
Chapter 4

Crossings: few and many

These crossovers are like rabbits. . . they have a
tendency to multiply at a terrifying rate.

— Yona Friedman [10]

4.1 Turán’s brick factory problem

In 1944, Turán posed the following problem [10]. Suppose that there are m
kilns and n storage yards. How can we connect every kiln to every storage
yard with paths so that the number of crossings of the paths is minimum?
This problem can be modeled as follows. What is the minimum number of
crossings of edges in a drawing of the graph Km,n in the plane?

Definition 4.1. Let G be an arbitrary graph. The crossing number of
G, denoted by cr(G), is the minimum number of crossings of edges over all
possible drawings of G in the plane. Here it is important to assume that no
three edges cross at the same point.

The brick factory problem of Turán is then to find cr(Km,n).
Suppose that the vertices of Km,n are partitioned into two parts A and

B with |A| = m and |B| = n and every vertex in A is connected to every
vertex in B. The following simple straight-line drawing of Kn,m gives the
best known upper bound on cr(Km,n). Namely, place the vertices of A on
the y-axis to the points

(0,−⌊m/2⌋), (0,−⌊m/2⌋+ 1), . . . , (0,−1), (0, 1), (0, 2), . . . , (0, ⌈m/2⌉)

and the vertices of B on the x-axis to the points

(−⌊n/2⌋ , 0), (−⌊n/2⌋ + 1, 0), . . . , (−1, 0), (1, 0), (2, 0), . . . , (⌈n/2⌉ , 0),

29
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Figure 4.1: A cylindrical drawing of K10.

and then join every vertex in A to every vertex in B by a straight-line seg-
ment. The number of crossings in this drawing is exactly
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Conjecture 4.2 (Zarankiewicz [71]). We have
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Zarankiewicz actually published his conjecture as a theorem, but later his
proof was found incomplete [10]. Zarankiewicz’s conjecture has been verified
for m ≤ 6 [38].

The following conjecture about the crossing number of the complete graph
Kn is usually known as Hill’s conjecture.

Conjecture 4.3 (Harary–Hill [33], Guy [31]). We have
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There are two families of drawings of Kn that attain the number of cross-
ings stated in Hill’s conjecture: cylindrical drawings and 2-page book draw-
ings [9, 31, 33, 34]. In the cylindrical drawing of K2n, n vertices are put on
the boundary of each circular base of a cylinder in the vertices of a regular
n-gon, and the vertices are connected by shortest arcs on the surface of the
cylinder. Figure 4.1 shows a “deformed” cylindrical drawing of K10.

In the “optimal” 2-page book drawing of Kn, there is a cycle of length n
without crossings, forming the “spine” of the book, which can be drawn as
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Figure 4.2: Reducing the number of crossings in the case when two adjacent
edges cross.

a regular n-gon, for example. Then half of the other edges are drawn inside
the cycle and the other half outside the cycle. Roughly speaking, the edges
that are drawn inside are those whose slope is between −45◦ and 45◦.

It is not hard to show that Zarankiewicz’s conjecture implies an asymp-
totic version of Hill’s conjecture [58]. We will prove this in Lemma 4.6.

Now we show that cr(Kn,n) and cr(Kn) are of the order n4. First we
observe the following property of optimal drawings.

Lemma 4.4. Let D be a drawing of a graph G with exactly cr(G) crossings.
Then every two edges have at most one point in common (either an endpoint
or a crossing).

Proof. Suppose that e, f are two adjacent edges with a common vertex v that
cross at least once. Let x be a crossing of e and f that is closest to v along e,
and let y be a crossing of e and f that is closest to v along f . See Figure 4.2.
The crossings x and y might be the same or different. Let evx be the portion
of e between v and x, and let fvy be the portion of f between v and y. Let
a be the number of crossings of evx with other edges of G, and let b be the
number of crossings of fvy with other edges of G. Without loss of generality,
assume that b ≥ a. Replace a portion of f slightly longer than the part
between v and x by a curve f ′ drawn along evx, from an appropriate side. In
this way, we get rid of the crossing x (and perhaps some other crossings as
well), and we exchange b old crossings on f for a new crossings on f ′.
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Figure 4.3: Reducing the number of crossings in the case when two edges
cross more than once.

Now suppose that e, f are two independent edges with at least two cross-
ings. Let z, z′ be arbitrary two crossings of e with f . Let x be a crossing of
e and f that is closest to z along e in the direction of z′, and similarly, let
y be a crossing of e and f that is closest to z along f in the direction of z′.
The redrawing step is now analogous to the previous case where we substi-
tute z for v. See Figure 4.3, where only the case x = y is illustrated. Note
that we cannot always get rid of both crossings x and z by this redrawing
operation.

There are alternative ways of proving Lemma 4.4. For example, we could
first take any pair of crossings z, z′ (or a vertex v and a crossing x) between
the two edges, and redraw a portion of e or f between z and z′ (between
v and x). In this way, we could introduce self-crossings, but those may be
removed rather easily.

Observe that if two edges e, f cross at least four times, it is not always
possible to find two crossings, x and y, so that the portion of e between x
and y contains no other crossings with f , and the portion of f between x
and y contains no other crossings with e.

Theorem 4.5. The limits limn→∞
cr(Kn,n)

(n2)
2 and limn→∞

cr(Kn)

(n4)
exist and both

are positive numbers.

Proof. We will prove the theorem only for the graph Kn. The proof for the
graph Kn,n is similar and is left as an exercise. By Lemma 4.4, for every
drawing of Kn with cr(Kn) crossings and for every four vertices in it, there
are at most three possible crossings among the edges between these four
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vertices (in fact, there is at most one). This observation shows that cr(Kn)

(n4)
never exceeds 3. Now, in order to show that the limit exists, it is sufficient
to show that the sequence cr(Kn)

(n4)
, n = 1, 2, 3, . . . , is an increasing sequence.

The theorem will follow from the fact that every increasing upper bounded
sequence whose first term is positive has a positive limit.

To complete the proof, we need to show that for every positive integer
n we have cr(Kn)

(n4)
≤ cr(Kn+1)

(n+1

4 )
. Expanding the binomial coefficients in both

sides and ignoring the common factors in both sides, we observe that this
inequality is equivalent to the inequality

cr(Kn)

n
≥ cr(Kn−1)

n− 4
or equivalently (n− 4) cr(Kn) ≥ n cr(Kn−1).

Fix a drawing D of Kn with exactly cr(Kn) crossings. Removing each vertex
in D yields a copy of Kn−1, which has at least cr(Kn−1) crossings in D. In
total, this gives at least n ·cr(Kn−1) crossings. But notice that every crossing
in D is counted precisely n−4 times. Therefore, the number of the crossings
in D is at least n

n−4
· cr(Kn−1). This shows that cr(Kn) ≥ n

n−4
· cr(Kn−1).

Observe that the above proof tells us more than just the existence of a
limit. It says that the sequence cr(Kn)

(n4)
is an increasing sequence. Therefore,

every term of this sequence is a lower bound for limn→∞
cr(Kn)

(n4)
.

Note that Zarankiewicz conjecture would imply that limn→∞
cr(Kn,n)

(n2)
2 =

1/4 and Hill’s conjecture would imply that limn→∞
cr(Kn)

(n4)
= 3/8.

Lemma 4.6 (Richter and Thomassen [58]). If limn→∞
cr(Kn,n)

(n2)
2 = 1/4 then

limn→∞
cr(Kn)

(n4)
= 3/8.

Proof. Let n be given and let D be a drawing of the graph K2n with cr(K2n)
crossings. If we color n vertices red and the remaining n vertices blue, the
color classes induce a drawing of the bipartite graph Kn,n, which has at least
cr(Kn,n) crossings. There are exactly

(

2n
n

)

such colorings. A crossing of edges
uv and xy in D is counted if and only if u and v get different color and x
and y get different color. The number of such colorings is exactly 4 ·

(

2n−4
n−2

)

.
Therefore, we get

4 ·
(

2n− 4

n− 2

)

· cr(K2n) ≥
(

2n

n

)

· cr(Kn,n).
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After simplifying, this gives

cr(K2n)
(

2n
4

) ≥ 3

2
· cr(Kn,n)

(

n
2

)2 .

Since for every n, there are drawings of Kn attaining the number of crossings
in Hill’s conjecture, we have limn→∞

cr(Kn)

(n4)
≤ 3/8 and the lemma follows.

4.2 Conway’s thrackle conjecture

A thrackle is a graph drawn in the plane so that the edges are represented
by simple curves, any pair of which either meet at a common vertex or cross
precisely once. A graph is thrackleable if it can be drawn as a thrackle.

Conjecture 4.7. In every thrackle, the number of edges is at most equal to
the number of vertices.

Conway’s thrackle conjecture is analogous to the following combinato-
rial theorem known as nonuniform Fisher’s inequality [8], which general-
izes Fisher’s inequality [24], and was originally proved by de Bruijn and
Erdős [11].

Theorem 4.8 (a nonuniform Fisher’s inequality, 1948 [11]). If A1, A2, . . . , Am

are distinct subsets of a finite set X such that every two of the subsets have
precisely one element in common, then m ≤ |X|.

Proof. Let n = |X| ≥ 1. If some of the sets Ai is empty then m ≤ 1. If some
of the elements x ∈ X is contained in all the sets Ai, then the sets Ai\{x} are
pairwise disjoint, and thus we can select a unique point from each of the sets
Ai, which implies that m ≤ |X|. If some of the sets Ai is equal to X , then
every other set Aj has only one element, and again, m ≤ |X|. For the rest
of the proof assume that 1 ≤ |Ai| ≤ n− 1 for every i and that

⋂m
i=1Ai = ∅.

For every x ∈ X , let deg(x) be the number of sets Ai containing x.
Observe that if x /∈ Ai, then |Ai| ≥ deg(x): indeed, every two sets containing
x must intersect Ai and these intersections must be disjoint.

Draw a rectangular table (a matrix) with rows indexed by the elements of
X and the columns indexed by the sets Ai (or by the numbers 1, 2, . . . , m).
Write a ‘1’ at the position (x,Ai) if x ∈ Ai and ‘0’ otherwise. By our
assumption, every column and every row has at least one 0-entry. Obviously,
the total number of entries in the table is mn. We will now count the number
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of entries in the table in two other ways, while “stepping” only on the 0-
entries. First, we will count according to the columns. We have n − |Ai|
0-entries in the ith column, thus

mn =

m
∑

i=1

∑

x∈X;x/∈Ai

n

n− |Ai|
=

∑

x/∈Ai

n

n− |Ai|
. (4.1)

Now we count according to the rows. We have m − deg(x) 0-entries in row
x, thus

mn =
∑

x∈X

∑

i∈{1,...,m};x/∈Ai

m

m− deg(x)
=

∑

x/∈Ai

m

m− deg(x)
. (4.2)

Suppose that m > n. We observed that if x /∈ Ai, then |Ai| ≥ deg(x). Since
|Ai| ≥ 1, this further implies the following inequalities:

m|Ai| > n · deg(x),
mn−m|Ai| < mn− n · deg(x),

n− |Ai|
n

<
m− deg(x)

m
,

n

n− |Ai|
>

m

m− deg(x)
.

Summing the last inequality over all x /∈ Ai, we get
∑

x/∈Ai

n

n− |Ai|
>

∑

x/∈Ai

m

m− deg(x)
,

which contradicts equations (4.1) and (4.2).

An example of a thrackleable graph is the cycle C5. This can be easily seen
from the star-like drawing of C5 (Figure 4.4). We now show that C4 cannot
be drawn as a thrackle. If the vertices of C4 are a, b, c, d and each vertex is
joined to the next vertex in this order, then in every thrackle drawing of C4,
there is only one possible configuration for the path abcd shown in Figure 4.5.
These three edges create a triangle whose one side is the edge bc. The edge
da must cross the edge bc, so it has to get inside the triangle and when it
goes out of the triangle it either crosses the edge bc for the second time or
it must cross one of the other edges. None of these situations is allowed in a
thrackle.

Clearly, every subgraph of a thrackle is also a thrackle. This together
with the previous observation shows that if G is thrackleable then G has no
C4 as a subgraph.



CHAPTER 4. CROSSINGS: FEW AND MANY 36

Figure 4.4: A thrackle drawing of C5.
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Figure 4.5: An unsuccessful attempt of drawing C4 as a thrackle.

Theorem 4.9 (Erdős, Kővári–Sós–Turán, 1954 [39]). Any graph G with n
vertices with no C4 as a subgraph has at most n3/2 edges.

Proof. Suppose that G is a graph with n vertices with no C4 as its subgraph.
We count the number of paths of length 2 in G in two ways. Since G has
no C4, every pair of its vertices have at most one common neighbor and
therefore the number of 2-paths in G is at most

(

n
2

)

. Now we count the
number of 2-paths as follows. Let v be a vertex of G of degree d. Every pair
of the neighbors of v form a path of length 2 and conversely every such path
is obtained in this way precisely once (just consider the middle point of the
2-path). So, the number of 2-paths in G is equal to

n
∑

i=1

(

di
2

)

where di’s are the degrees of the vertices of G. So we have
∑n

i=1

(

di
2

)

≤
(

n
2

)

.
Since the function f(x) =

(

x
2

)

= x(x− 1)/2 is a convex function, we can use
Jensen’s inequality to conclude that

(

n

2

)

≥
n

∑

i=1

(

di
2

)

≥ n ·
(

∑n
i=1

di
n

2

)

= n ·
(2|E(G)|

n

2

)

.
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Thus,

n ≥ n− 1 ≥ 2|E(G)|
n

·
(

2|E(G)|
n

− 1

)

≥
(

2|E(G)|
n

− 1

)2

and therefore |E(G)| ≤ 1
2
(n3/2 + n) ≤ n3/2.

Corollary 4.10. If G is a thrackle with n vertices then |E(G)| ≤ n3/2.

Proof. Since no thrackle has C4 as a subgraph, the assertion is true by The-
orem 4.9.

Notice that the previous corollary is still very far from Conway’s thrackle
conjecture. Now we try to obtain a better upper bound on the number of
the edges of a thrackle. We need the following useful lemmas to obtain an
O(n) upper bound on the number of edges of a thrackle.

Lemma 4.11. Let C1 and C2 be two closed curves (possibly self-intersecting)
that may cross but do not touch each other. The number of crossings of C1

and C2 is even.

Proof. The closed curve C1 divides the plane into regions and each of these
regions can be colored black or white so that every two adjacent regions have
different colors. Now, a point traveling along C2 observes a change of color
every time it crosses C1. Therefore, after returning to its initial position, the
color must have changed an even number of times.

Lemma 4.12. Every graph G has a bipartite subgraph H such that |E(H)| ≥
|E(G)|/2.

Proof. Let H be a bipartite subgraph of G with the maximum number of
edges. Without loss of generality we can assume that H has all the vertices
of G. Let A and B be a bipartition of the vertices of H . Let v be an arbitrary
vertex of G. Assume that v ∈ A. The bipartite subgraph of G induced by
the bipartition A \ {v}, B ∪ {v} cannot have more edges than the graph H
because of the way we have chosen H . This means that in the graph G, v
has at least as many neighbors in B as in A. So, the degree of v in H is
at least half the degree of v in G. This argument is valid for every vertex
v. Therefore H has the property that each of its vertices has degree at least
half the degree in the graph G. Therefore |E(H)| ≥ |E(G)|/2.

Theorem 4.13. Every bipartite thrackleable graph is planar.
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Figure 4.6: A neighborhood of v and the paths a . . . c and b . . . d in D(H).

Proof (sketch). First we prove that if G is bipartite and thrackleable then
G contains no subdivision of K5. Let D(G) be a thrackle drawing of G.
Suppose for contradiction that there is a subdivision H of K5 in G. Clearly,
H is also bipartite and the drawing D(H) of H in D(G) is a thrackle. Let
v, a, b, c, d be the vertices of D(H) of degree 4 (notice that D(H) has five
vertices of degree 4 and the other vertices are of degree 2). Suppose that
the neighborhood of v looks like in Figure 4.6. Let C1 be the closed curve
formed by the paths v . . . a, a . . . c and c . . . v. Let C2 be the closed curve
formed by the paths v . . . b, b . . . d and d . . . v. Since H is bipartite, each of
the two closed curves is formed by an even number of edges. Since D(H) is
a thrackle, every edge of C1 must cross every edge of C2. On the other hand,
Lemma 4.11 ensures that C1 and C2 will cross an even number of times.
This is a contradiction since C1 and C2 intersect an even number of times
at interior points of their edges and one more time at the point v. Similarly,
it can also be shown that no subdivision of K3,3 can be both bipartite and
thrackleable and therefore G has no subdivision of K5 or K3,3. Thus G is a
planar graph.

A graph drawn in the plane is called an odd thrackle (also a general-

ized thrackle) if every two independent edges cross an odd number of times
and every two adjacent edges cross an even number of times (that is, they
have an odd number of intersecting points, including the vertex they share).
Theorem 4.13 is still true if we replace “thrackle” with “odd thrackle”. In
fact, we have the reverse implication as well.

Theorem 4.14. A bipartite graph G is planar if and only if it can be drawn
as an odd thrackle.

Proof. Let D be a plane drawing of G. Deform the plane so that the two
vertex classes of G are separated by the x-axis. It is an interesting exercise to
show that the deformation can be chosen in such a way that every edge crosses
the x-axis exactly once. However, we do not need this stronger observation
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as we use only the fact that every edge crosses the x-axis an odd number of
times. Now cut the plane along the x-axis, move the lower part of the drawing
one unit down, and reflect this lower part over the y-axis. Then in the empty
strip between the lines y = 0 and y = −1, reconnect the severed edges by
straight-line segments (the ith end from the left on the x-axis with the ith
end from the right on the line y = −1), and remove all self-crossings that were
created. By this, we introduced an odd number of crossings between every
pair of edges, since every two segments in the strip cross. Finally, in a small
neighborhood of every vertex v, do a similar trick: deform the neighborhood
of v so that all the edges are directed in the lower halfplane, cut the edges
by a horizontal line, move the part containing v and reflect it over a vertical
line passing through v, and reconnect the edges. This operation introduces
one crossing on every pair of edges incident with v. The resulting drawing is
an odd thrackle.

If D is a drawing of G that is an odd thrackle, we perform the same pro-
cedure, and in the end we obtain a drawing of G where every two edges cross
an even number of times. By the weak (or strong) Hanani–Tutte theorem
(Theorem 2.9 or 2.7), G is planar.

Now, we are able to prove the following upper bound for the number of
edges of a thrackle.

Corollary 4.15. If G is a thrackle or an odd thrackle then |E(G)| ≤ 4|V (G)|.
Proof. Suppose that G is a thrackle with n vertices. By Lemma 4.12, there is
a bipartite subgraph H of G with at least |E(G)|

2
edges. Since H is a bipartite

thrackle, it is a drawing of a planar graph by Theorem 4.14. Thus, by Euler’s
formula, we have |E(G)|

2
≤ |E(H)| ≤ 2n− 4.

For thrackles, one can obtain a better upper bound, |E(G)| ≤ 3|V (G)|,
using the fact that there are no cycles of length four. This is left as an
exercise.

The upper bound has been further improved several times during recent
years.

Theorem 4.16 (Lovász, Pach and Szegedy, 1997 [44]). If G is a thrackle
then |E(G)| ≤ 2|V (G)|.
Theorem 4.17 (Cairns and Nikolayevsky, 2000 [12]). If G is a thrackle then
|E(G)| ≤ 1.5|V (G)|.
Theorem 4.18 (Fulek and Pach, 2011 [28]). If G is a thrackle then |E(G)| ≤
167
117

|V (G)| < 1.428|V (G)|.
Theorem 4.19 (Xu, 2014 [70]). If G is a thrackle then |E(G)| ≤ 1.4|V (G)|.
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4.3 The crossing lemma

We recall that the crossing number of a graph G, denoted by cr(G), is the
smallest possible number of crossing in a drawing of G in the plane. Here we
consider drawings with not necessarily straight-line edges, and such that no
three edges cross at the same point.

Lemma 4.20. If G is a graph with n ≥ 3 vertices, then

cr(G) ≥ e(G)− (3n− 6).

Proof. Let D be a drawing of G with k = cr(G) crossings. By removing one
edge from a pair of edges that cross, we decrease the number of crossings.
Therefore, by removing at most k edges from D, we obtain a plane drawing
of a graph with at least e(G)−k edges. By Corollary 1.4, we have e(G)−k ≤
3n− 6, which proves the lemma.

The following lower bound on the crossing number of a graph is known
under different names, including the crossing lemma, the crossing number
theorem, or the crossing number inequality.

Theorem 4.21 (The crossing lemma). If G is a graph with n vertices and
e ≥ 4n edges, then

cr(G) ≥ 1

64

e3

n2
.

The crossing lemma was proved independently by Leighton [41, The-
orem 7.6] with constant 1/375 and by Ajtai, Chvátal, Newborn and Sze-
merédi [5] with constant 1/100. The constant was later improved by Pach and
Tóth [54] to 1/33.75 (if e ≥ 7.5n), by Pach, Radoičić, Tardos and Tóth [49]
to 1024/31827 ≈ 1/31.08 (if e ≥ 6.44n), and by Ackerman [2] to 1/29 (if
e ≥ 6.95n).

Proof. The idea of the proof is to use the weak bound from Lemma 4.20 and
amplify it using a probabilistic trick. We do not apply the weaker bound
directly to G, but to sufficiently sparse induced subgraphs, containing, in
average, cn2/e vertices and c′n2/e edges.

Let D be a drawing of G with cr(G) crossings. We choose a random
subset V ′ ⊂ V (G) by including each vertex independently with probability p
(which we choose later). Let G′ be the subgraph induced by V ′ and D′ the
corresponding subdrawing of D. Let x be the number of crossings in D′. We
have

E[|V ′|] = np, E[e(G′)] = ep2, E[x] = cr(G)p4.
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By Lemma 4.20, we have x ≥ e(G′) − 3|V ′|, hence cr(G)p4 ≥ ep2 − 3np.
Setting p = 4n/e (which is at most 1) we get

cr(G) ≥ e3

64n2
.

The order of magnitude of the lower bound in Theorem 4.21 cannot be
improved. To see this, take a graph G consisting of n2/(2e) disjoint complete
graphs as equal in size as possible. Then in each component of G there
are Θ(e/n) vertices, Θ(e2/n2) edges, and it can be drawn with O(e4/n4)
crossings. Therefore, G can be drawn with O(e3/n2) crossings, which matches
asymptotically the lower bound from the crossing lemma.

The following construction by Pach and Tóth [54] shows that the constant
from the crossing lemma is not far from optimal. Suppose that n ≪ e ≪ n2.
Take for the vertex set the vertices of the

√
n × √

n grid and connect two
vertices by an edge if and only if their distance is at most

√

2e/πn. Then

cr(G) ≤
(

16

27π

)

e3

n2
≈ 1

16.65

e3

n2
.

The following lemma can be used to improve the lower bound from The-
orem 4.21.

Lemma 4.22. The maximum number of edges in a graph with n ≥ 3 vertices
that can be drawn in the plane so that every edge crosses at most one other
edge is 4n− 8.

Proof (sketch). Let G′ be a maximal plane subgraph of G. The edges in
E(G) − E(G′) are all split into two by some edge of G′. We call these pars
half-edges. It is easy to prove by induction that in each face f of G′ with
s(f) sides we can have at most s(f)− 2 half-edges. Now we only use Euler’s
formula and its corollaries:

e(G) = e(G′) + (e(G)− e(G′))

≤ e(G′) +
1

2

∑

f

(s(f)− 2) = 2e(G′)− f(G′)

= e(G′) + (e(G′)− f(G′)) ≤ 3n− 6 + (n− 2) = 4n− 8.

For an optimal construction take a planar graph whose all faces are quadri-
laterals and then add two diagonals of each quadrilateral.
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Denote by ek(n) the maximum number of edges in a graph on n vertices
that can be drawn in the plane so that every edge crosses at most k other
edges. Lemma 4.22 says that e1(n) = 4n − 8. It can be also proved that
e2(n) = 5n − 10, e3(n) = 6n − 12, e4(n) = 7n − 14. It can be conjectured
that ek(n) = (k + 3)(n− 2). As a consequence we have:

cr(G) > (e− 3n) + (e− 4n) + (e− 5n) + (e− 6n) + (e− 7n) = 5e− 25n.

4.4 Incidences and unit distances

Let P be a set of n points and L a set of m lines in the plane. An incidence

between P and L is a pair (p, ℓ) such that p ∈ P, ℓ ∈ L and p ∈ ℓ.

Theorem 4.23 (Szemerédi–Trotter, 1983 [63]). The maximum number of
incidences between n points and m lines in the plane is O(n2/3m2/3+m+n).

Proof. (Székely [62]) Let P be the given set of points and L the given set of
lines. We may assume without loss of generality that every line is incident
to at least one point and that every point is incident to at least one line.
Define a graph G drawn in the plane as follows. The vertex set of G is
P , and two vertices are joined by an edge drawn as a straight line segment
if the two vertices are consecutive points of P on one of the lines from L.
This drawing shows that cr(G) ≤

(

m
2

)

. The number of points on any of the
lines of L is one greater than the number of edges drawn along that line.
Therefore, the number of incidences among the points and the lines is at
most e(G) +m. Theorem 4.21 finishes the proof: either e(G) ≤ 4n, in which
case the number of incidences is at most 4n+m, or

(

m
2

)

≥ cr(G) ≥ e(G)3/n2,

in which case e(G) ≤ O(n2/3m2/3) and the number of incidences is thus at
most O(n2/3m2/3) +m.

Theorem 4.24 (Spencer, Szemerédi and Trotter, 1984 [61]). The maximum
number of unit distances determined by n points in the plane is O(n4/3).

Proof. (Székely [62]) Draw a multigraph G in the plane in the following
way. The vertex set of G is the set of n given points. Draw a unit circle
around each point; in this way, consecutive points on the unit circles are
connected by circular arcs. These arcs form the edges of the multigraph G.
The number of edges of G is equal to the number of point-circle incidences,
and this is equal to twice the number of unit distances. Discard the circles
that contain at most two points. By this, we delete at most 2n edges from
G and obtain a multigraph G′. In G′, there are no loops, and every two
vertices are connected by at most two edges, each of them coming from a
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different circle, since at most two unit circles can pass through two given
points. Then, for every two vertices joined by two edges in G′, delete one of
the edges. The resulting drawing is a drawing of a graph G′′. For the number
of edges of G′′, we have e(G′′) ≥ e(G′)/2 ≥ (e(G)−2n)/2 = e(G)/2−n. The
number of crossings of G′′ in this drawing is at most n2, since any pair of
circles intersect in at most two points. By Theorem 4.21, e(G′′)3/n2 = O(n2)
and so e(G′′) = O(n4/3). This implies that the number of unit distances is
at most e(G)/2 ≤ e(G′′) + n ≤ O(n4/3).
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[5] M. Ajtai, V. Chvátal, M. M. Newborn and E. Szemerédi, Crossing-free
subgraphs, Theory and practice of combinatorics, 9–12, North-Holland
Math. Stud., 60, North-Holland, Amsterdam, 1982.

[6] N. Alon, P. Seymour and R. Thomas, Planar separators, SIAM J. Dis-
crete Math. 7(2) (1994), 184–193.

[7] A. Andrzejak, B. Aronov, S. Har-Peled, R. Seidel and E. Welzl, Results
on k-sets and j-facets via continuous motion, Proceedings of the Four-
teenth Annual Symposium on Computational Geometry, 192–199, ACM,
New York, NY, 1998.

[8] L. Babai, On the nonuniform Fisher inequality, Discrete Math. 66(3)
(1987), 303–307.
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[21] A. Dumitrescu and G. Tóth, Ramsey-type results for unions of compa-
rability graphs, Graphs Combin. 18(2) (2002), 245–251.

http://pageperso.lif.univ-mrs.fr/~jeremie.chalopin/publis/CG09.long.pdf
http://pageperso.lif.univ-mrs.fr/~jeremie.chalopin/publis/CG09.long.pdf


BIBLIOGRAPHY 80
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[37] G. Károlyi, J. Pach and G. Tóth, Ramsey-type results for geometric
graphs, I, Discrete Comput. Geom. 18(3) (1997), 247–255.

[38] D. J. Kleitman, The crossing number of K5,n, J. Combinatorial Theory
9 (1970), 315–323.
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[66] G. Tóth, Point sets with many k-sets, Discrete Comput. Geom. 26(2)
(2001), 187–194.
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