
Chapter 5

Turán-type problems

5.1 Disjoint edges in geometric graphs

Theorem 5.1 (Hopf–Pannwitz, 1934). For every n ≥ 3, the maximum num-
ber of times the diameter (the largest distance) can occur among n points in
the plane is n.

Proof. Let S be the given set of n points. Let G be a graph with vertex set
S such that two vertices form an edge if and only if the corresponding two
points form a diameter of S. If the degree of every vertex in G is at most
2, then we are done. If G has a vertex v whose degree is at least 3, then let
u be one of its neighbors that is not the leftmost nor the rightmost one. A
simple geometric observation shows that the degree of u is 1; see Figure 5.1.
Indeed, all vertices of S must lie in the region that is an intersection of the
unit discs centered in u, v, and the leftmost and the rightmost neighbor of
v. The only point in the intersection region that has distance 1 from u is the
point v. By induction, G− u has at most n− 1 edges, thus G has at most n
edges.

On the other hand, the vertices of a unit triangle and a set of n−3 points
on a unit circle centered in one of its vertices show that n diameters can be
achieved.

Now comes the definition that gave this course its name.

Definition 5.2. A geometric graph is a graph whose vertices are repre-
sented by distinct points in general position in the plane and whose edges
are drawn as straight-line segments, possibly with crossings.

Using the triangle inequality, it is an easy exercise to show that in the
geometric graph formed by diameters of a finite point set in the plane there
are no two disjoint edges. Theorem 5.1 can be generalized as follows.
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Figure 5.1: A vertex of degree at least 3 in the diameter graph has a neighbor
of degree 1.
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Figure 5.2: Perles’ argument

Theorem 5.3. Let G be a geometric graph with no two disjoint edges. Then
|E(G)| ≤ |V (G)|.

Proof. (Perles) We call a vertex v ∈ V (G) pointed if there is a line ℓ passing
through v such that all edges incident to v lie in a halfplane bounded by
ℓ. At each pointed vertex v, a chicken lays an egg on the “leftmost” edge
incident to v, that is, the first edge in the clockwise order of edges around
v, starting from the line ℓ. Now we observe that every edge of G has an egg
on it, which proves the theorem. Indeed, suppose that there is no egg on an
edge uv ∈ E(G) . Thus, originally G contained two edges, uv′ and u′v, with
clockwise angles v′uv and u′vu smaller than 180◦. These two edges must lie
on opposite sides of the line uv; see Figure 5.2. Hence, they are disjoint,
contradicting the assumption.

In other words, Theorem 5.3 says that the number of edges in a straight-
line thrackle is at most n.

Problem 5.4 (Avital, Hanani, 1966; Kupitz, 1979; Perles, Erdős). Fix a
k ≥ 2. What is the maximum number fk(n) of edges that a geometric graph
on n vertices can have without containing k pairwise disjoint edges?
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The following table summarizes the current knowledge.

k fk(n)

2 = n Hopf–Pannwitz, 1934

3 = 2.5n+O(1) Černý, 2005 [17]
4 ≤ 10n Goddard, Katchalski and Kleitman, 1996 [30]

> 4 ≤ 29(k − 1)2n Tóth, 2000 [65]

Definition 5.5. A geometric graph is convex if its vertices are in convex
position; that is, they form the vertex set of a convex polygon.

Proposition 5.6 (Kupitz, 1982). For any n ≥ 2k + 1, the maximum num-
ber of edges that a convex geometric graph with n vertices can have without
containing k + 1 pairwise disjoint edges is kn.

Proof. Let G be a convex geometric graph with n vertices. Without loss of
generality we can assume that the vertex set of G is the set of vertices of
a regular n-gon. Partition the set of edges of G into n classes so that two
segments belong to the same class if and only if they are parallel. If G has
no k+1 pairwise disjoint edges, then each class contains at most k elements
of E(G). Thus, |E(G)| ≤ kn.

To show that the bound can be attained, take a graph G with vertices
V = {x0, . . . , xn−1} that appear clockwise in this order and with the edges
xixi+⌊n/2⌋+j , 0 ≤ i ≤ n − 1, 1 ≤ j ≤ k, where the index i + ⌊n/2⌋ + j is
computed modulo n.

5.2 Partial orders and Dilworth’s theorem

Definition 5.7. A binary relation � on a set X is a partial order on X if �
is reflexive, antisymmetric and transitive. That is, for every x, y, z ∈ X , we
have x � x, (x � y) ∧ (y � x) ⇒ (x = y), and (x � y) ∧ (y � z) ⇒ (y � z).
We write x ≺ y if x � y and x 6= y. Two elements of X are comparable

by � if x � y or y � x, otherwise they are incomparable. A partial order
� on X is a total order if every two elements of X are comparable. A pair
(X,�) where X is a set and � is a partial order on X is called a partially

ordered set or also a poset. The comparability graph G(P ) of a partially
ordered set P = (X,�) is the graph with vertex set X such that for every
two distinct elements x, y ∈ X , xy is an edge of G(P ) if and only if x and y
are comparable by �. A chain in a poset is a totally ordered subset, that is,
a subset whose elements are pairwise comparable. An antichain in a poset
is a subset of elements that are pairwise incomparable. See Figure 5.3 for an
illustration of the power set of a four-element set ordered by inclusion.
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Figure 5.3: A Hasse diagram of the set of subsets of {1, 2, 3, 4} ordered by
inclusion. The comparability graph is obtained by joining all pairs of vertices
connected by a vertically monotone path in the diagram. A chain and an
antichain are highlighted.

Dilworth’s theorem and Mirsky’s theorem are important results about
partially ordered sets. Notice they are “dual” to each other.

Theorem 5.8 (Dilworth, 1950 [20]). If the maximum size of an antichain
in a partially ordered set P is k, then P is a union of k chains.

See e.g. [48, Theorem 14.9] for the proof. Dilworth’s theorem is closely
related (in fact, easily shown to be equivalent) to Hall’s marriage theorem,
König’s theorem about vertex covers in bipartite graphs, and can be also
derived from the max-flow min-cut theorem.

Theorem 5.9 (Mirsky, 1971 [46]). If the maximum length of a chain in a
partially ordered set P is k, then P is a union of k antichains.

Although Mirsky’s theorem was published later than Dilworth’s theorem,
its proof is significantly easier. We warn the reader that some authors include
Mirsky’s theorem as a part of Dilworth’s theorem.

Proof. Let P = (X,�). For x ∈ P , let r(x) denote the maximum length of
an increasing chain starting at x. By the assumption, we have 1 ≤ r(x) ≤ k
for every x. Let Xi = {x ∈ X : r(x) = i}. Since X =

⋃

i Xi, it suffices
to prove that Xi is an antichain for every i. Take x, y ∈ Xi. Suppose for
contradiction that x ≺ y. We have

x ≺ y = y1 ≺ y2 ≺ · · · ≺ yi
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for certain y2, . . . , yi ∈ X , which implies that x /∈ Xi; a contradiction.

Both Dilworth’s theorem and Mirsky’s theorem (separately) imply the
following interesting corollaries.

Corollary 5.10. Every partially ordered set of size at least kl+1 has either
a chain of length k + 1 or an antichain of size l + 1.

In particular, every partially ordered set of size n has either a chain or an
antichain of size at least

√
n. Notice that by a straightforward application

of Ramsey’s theorem to the corresponding comparability graph we get only
a chain or an antichain of size log n.

Corollary 5.11 (Gallai, Hajós). Every system of at least kl+1 intervals on
a line has either k + 1 disjoint members or l + 1 intersecting members.

Corollary 5.12 (Erdős–Szekeres lemma). Every sequence of at least kl + 1
distinct real numbers has an increasing subsequence of length k + 1 or a
decreasing subsequence of length l + 1.

We now use Mirsky’s theorem to obtain a generalization of Theorem 5.3
to geometric graphs with at most k pairwise disjoint edges.

Theorem 5.13 (Pach–Törőcsik, 1994). If the maximum number of pairwise
disjoint edges in a geometric graph G is k, then |E(G)| ≤ k4|V (G)|.

Proof. We start by defining four strict partial orders ≺1,≺2,≺3,≺4 on the
family of segments in the plane. Analogous partial orders can also be defined
for compact convex sets [40]. Hopefully the reader will be satisfied with a
pictorial definition (Figure 5.4). For each of the orders, only disjoint segments
are comparable, and every pair of disjoint segments is comparable by at least
one of the four orders. The four orders are distinguished by the relative
ordering of the x-coordinates of the endpoints of the segments; there are
exactly six such possible orderings. If two segments e, f comparable by ≺i

intersect a common vertical line ℓ, then e ≺i f if e intersects ℓ below f .
We invite the reader to verify that each of the four orders is indeed a strict
partial order. Note that if e lies completely to the left of f , then e ≺1 f and
f ≺2 e simultaneously.

Interpret E(G) as the set of closed segments representing the edges of
G. Since G has no k + 1 disjoint edges, there is no chain of length k + 1 in
either of the posets (EG,≺i). By Mirsky’s theorem, we can divide E(G) into
k subsets E1 ∪ · · · ∪ Ek that are antichains (EG,≺1). Now pick the largest

of the subsets Ei, which is of size at least |E(G)|
k

, and further divide it into
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Figure 5.4: A schematic definition of the four partial orders of segments.

k subsets that are antichains in (EG,≺2). One of the parts will have size at

least |E(G)|
k2

. Continue dividing in this fashion four times in total. In the end

we obtain a set H ⊂ E(G) such that |H| ≥ |E(G)|
k4

, and H is an antichain in
each of the four posets (EG,≺i). This implies that every two segments in H
intersect. By Theorem 5.3, we have |H| ≤ n. Therefore, |E(G)| ≤ k4n.

Definition 5.14. Let f(n) denote the largest number such that any family
of n convex sets in the plane has f(n) disjoint or f(n) pairwise intersecting
members.

From the proof of Theorem 5.13 we have f(n) ≥ n1/5 [40].

The rest of this section was not presented during the lectures in 2014/2015.

We now show a trivial construction for an upper bound. Consider
√
n

groups of
√
n segments, so that segments in each group are mutually inter-

secting, while the groups are pairwise disjoint. With this trivial construction
we have a simple upper bound: f(n) ≤ √

n.
A less trivial construction tightens the upper bound to approximately

n0.431, where 0.431 ≥ log 2
log 5

. The construction method is commonly used in
combinatorics and graph theory in general: we find a small configuration
that is good and we iterate it. We start with a pentagon formed by five
segments. This configuration shows that f(5) ≤ 2 <

√
5. Now we replace

each segment with what would look like a very thin squeezed pentagon like
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Figure 5.5: An iterative construction for an upper bound on f(n).

in Figure 5.5. Now we have 52 segments with the maximum number of
intersecting (or disjoint) segments being 22. Iterating in this fashion we get
n = 5k segments, with at most 2k pairwise disjoint or intersecting segments.
Since 2k = nlog 2/ log 5 ≤ n0.431, we have

n1/5 ≤ f(n) ≤ n0.431.

As one can see, the bounds are not quite tight. Further small refinements
can be made, but this is more difficult.

Definition 5.15. Let Fk(n) be the largest number such that any graph G
that is a union of k comparability graphs G1, . . . , Gk contains Fk(n) vertices
that form a complete subgraph or Fk(n) vertices that are independent.

Similarly as in Theorem 5.13, we get that

Fk(n) ≥ n
1

k+1 ,

as follows. Let l = n1/(k+1). Color the edges of G in k different colors
corresponding to the k partial orders. If there is no complete subgraph of
size l in the first color, say, red, we find a subset of at least n/l vertices with
no red edge. We repeat this step for each of the colors. After k steps we will
either find a complete subgraph with all edges of the same color or a set of
at least n/lk = l vertices with no edges of any color, which means that it is
an independent set.

An upper bound was constructed by Dumitrescu and Tóth, in a purely
combinatorial way.

Theorem 5.16 (Dumitrescu and Tóth, 2002 [21]).

n1/(k+1) ≤ Fk(n) ≤ n(1+log k)/k.
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5.3 Crossing edges and bisection width

A graph that has a drawing in the plane in which there are no k pairwise
crossing edges is called k-quasiplanar. Clearly, a graph is 2-quasiplanar if
and only if it is planar, thus 2-quasiplanar grphs with n ≥ 3 vertices have
at most 3n− 6 edges. The following table summarizes current known upper
bounds on the number of edges of k-quasiplanar graphs with n vertices.

k = 2 3n− 6 Euler
k = 3 O(n) Pach, Radoičić and Tóth, 2006 [50]
k = 3 8n− 20 Ackerman and Tardos, 2007 [3]
k = 4 72(n− 2) Ackerman, 2009 [1]

k > 4 O(n log4k−12 n) Pach, Radoičić and Tóth, 2006 [50]

k > 4 O(n log4k−16 n) Ackerman, 2009 [1]

A linear upper bound is conjectured.

Conjecture 5.17. For every k there is a constant ck such that every k-
quasiplanar graph with n vertices has at most ckn edges.

For geometric graphs with no k pairwise crossing edges, slightly better
upper bounds are known.

k = 3 O(n) Agarwal et al., 1997 [4]
k = 3 6.5n− O(1) Ackerman and Tardos, 2007 [3]

k ≥ 2 O(n log2k−4 n) Pach, Shahrokhi and Szegedy, 1996 [51]

k ≥ 4 O(n log2k−6 n) Agarwal et al., 1997 [4]
k ≥ 4 O(n logn) Valtr, 1998 [69]

For convex geometric graphs, a linear upper bound is known.

Theorem 5.18 (Capoyleas–Pach, 1992 [13]). For any n ≥ 2k− 1, the max-
imum number of edges in a convex geometric graph with n vertices and no k
pairwise crossing edges is

2(k − 1)n−
(

2k − 1

2

)

.

The upper bound in Theorem 5.18 is tight due to the following construc-
tion. Let x1, . . . , xn be the vertices of a convex n-gon in clockwise order.
Connect xi and xj by an edge if and only if they are separated by fewer than
k vertices along the boundary of the polygon, or 1 ≤ i ≤ k − 1.

Now we prove a weaker upper bound on the number of edges in geometric
graphs with no three pairwise crossing edges.
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Theorem 5.19. The maximum number of edges in a geometric graph with
n vertices and no three pairwise crossing edges is O(n3/2).

Proof. Let G be a geometric graph with n vertices, m edges and no three
pairwise crossing edges. By the crossing lemma, G has at least 1

64
· m3

n2 cross-

ings, so there is an edge e with at least 1
32
· m2

n2 crossings. By our assumption,
the edges that cross e do not cross each other, in other words, they form a
plane graph, and thus there are at most 3n of them. In fact, since they also
form a bipartite graph, there are at most 2n of them. Therefore, we have
1
32

· m2

n2 ≤ 2n, which implies that m ≤ 8n3/2.

Next we prove a general upper bound for geometric graphs with no k
pairwise crossing edges.

Definition 5.20. Let G be a graph with n vertices. The bisection width

of G, denoted by b(G), is the minimum number of edges one has to remove
from G so that the vertex set of the resulting graph G′ can be divided into
two parts, A and B, such that there is no edge between A and B in G′ and
|A|, |B| ≤ 2n/3. Instead of the last inequality, we can equivalently require
that |A|, |B| ≥ n/3.

Clearly, b(G) ≤ 2n2/9 for every graph G with n vertices. This is of course
tight if G is the complete graph. The bisection width of a planar graph with n
vertices can be as large as 2n/3; this contrasts with the separator theorem and
shows that removing vertices might be much more powerful in disconnecting
the graph. It is a simple exercise to show that the bisection width of an m
times m grid is at least m/3 and at most m.

The following theorem may be considered as a variant of the crossing
lemma, which gives a lower bound on the crossing number in terms of the
bisection width.

Theorem 5.21 (Leighton [41]; Pach, Sharokhi and Szegedy [51]). Let G be
a graph with n vertices and degree sequence d1, d2, . . . , dn. For the bisection
with of G, we have

b(G) ≤ 1.58

√

√

√

√16cr(G) +

n
∑

i=1

d2i .

It is an easy exercise to see that if G is a random graph with n vertices
where every edge is taken independently with probability 1/2, then with
probability more than 0.99, G has at least n2/10 edges, and thus the crossing
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number of G is at least cn4 for some constant c, by the crossing lemma. It is
also an easy exercise to show that with probability at least 1/2, the bisection
width of G is at least n2/100.

For the proof of Theorem 5.21, we use the following variant of the weighted
separator theorem, where we remove edges instead of vertices.

Theorem 5.22 (Gazit–Miller, 1990 [29]). Let G be a planar graph with n
vertices. Let f : V (G) → [0, 2/3] be a weight function assigning a nonnegative
real weight to each vertex of G. Suppose that

∑

v∈V (G) f(v) = 1. Then the
vertex set of G can be partitioned into two sets A,B such that each of A,B
has total weight at most 2

3
, and the number of edges between A and B in G

is at most 1.58
√

∑n
i=1 d

2
i .

Proof of Theorem 5.21. Let D be a drawing of G with cr(G) crossings. Con-
struct a drawing D′ of a graph G′ by replacing each crossing in D by a new
vertex of degree 4, subdividing the two edges participating in the crossing.
The vertices of G are called the old vertices in G′. The new graph G′ is
planar and satisfies |V (G′)| = |V (G)| + cr(G). Note that when the number
of edges of G grows asymptotically faster than the number of vertices, the
crossing lemma implies that the new vertices significantly outnumber the old
vertices in G′.

We assign weight 0 to every new vertex in G′, and weight 1/n to every
old vertex. Now we apply Theorem 5.22 to G′. We get a set S ′ of at most
1.58

√

16cr(G) +
∑n

i=1 d
2
i edges separating G′ into two parts, each containing

at most 2n/3 old vertices. From S ′, we create a corresponding set S of edges
in G by copying every edge of S ′ between two old vertices, and for every edge
e′ ∈ S ′ incident to a new vertex, we take the edge e of G that extends e′.
Now S separates G into two parts of size at most 2n/3, and contains at most
1.58

√

16cr(G) +
∑n

i=1 d
2
i edges. This gives an upper bound on the bisection

width of G.

Sketch of proof of Theorem 5.22. (by Pach, Spencer and Tóth [52]). We con-
sider only the case when G has two types of vertices, one type with weight 0
and the other type with weight 1/m. Let G′′ be a graph obtained from G by
replacing each vertex vi of weight 1/m of degree di by a di × di grid, and by
connecting the edges that were incident to vi to the vertices on one side of
the grid (called special vertices), so that each vertex in the grid has degree
at most 4. See Figure 5.6. Then all vertices of G′′ have degree at most 4.
The number of vertices in G′′ is |V (G′′)| =

∑n
i=1 d

2
i .

For every i, we assign weight 1/(mdi) to every special vertex in the di×di
grid constructed from vi, and weight 0 to all other vertices.
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Figure 5.6: Replacing a vertex by a grid. Special vertices form the left column
of the grid.

By the weighted separator theorem (Theorem 3.5), we can split G′′ into
two parts A,B with total weight at most 2/3 by removing a set S of at most
2
√

|V (G′′)| = 2
√
∑n

i=1 d
2
i vertices of G′′.

Using the partition A,B, S of G′′, we want to define a partition of G into
two parts, separated by few edges. The idea is to put the vertices vi such
that the corresponding di × di grid has many points in A to one part, the
vertices vi such that the corresponding di × di grid has many points in B to
the second part, and distribute the remaining vertices so that the sizes of the
two parts are as equal as possible. We omit the details.

Using the inequality between the bisection width and the crossing number,
we improve the upper bound from Theorem 5.19 as follows.

Theorem 5.23. The maximum number of edges in a geometric graph with
n vertices and no three pairwise crossing edges is O(n log2 n).

Proof. Let G be a geometric graph with n vertices and degree sequence
d1, d2, . . . , dn. By Theorem 5.21, we have b(G) ≤ 1.58

√

16cr(G) +
∑n

i=1 d
2
i .

For every edge e, the edges crossing e in G form a planar subgraph. Hence,
cr(G) ≤ |E(G)| ·3n. By the estimate di ≤ n, we have

∑n
i=1 d

2
i ≤ n ·

∑n
i=1 di =

2n|E(G)|. Therefore, b(G) ≤ 1.58
√

50n|E(G)| ≤ 12
√

n|E(G)|.
By this inequality, there is a set of at most 12

√

n|E(G)| edges that sepa-
rates the graph G into two parts G1, G2 with n1 and n2 vertices, respectively,
so that n/3 ≤ n1, n2 ≤ 2n/3.

Let f3(n) be the maximum number of edges in a geometric graph with n
vertices and no three pairwise crossing edges. By induction on n we prove
that f3(n) ≤ cn log2 n for some constant c and n ≥ 2. For n = 2 this is
true with c ≥ 1/(4 log 2). Let n ≥ 3. Let G be a geometric graph with n
vertices, no three pairwise crossing edges and with f3(n) edges. Consider the
partition from the previous paragraph. By induction hypothesis, we have

f3(n) ≤ f3(n1) + f3(n2) + b(G) ≤ cn1 log
2 n1 + cn2 log

2 n2 + 12
√

nf3(n).
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Since x → x log2 x is a convex function on (0,∞), we have

f3(n) ≤ c · ⌊2n/3⌋ · log2(⌊2n/3⌋) + c · ⌈n/3⌉ · log2(⌈n/3⌉) + 12
√

nf3(n).

The rest of the computation is left as an exercise.

5.4 Crossing lemma revisited

We start with a corollary of Theorem 5.21.

Corollary 5.24. Let G be a graph with degree sequence d1, d2, . . . , dn, and
let G1, G2, . . . , Gj be edge-disjoint subgraphs of G. Then the sum of their
bisection widths satisfies

j
∑

i=1

b(Gi) ≤ 2
√

j ·

√

√

√

√16cr(G) +

n
∑

k=1

d2k.

Proof. By the inequality between the arithmetic mean and the quadratic
mean (or the Cauchy–Schwarz inequality), we have

j
∑

i=1

b(Gi) ≤
√

j ·

√

√

√

√

j
∑

i=1

(b(Gi))2.

For i = 1, 2, . . . , j, let d1,i, d2,i, . . . , dn,i be the degree sequence of Gi. By
Theorem 5.21 applied to Gi, we have

(b(Gi))
2 ≤ 4

(

16cr(Gi) +

n
∑

k=1

d2k,i

)

.

This implies that

j
∑

i=1

(b(Gi))
2 ≤ 4

(

16

j
∑

i=1

cr(Gi) +

n
∑

k=1

j
∑

i=1

d2k,i

)

.

Since the graphs Gi are edge-disjoint, we have

j
∑

i=1

cr(Gi) ≤ cr(G) and

j
∑

i=1

d2k,i ≤
(

j
∑

i=1

dk,i

)2

= d2k.
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Figure 5.7: Splitting a vertex of large degree.

Therefore,
j
∑

i=1

(b(Gi))
2 ≤ 4

(

16cr(G) +

n
∑

k=1

d2k

)

and the corollary follows.

The following theorem strengthens the crossing lemma for C4-free graphs.

Theorem 5.25 (Pach, Spencer and Tóth, 2000 [52]). Let G be a graph with
n vertices, e edges, and with no C4 as a subgraph. If e ≥ 1000n, then

cr(G) ≥ c · e
4

n3

where c is a positive constant.

In the original paper [52], the theorem is proved with c = 1/108. We
prove it with c = 1/107.

Proof. The idea of the proof is the following. We recursively cut G into
smaller parts by removing few edges. When a part has fewer than s vertices
(where the s will be chosen later), we stop the recursion. The number of edges
in all resulting parts will be small, at most 3e/4. If the crossing numbers of
the parts are small, we would delete less than e/4 edges, which would be a
contradiction. This will imply that the crossing number of G is large. The
same idea can be also used to prove the crossing lemma for general graphs.

First we modify the graph G so that all degrees are at most ∆ = ⌊4e/n⌋.
Let D be a drawing of G with cr(G) crossings. For every vertex v with degree
more than ∆, do the following. Split the neighbors of v into k = ⌈d(v)/∆⌉
sets A1, A2, . . . , Ak of size at most ∆, so that each set forms an interval of
consecutive vertices in the rotation at v in D. Then remove the vertex v
from G and replace it by k vertices v1, v2, . . . , vk placed close to the original
location of v in D, on a small circle, and connect vi to all the vertices in Ai

by an edge so that these new edges do not cross. See Figure 5.7. Let G′

be the resulting graph. Clearly, e(G′) = e and G′ has no C4 as a subgraph.
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Figure 5.8: The heights of the nodes in the tree T .

Since we did not create new crossings, we have cr(G′) ≤ cr(G). A vertex v
of degree d(v) was replaced by ⌈d(v)/∆⌉ ≤ d(v)/∆ + 1 new vertices. This
implies that

v(G′) ≤
∑

v∈V (G)

(

d(v)

∆
+ 1

)

= n+
2e

∆
= n +

2e

⌊4e/n⌋ ≤ n+
2e

4e/n− 1

= n+
2en

4e− n
= n +

2en− 1/2

4e− n
+

1

8e− 2n
≤ 3n

2
+

1

2
≤ 2n.

Thus, if we prove that cr(G′) ≥ ce4/v(G′)3, this will imply that cr(G) ≥
(c/8) · e4/n3. Hence, for the rest of the proof we assume that all degrees in
G are at most 4e/n.

Now we describe the recursive decomposition of G in detail. Let V be
the vertex set of G. In step i, we will have a decomposition of V into several
subsets, and these subsets will be arranged in a rooted tree Ti whose root
is V , each node has either two children or is a leaf, and each node that is
not a leaf is the union of its two children. The leaves of Ti are exactly the
sets of the decomposition. In the beginning, we have a single set V in the
decomposition, and the corresponding tree T0 has just one vertex—the root.

We set s = e2/(16n2). Let i ≥ 0. If i ≥ 1 and all the leaves in Ti have at
most s vertices, we stop. Otherwise, if i ≥ 1, let W be a leaf of Ti with more
than s vertices. If i = 0, let W = V . We cut G[W ] into two parts W1, W2

with at most 2|W |/3 vertices each, by removing b(G[W ]) edges from G[W ].
Note that here we used just the definition of the bisection width. We attach
W1 and W2 as children of W to Ti and obtain a tree Ti+1.

Let T be the tree obtained by the decomposition algorithm. For a node
W of T , the height of W is the length of the longest path from W to a leaf
in its subtree. That is, the leaves of T are exactly the nodes of height 0, the
nodes whose both children are leaves are the nodes of height 1 and so on.
See Figure 5.8. For i ≥ 0, let Ai be the set of nodes of T of height i. Observe
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that each Ai is a decomposition of V . Let h be the height of the root of T .
Since G has no C4 as a subgraph, Theorem 4.9 implies that e ≤ n3/2 ⇒

e2 ≤ n3 ⇒ n ≥ e2/n2 = 16s. It follows that T has at least 16 leaves, in
particular, h ≥ 2. It also follows that every set of A0 has at least s/3 (and
less than s) vertices, and every set of A1 has at least s vertices. By induction,
for every i = 1, 2, . . . , h, every set of Ai has at least (3/2)

i−1 · s vertices. This
implies that |A0| ≤ 3n/s and |Ai| ≤ (n/s) · (2/3)i−1 for every i = 1, 2, . . . , h.

By Theorem 4.9, the total number of edges in
⋃

W∈A0
G[W ] is at most

|A0| · s3/2 ≤ (3n/s) · s3/2 = 3ns1/2 = 3e/4. Therefore, we have deleted at
least e/4 edges during the decomposition.

During the decomposition algorithm, we deleted b(G[W ]) edges from ev-
ery G[W ] such that W ∈ Ah ∪Ah−1 ∪ · · · ∪A1. By Corollary 5.24 applied to
each decomposition Ai with i ∈ {1, 2, . . . , h}, we have

e

4
≤

h
∑

i=1

∑

W∈Ai

b(G[W ]) ≤
h
∑

i=1

2
√

|Ai| ·

√

√

√

√16cr(G) +

n
∑

k=1

d2k

where d1, d2, . . . , dk is the degree sequence of G. Since di ≤ ∆ ≤ 4e/n, we
have

∑n
k=1 d

2
k ≤ 16e2/n. Further we have

h
∑

i=1

√

|Ai| ≤
√

n

s
·
h−1
∑

i=0

(

√

2

3

)i

≤ 4n3/2

e
· 1

1−
√

2/3
≤ 22n3/2

e
.

Putting this together, we get

e

4
≤ 44n3/2

e
·
√

16cr(G) + 16e2/n,

which implies that

cr(G) ≥ e4

16 · (4 · 44)2 · n3
− e2

n
≥ 2e4

106 · n3
− e2

n
.

By our assumption, e ≥ 1000n, so e2/n ≤ e4/(106n3). Therefore, we have

cr(G) ≥ e4

106 · n3

and we are finished.

The proof of Theorem 5.25 can be also adapted to give an alternative
proof of the crossing lemma: we only choose a different threshold s = e/(2n).
Similarly, Theorem 5.25 can be generalized to give an improved lower bound
on the crossing number for graphs with no Ks,t as a subgraph.
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Eötvös Sect. Math. 14 (1971), 107–108.

[44] L. Lovász, J. Pach and M. Szegedy, On Conway’s thrackle conjecture,
Discrete Comput. Geom. 18(4) (1997), 369–376.

[45] G. L. Miller and W. Thurston, Separators in two and three dimensions,
STOC ’90 Proceedings of the twenty-second annual ACM symposium on
Theory of computing, 300–309, ACM New York, NY, 1990.

[46] L. Mirsky, A dual of Dilworth’s decomposition theorem, Amer. Math.
Monthly 78 (1971), 876–877.

[47] G. Nivasch, An improved, simple construction of many halving edges,
Surveys on discrete and computational geometry, 299–305, Contemp.
Math., 453, Amer. Math. Soc., Providence, RI, 2008.

[48] J. Pach and P. Agarwal, Combinatorial geometry, Wiley-Interscience
Series in Discrete Mathematics and Optimization, A Wiley-Interscience
Publication, John Wiley & Sons, Inc., New York, 1995, ISBN: 0-471-
58890-3.
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