertyt, andn(A) the number
without the propertyd. Then obviouslyr(A) = n — n(A). Similarly, if n(AB) denote
the number with both properties A and B, na@d4 3) the number with neither property,
thenn(AB) = n — n(A) — n(B) + n(AB), which is easily seen to be true.

The extension of these formulas to the general case wherawmyper of proper-
ties are considered is quite simple, and is well known todiagis. It should be better
known to mathematicians also; we give in this paper sevegal@ations which show its
usefulness."

Indeed, we all know it, under the name ‘inclusion-exclugoinciple’:

if A,..., A, are finite sets, and if we I§})(4;;i € J) = A, then

n

]U(Am —1, n)‘ D e ¥

= <)
It can also be formulated as follows:

THEOREMS Let S be an n-element set and lét be a2"—dimensional vector space
over some field<. We consider the vectors &f indexed by the subsets §f Let/ be a
linear transformation ori” defined by

l(’UT) = Z Vy

TCY

forall T c S. Thenl~! exists and is given by
o) = Y (=) Ty
TCY

forall T C S.

The set of all subsets &f equipped with the relation”’ forms a partially ordered
set (poset) calleBoolean posefTheMobius inversion formulaxtends Theorem 5 from
the Boolean poset to an arbitrary ‘locally finite’ poset.
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2.1. Zeta Function of a Graph

The theory of the Mobius function connects the Principlerafliision and Exclusion
with a very useful concept of theeta function of a graphWe will explain a seminal
theorem of Bass. You will see in the last section of the papatrit is closely related to
(several decades older) combinatorial solution to the 2iylmodel proposed by Kac,
Ward and Feynman.

Let G = (V,E) be a graph and lett = (V, A(G)) be an arbitrary orientation of
G; anorientationof a graph is a prescribtion of one of tvdirectionsto each edge. If
e € E thena, will denote the orientation of in A(G) anda_ ! will be the reversed
orientation toa.. A ‘circular sequencep = vy, a1, va, ag, ..., an, (Up+1 = v1) is called
prime reduced cyclé the following conditions are satisfied; € {a.,a_' : e € E},
a; # ai_+11 and(as, ..., a,) # Z™ for some sequencé andm > 1.

DEFINITION 1 LetG = (V, E) be a graph. The lhara-Selberg function@fis
I(u) = [J(x = uhl)

and the zeta function @ is

where the infinite product is over the set of the prime reduwsetesy of G.
The theorem of Bass reads as follows:

THEOREM®G
I(u) = det( — uT),
whereT is the matrix of the transitions between edges.
The above considerations are closely related to the MacMaf\aster Theorem,
known also adoson-fermion correspondenicephysics. Strong connections with quan-

tum knot invariants have been discovered recently.

THEOREM7 The coefficientaf™ ...z in

n

IO aiay)™

i=1 j=1

is equal to the coefficient of** ...z~ in the power series expansion folet(d;; —
-1
aijzi)] .
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3. Thechromatic polynomial and the Tutte polynomial

In the before-mentioned paper, Whitney mentions a formalatfe number of ways of
coloring a graph as one of the main applications of PIE. Ledgain follow the article
of Whitney for a while:

Suppose we have a fixed number z of colors at our disposal. Ayyofvassigning
one of these colors to each vertex of the graph in such a wawptlyawo vertices which
are joined by an arc are of different colors, will be calledsskible coloring, using z or
fewer colors. We wish to find the numh&f(z) of admissible colorings, using z or fewer
colors. ... We shall deduce a formula fof (2) due to Birkhoff.

If there are V vertices in the graph G, then there are- 2V possible colorings,
formed by giving each vertex in succession any one of z colags R be this set of
colorings. LetA,;, denote those colorings with the property that a and b areso$éime
color, etc. Then the number of admissible colorings is

M(2) = n = [n(Aab) + 1(Apa) + .. +1(Acp)]
(A Ap) + o] —

+(—1)En(AabAbd...Acf).

With each property,; is associated an arc ab of G. In the logical expansion, there
is a term corresponding to every possible combination ofpttopertiesA,,,; with this
combination we associate the corresponding edges, foragupgraph H of G. In par-
ticular, the first term corresponds to the subgraph comtginb edges, and the last term
corresponds to the whole of G. We let H contain all the vestirieG.

Let us evaluate a typical term( A, Aqsq...Ace). This is the number of ways of col-
oring G in z or fewer colors in such a way that a and b are of tineeseolor, a and d
are of the same color, ..., ¢ and e are of the same color. Inalresponding subgraph
H, any two vertices that are joined by an edge must be of the sator, and thus all the
vertices in a single connected piece in H are of the same.dbltbere are p connected
pieces in H, the value of this term is therefafe If there are s edges in H, the sign of
the term is(—1)*. Thus

(—l)sn(AabAbd...Acf) = (—l)sz”.

If there are(p, s) (this is Birkhoff's symbol) subgraphs of s edges in p conedct
pieces, the corresponding terms contribut®f:) an amount—1)*(p, s)z?. Therefore,
summing over all values of p and s, we find the polynomial in z:

M(z) = 3 (=1)*(,5)2

p,s

This function is the well-knowrchromatic polynomial The proper colorings of
graphs appeared perhaps first with the famous Four-Coloje€ture, which is now a
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theorem, even though proved only with a help of computeri:tisie that each planar
graph has an admissible coloring by four colors?

A graphG = (V, E) is connectedf it has a path between any pair of vertices. If
a graph is not connected then its maximum connected subgephcallecconnected
componentslf G = (V, E) is a graph andd C FE then letC(A) denote the set of
the connected components of graph A) andc(A) = |C(A)| denotes the number of
connected components (pieces) &f A).

LetG = (V, E) be agraph. Fo C F letr(A) = |V| — ¢(A). Then we can write

M(z) = 268 (_1)(E) Z r(E)=r(A)(_1)lAl=r(4),
ACE
This leads directly to Whitney rank generating funct®(G, u, v) defined by
R(G,u,v) Z“T(E) 7(A) | Al=r(A)
ACE

We start considering th&utte polynomiglit has been defined by Tutte and it may be
expressed as a minor modification of the Whitney rank geimgr&inction.

T(Gay)= Y (¢ — 1) @AWy 1)lal-re),

ACE

T(G, z,y) is called theTutte polynomiabf graphG.

Note that for any connected graph3G, 1, 1) counts the number of spanning trees
of G: indeed, the only terms that count are those for which) = »(E) = |A|. These
are exactly the spanning trees of G.

The Tutte polynomial is directly related to the partitiométion of another basic
model of statistical physics, thHeotts modelPotts specialises to Ising.

3.1. The dichromate and the Potts partition function

The following function calleddichromateis extensively studied in combinatorics. It is
equivalent to the Tutte polynomial.

B(G,a,b) = Z alAlpe(4)

ACE

DEFINITION 2 LetG = (V, E) be a graph,k > 1 integer andJ, a weight (coupling
constant) associated with edge= E. The Potts model partition function is defined as

Jo) =3 ePEI),
where the sum is over all functions (statejom V' to {1, ..., k} and

D Jid(s(i), s()-

{ij}teE
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We may write

PHGI) =3 [T (+vusts@)s) = S kW T o,

s {i,j}eE ACE {i.j}eA

wherev;; = e’ii — 1. The RHS is sometimes calledultivariate Tutte polynomialf all
Ji; are the same we get an expression of the Potts partitioniéumict the form of the
dichromate:

PEGa) =3 [ e t0=0) = 37 gt (er — )4l = B(G,e* - 1, k).

s {i,j}€EFE ACE
3.2. The g-chromatic function and the g-dichromate

Here we study the following-chromatic function on graphs

DEFINITION 3 LetG = (V, E) be a graph and: a positive integer. LetV’ = {1,...,k}
and letV (G, n) denote the set of all vecto(s,, . .., v;) such thatd < v; < n — 1 for
eachi < k andv; # v; wheneveri, j} is an edge of7. We define the g-chromatic
function by:

M‘I(Gv n) = Z q27 v
(v1...vx)EV(G,n)

Note thatM, (G, n)|,=1 is the classic chromatic polynomial 6f.

An example.

We first recall some notation:

Forn > 0Olet(n); = nandforg # 1let(n), = qull denote @juantum integeWe

let (n)!y = I1;—, (i), and for0 < k < n we define thgjuantum binomial coefficienbsy

(v). = oo

A simple quantum binomial formula leads to a well-known fotenfor the summation
of the products of distinct powers. This gives the g-chraafanction for the complete
graph.

Observation 3
M (K — 1 n k(k*l)/Q
¢(Kk,n) = k! ) 4 )
q

LetG = (V, E) be agraph and C E with C'(4) denoting the set of the connected
components of grapf, A) andc(A4) = |C(A)|. If W € C(A) then let|W| denote the
number of vertices ofV. A standard PIE argument gives the following expression for
the g-chromatic function, which enables to extend it from-megative: to the reals.



Martin Loebl / Some Discrete Tools in Statistical Physics 13

THEOREM8

My(Gn)= > (=D ] ()gw:.

ACE WeC(A)
The formula of Theorem 8 leads naturally to a definitiomefichromate

DEFINITION 4 We let

By (G, z,y) = Z:c H )q\W\.

ACE WEeC(A)

Note thatB,—1 (G, z,y) = B(G, z,y) and by Theorem 8Y/,(G,n) = B,(G,—1,n).
What happens if we repladé(G, e* — 1, k) by B, (G, e” — 1, k)? It turns out that
this introduces an additional external field to the Potts ehod

THEOREM9

Z H q‘W‘ H Vij = Zq vev 5(¥)e EPk)(S)

ACEWeC(A {i,j}€A
wherev;; = e’ii — 1.
3.3. Multivariate generalisations

Let zq1,z9,... be commuting indeterminates and &t= (V, E) be a graph. The g-
chromatic function restricted to non-negative integés the principal specialization of
X, thesymmetric function generalisation of the chromatic potyied. This has been
defined by Stanley as follows:

DEFINITION 5

=>_ Il =

[ owev
where the sum ranges over all proper coloringgoby {1,2,...}.
ThereforeM,(G,n) = Xg(z; = ¢'(0 <i <n—1),z; = 0(i > n)).
Further Stanley definesymmetric function generalisation of the bad colouringypol

nomial

DEFINITION 6

XBg(t7.I'1,...) = Z(l —i—t)b(f) H X f(v)s

f veV

where the sum ranges over ALL coloringgbby {1, 2,...} andb(f) denotes the num-
ber of monochromatic edges ff
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Noble and Welsh define thd-polynomial (see Definition 7) and show that it is
equivalent toX Bs. Sarmiento proved that the polychromate defined by Brylavwesk
also equivalent to the U-polynomial.

DEFINITION 7

Uca(z,21...) = Z 2(rs)(z — 1)ISI=r(9),
SCE(Q)

wherers = (n1 > n2 > ...ny) is the partition of|V| determined by the connected
components of, z(7s) = zp, ... Ty, andr(S) = |V| — ¢(S).

The motivation for the work of Noble and Welsh is a series qfgya by Chmutov,
Duzhin and Lando. It turns out that the U-polynomial evaddadtz = 0 and applied to
the intersection graphs of chord diagrams satisfieg'therelation of theweight systems
Hence the same is true fad, (G, z) for each positive integer since it is an evaluation
of Ug(o, ... ):

Observation 4 Let z be a positive integer. Then
My(G,z) = (—1)‘V|UG(07551 x -)|zi;:(—1)(qi<2*1>+~»+1)-

Weight systems form a basic stone in the combinatorial saidiie quantum knot
invariants.

On the other hand, it seems plausible that the g-dichrometermines the U-
polynomial. If true, g-dichromate provides a compact repreation of the multivariate
generalisations of the Tutte polynomial mentioned above.

4. Two combinatorial solutionsto the 2D 1sing model

In this section we describe two ways how to calculate thatgartfunction of the Ising
model for any given planar grapgh. We have seen in Theorem 3 that the Ising partition
function for graph= may be calculated from the generating funcétir, z) of the even
subsets of edges of the same grgph

4.1. The method of Pfaffian orientations

Let G = (V,E) be a graph. A subset of edgés C F is called aperfect matching
or dimer arrangemenif each vertex belongs to exactly one elementrofThe dimer
partition functionon graphG may be viewed as a polynomi&l (G, «) which equals
the sum ofa® (") over all perfect matching® of G. This polynomial is also called the
generating function of perfect matching$ere is a simple local transformation of graph

G to graphG’ so that (G) = P(G’), andG’ is planar ifG is. Hence in order to calculate
&(@), it suffices to show how to calculaf(G) for the planar graph§&'.

An orientation of a grapli = (V, E) is adigraph D = (V, A) obtained from by
assigning an orientation to each edge&fi.e. by ordering the elements of each edge of
G.
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LetG = (V, E) be a graph witl2n vertices andD an orientation of5. Denote by
A(D) the skew-symmetric matrix with the rows and the columnsxedeby V', where
auy = o) in case(u, v) is a directed edge ab, a,, = —a®(*?) in case(v, u) is
a directed edge ab, anda,, , = 0 otherwise.

DEFINITION 8 The Pfaffian is defined as

PfG(D1 a) = Z S*(P)ailjl T ainjn’
P

where P = {{i1j1}, -+, {injn}} is a partition of the sef{1,...,2n} into pairs,
i < jx fork =1,...,n, ands*(P) equals the sign of the permutatioy; . . . i,,j, Of
12...(2n).

Each nonzero term of the expansion of the Pfaffian equi&i§) or —a* () where
P is a perfect matching ofi. If s(D, P) denotes the sign of the terad*(") in the
expansion, we may write

Pfa(D,a) =Y s(D,P)a”").
P

The Pfaffians behave in a way very similar to determinantpairticular there is an
efficient Gaussian elimination algorithm to calculate them

Hence, if we can find, for a grapf, an orientationD such that the siga(D, P)
from 8 is the same for each perfect matchiRgthen we can calculate the generating
function of the perfect matchings 6f efficiently. Such an orientation is callé¥faffian
orientation

The following seminal theorem of Kasteleyn thus provideslaton of the 2D Ising
problem.

THEOREM 10 Each planar graph has a Pfaffian orientation.

We can draw graphs on more complicated 2-dimensional ®sfdet us consider
those that can be represented as the sphere with addechtisgmidles (the torus is
obtained from the sphere by adding one handle). géreusof a graph is the minimum
number of handles needed for its proper representationielegs noticed and Galluccio,
Loebl proved the following generalisation of theorem 10.

THEOREM11 If G is a graph of genus then it hast¢ orientationsDy, . .., D4s SO that
P(G, z) is alinear combination oP f¢(D;, z),: = 1,...,49.

As a consequence, the Ising partition function may be catedlin a polynomial
time for graphs on any fixed orientable surface. Hence alsd/igx-Cut problem is poly-
nomially solvable on any fixed surface, by exhibiting the Vehdensity function of edge-
cuts weights. Curiously there is no other method known ewethk torus. This brings a
curious restriction to the weights: in order to write dowa thhole density function, the
weights must be integers with the absolute values boundedfigd polynomial in the
size of the graph. Perhaps the most interesting open probl¢nis area is to design a
combinatorial polynomial algorithm for the toroidal Maxutproblem.
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4.2. Products over aperiodic closed walks

The following approach has been developed by Kac, Ward agdriran. It coincides
with the notions of 2.1. Letz = (V, E) be a planar graph embedded in the plane and
for each edge let z. be an associate variable. Ldt = (V, A(G)) be an arbitrary
orientation ofG. If e € E thena, will denote the orientation of in A(G) and!
will be the reversed orientation .. We letz,, = Ty = Te. A circular sequence
P =v1,0a1,V2,az, ..., Gn, (Up41 = v1) is callednon-periodic closed walit the following
conditions are satisfied;; € {ac,a;! : e € E}, a; # ai_+11 and(aq,...,a,) # Z™
for some sequenc® andm > 1. We letX (p) = []}_, z,,. We further letsign(p) =
(—1)™®), wheren(p) is arotation numberof p, i.e. the number of integral revolutions
of the tangent vector. Finally 18V (p) = sign(p) X (p).

There is a natural equivalence on non-periodic closed walls equivalent with
reversech. Each equivalence class has two elements and will be debgtpd. We let
W ([p]) = W (p) and note that this definition is correct since equivalenka/alave the
same sign.

We denote by[[(1 — W([p]) the formal infinite product of1 — W ([p]) over all
equivalence classes of non-periodic closed walks of

The following theorem, proposed by Feynman and proved byrSde, together
with a straightforward graph-theory transformation, pd@s an expression ¢f(G, x)?
for a planar grapldz in terms of a reformulation of the Ihara-Selberg functiorGoby
Foata and Zeilberger (see definition 1). The theorem thugdee, along with theorem
6, another solution of the 2D Ising problem. Again, there geaeralisation for graphs
with genusy.

THEOREM 12 LetG be a planar graph with all degrees equal to two or four. Then

£(G,x) = [J - w(lp)).



