
Chapter 2

Characterization of planar

graphs

In this chapter we investigate various equivalent conditions for graphs to be
planar. In Section 2.2 we present an algebraic algorithm for planarity testing.
Then in the last section we briefly visit the third dimension.

Definition 2.1. Take a graph G and put additional vertices arbitrarily on
the edges of G (but not on their crossings). This divides the original edges of
G into smaller ones. Alternatively (and more precisely), we may say that we
replace the edges of G by paths of length at least 1 whose internal vertices
are disjoint. The resulting graph is called a subdivision of G.

Theorem 2.2 (Kuratowski, 1930). A graph G is planar if and only if G
contains no subdivision of K5 or K3,3.

Definition 2.3. A graph G contains H as a minor if H can be obtained
from G by deleting edges and vertices and by contracting edges.

Contracting an edge uv consists of

1. removing the edge uv and identifying the vertices u and v, and then

2. removing all parallel edges.

u v

w w

1. 2.
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Theorem 2.4 (Wagner, 1937). A graph G is planar if and only if G does
not contain K5 or K3,3 as a minor.

In the literature, the following terminology is also used: G contains H as
a topological minor if G contains a subdivision of H .

It is an easy exercise to show that if G contains a subdivision of H ,
then G contains H as a minor. Consequently, Kuratowski’s theorem implies
Wagner’s theorem. The other implication, that Wagner’s theorem implies
Kuratowski’s theorem, is also not hard to show, without knowing the proof
of either of them. There is just a small catch: containing K3,3 as a minor
implies containing a subdivision ofK3,3, but containing K5 as a minor implies
containing a subdivision of K5 or a subdivision of K3,3.

2.1 Hanani–Tutte theorems

Hanani–Tutte theorems characterize planar graphs in terms of the parity of
the numbers of crossings between their edges. We start with a very basic
variant and then show two slightly stronger versions.

Theorem 2.5 (A “very weak” Hanani–Tutte theorem). A graph G is planar
if and only if G can be drawn in the plane so that every two edges cross an
even number of times.

A drawing where every two edges cross an even number of times is also
called an even drawing.

Sketch of the proof. “⇒” This direction is trivial: if G is planar then it can
by definition be drawn without crossings, that is, each pair of edges cross
zero times and zero is an even number.

“⇐” This direction can be proved in an easy way using Kuratowski’s
theorem. Namely, we only need to show that no subdivision of K5 and K3,3

has an even drawing.
As an example we show that K5 has no even drawing. Suppose for con-

tradiction that there exists an even drawing of K5. Take a vertex v1, and
let the edges v1v2, v1v3, v1v4, v1v5 leave v1 in this clockwise order in a small
neighborhood of v1. Of course, outside this neighborhood these edges may
cross one another. Consider the image of the triangle v1v2v4. It is a closed,
possibly self-intersecting curve γ. It divides the plane into several regions. It
is a simple exercise to show that these regions can be colored by two colors
(say, black and white) so that no two regions whose boundaries share an arc
get the same color. Notice that the initial portions of the edges v1v3 and
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v1v5 around v1 belong to regions of opposite colors. Assume that the initial
portion of v1v3 in a small neighborhood of v1 runs in a black region.

v1

v4

v2
v3

v5

According to our assumptions, the edge v1v3 must cross each of the edges
v1v2, v2v4, v4v1 an even number of times. Therefore, the curve v1v3 crosses
γ an even number of times, and after each crossing it switches colors. This
yields that v3 must lie in a black region. Analogously, since the initial portion
of the edge v1v5 runs in a white region, we can conclude that v5 lies in a white
region. Since v3 and v5 lie in regions of opposite colors, the edge v3v5 crosses
gamma an odd number of times, contradicting our assumption that v3v5
crosses every edge an even number of times.

Hanani [34] and Tutte [72] originally proved the following stronger version
of the above theorem.

Definition 2.6. Two edges {a, b} and {c, d} are independent (also non-

adjacent) if {a, b} ∩ {c, d} = ∅; that is, they do not share any vertex.

Theorem 2.7 (The strong Hanani–Tutte theorem, 1934 [34], 1970 [72]). A
graph G is planar if and only if G can be drawn in the plane so that any two
independent edges cross an even number of times.

A drawing where every two independent edges cross an even number of
times is also called an independently even drawing.

Sketch of the proof. For the first direction, the same argument applies as
before. For the second direction we again use Kuratowski’s theorem and
show as an example that K5 has no independently even drawing. It is an
easy exercise to show that this also implies that no subdivision of K5 has an
even independently even drawing.

Take an arbitrary drawing of K5 in the plane; for example, the usual
straight-line drawing with vertices on a circle, which has exactly five crossings
of independent edges. We use as a fact that every drawing of K5 in the plane
can be obtained from any other by a continuous deformation of the plane
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and a sequence of continuous deformations of the individual edges. A proper
proof of this fact would need the Jordan–Schönflies theorem [68].

We are going to prove that the parity of the total number N of crossings
of all independent pairs of edges does not change during any continuous
deformation of the edges. To see this, take an edge e = v4v5 of K5 and
slightly deform it. We only have to check how the intersection between this
edge and the edges of the triangle T = v1v2v3 changes. As we pull e through
an edge or over a vertex vertex of T , the total number of crossings between e
and T changes by two. The possible two cases are illustrated in the following
figure:

Similar arguments apply for K3,3 in place of K5.

An elementary proof of the strong Hanani–Tutte theorem, which does not
use Kuratowski’s theorem, was given by Pelsmajer, Schaefer and Štefankovič [60].

The weak Hanani–Tutte theorem was discovered later than the strong
variant, by several different authors [12, 59, 60]. It does not directly from
the strong variant, as the name would suggest, because it offers an additional
conclusion.

Definition 2.8. The rotation of a vertex v in a drawing of a graph is the
clockwise cyclic order in which the edges incident to v leave the vertex v in
the drawing in a small neighborhood of v. The collection of the rotations of
all vertices in a drawing D is called the rotation system of D.

Theorem 2.9 (The weak Hanani–Tutte theorem, 2000+ [12, 59, 60]). If D
is a drawing of G where every two edges cross an even number of times, then
G has a plane drawing with the same rotation system as D.

We show two different elementary proofs of Theorem 2.9, which do not
need Kuratowski’s theorem or any advanced topology.
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Proof 1. (Pelsmajer, Schaefer and Štefankovič, 2007 [60]). We may assume
that G is connected, since components may be redrawn arbitrarily far apart.
Fix an even plane drawing D of G. We prove the result by induction on
the number of edges in G. To make the induction possible, we prove the
theorem for multigraphs, that is, a generalization of graphs where we allow
parallel edges (more edges between the same pair of vertices) and loops (edges
attached to the same vertex by both endpoints).

We begin with the inductive step: if there are at least two vertices in G,
then there is an edge e = uv that has two different vertices. Pull v towards
u until there remains no crossing between v and u.

u v u v

Since e was an even edge, the edges incident to v remain even. The pull
move will introduce self-crossings in curves that intersect e and are adjacent
to v. To correct this, we remove each self-crossing by a local redrawing like
in this figure.

Now that the edge uv no longer has any crossings, we contract it while
keeping all resulting loops or parallel edges that might arise (we may call this
operation a multigraph edge contraction). We obtain a new multigraph G′ in
which the rotations of u and v are combined appropriately. By the inductive
assumption, there is a planar drawing of G′ respecting the rotation system.

In such a drawing, we can simply split the vertex corresponding to u and
v, reintroducing the edge e between them without any intersections. We
obtain a plane drawing of G respecting the rotations of all its vertices from
D. Notice that the condition on the rotation system was necessary here for
the induction step.

If G contains only a single vertex v, then it might have several loops
attached to it. Since all the loops in G are even, it cannot happen that we
find edges leaving v in the order a, b, a, b since this would force an odd number
of crossings between a and b. Hence, if we consider the regions enclosed within
the two loops in a small enough neighborhood of v, either they are disjoint
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or one region contains the other. Then it is easy to show that there must
be a loop e whose ends are consecutive in the rotation of v. Removing e
we obtain a smaller multigraph G′ which, by inductive assumption, can be
drawn without crossings while respecting the rotation system. We can then
reinsert the missing loop in the right location according to the rotation of v
by making it small enough.

In the base case, we simply draw a single vertex with no edges.

Proof 2. (Fulek, Pelsmajer, Schaefer and Štefankovič, 2012 [28]). Let G =
(V,E) where E = {e1, e2, . . . , em}. For every i ∈ [m], let Ei = {e1, e2, . . . , ei}.
Let E0 = ∅. Let D0 be the original even drawing of G in the plane. In m
successive steps, we construct drawings D1, D2, . . . , Dm such that for every
i ∈ [m], the edges of Ei have no crossings in Di, and Di has the same rotation
system as D0. In particular, Dm will satisfy the theorem.

Let i ∈ [m] and assume that we have constructed Di−1. For every edge f
of G that crosses ei in Di−1, we do the following operations. Since f crosses ei
an even number of times, we can match the crossings together in consecutive
pairs in the order as they are encountered along ei. We cut the edge f at
each of these crossings and reconnect the severed ends of f by drawing curves
between the neighborhoods of the pairs of matched crossings close to ei, from
both sides of ei, like in Figure 2.1.

ei

f

ei

f
g g

Figure 2.1: Cutting and reconnecting f along ei.

By this operations, we removed all crossings of ei with f . We might have
created new crossings of f with other edges, but these always come in pairs
as we draw the new portions of f from both sides of ei. Moreover, the edges
participating in these new crossings with f must cross ei, so they do not
belong to Ei. In general, the edge f is now represented by a “disconnected
curve” consisting of one arc-component containing both endpoints of f , and
several closed components. Therefore, we next try to connect some of these
components together. As long as there are two components of f in the same
face of the plane graph (V,Ei) in the current drawing, we connect them by a
tunnel consisting of a pair of arcs running close to each other, see Figure 2.2.
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Again, we might have created new crossings on f , but always in pairs, one
on each side of the tunnel.

ei

f

ei

f

Figure 2.2: Connecting two components of f by a tunnel.

After performing these operations for all edges that crossed ei in Di−1, we
have removed all crossings from ei, and did not introduce any new crossings
on the edges of Ei−1. It may still be the case that some edges are represented
by disconnected curves, however. In this situation we just remove all the
closed components. We need to verify that the resulting drawing Di is still
even. Suppose for contradiction that some two edges, f and g, cross an
odd number of times in Di. Then they are both in the same face of (V,Ei)
in Di. All closed components of f and g that we removed are thus in a
different face, and cannot cross the arc-component of g and f , respectively.
Since every two closed curves cross an even number of times, by removing
the closed components, we changed the number of crossings between f and
g by an even number. This implies that the number of crossings between f
and g in Di−1 was odd, a contradiction.

For the reader interested in more information about the Hanani–Tutte
theorems, their history and future, other variants, and applications, we highly
recommend the surveys by Schaefer [63, 64].

2.2 Algebraic algorithm for planarity testing

Planarity testing is the following decision problem: given a graph G, is
G planar? Many algorithms for planarity testing exist; the first linear-time
algorithm was published by Hopcroft and Tarjan [39]. However, most of the
algorithms are rather complicated.

By the strong Hanani–Tutte theorem (Theorem 2.7), planarity testing
can be reduced to solving a system of linear equations over Z2 [63, Section
1.4.1]. Pach and Tóth described a slightly more general method for proving
the NP-completeness of the odd crossing number [59], where they also took
the rotation system into account. We now describe the method in detail.
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Let G be a given graph and let D be an arbitrary drawing of G. For
example, we may place the vertices of G on a circle in an arbitrary order
and draw every edge as a straight-line segment. We use the “obvious” fact
that every drawing of G can be obtained from any other drawing of G by a
homeomorphism of the plane, which aligns the vertices of the two drawings,
followed by a sequence of finitely many continuous deformations (isotopies)
of the edges that keep the endpoints fixed, and maintain the property that
every pair of edges have only finitely many points in common at each moment
of the deformation (we will call such deformations generic). This fact can be
proved using the Jordan–Schönflies theorem.

We will assume that the positions of the vertices are fixed. The algo-
rithm will test whether the edges of the initial drawing D can be continu-
ously deformed to form an independently even drawing of G. By the strong
Hanani–Tutte theorem (Theorem 2.7), the existence of such a drawing is
equivalent to G being planar. During a generic continuous deformation from
D to some other drawingD′, three types of combinatorially interesting events
can happen:

1) two edges exchanging their order around their common vertex and cre-
ating a new crossing,

2) an edge passing over an another edge, forming a pair of new crossings
and a lens between them,

3) an edge e passing over a vertex v not incident to e, creating a crossing
with every edge incident to v.

Each of the three events has also a corresponding inverse event, where cross-
ings are eliminated. However, the effects on the parity of the number of
crossings between edges are the same. The parity of the number of crossings
between a pair of independent edges is affected only during the event 3) or
its inverse, in which case we change the parity of the number of crossings
of e with all the edges incident to v; see Figure 2.3. We call such an event
an edge-vertex switch and we will denote it by the ordered pair (e, v). We
will consider drawings up to the equivalence generated by events of type 1)
and 2) and their inverses. Every edge-vertex switch (e, v) can be performed
independently of others, for any initial drawing, by deforming the edge e
along a curve connecting an interior point of e with v. We can thus represent
the deformation from D to D′ by the set of edge-vertex switches that were
performed an odd number of times during the deformation.

A drawing D of G can then be represented by a vector v ∈ Z
M
2 where M

is the number of unordered pairs of independent edges in G. The component
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v

e

Figure 2.3: A continuous deformation of e resulting in an edge-vertex switch
(e, v).

of v corresponding to a pair {e, f} is 1 if e and f cross an odd number of
times and 0 otherwise. We remark that the space ZM

2 can also be considered
as the space of subgraphs of the complement of the line graph L(G).

Let e be an edge of G and v a vertex of G such that v /∈ e. Performing
an edge-vertex switch (e, v) corresponds to adding the vector w(e,v) ∈ Z

M
2

whose only components equal to 1 are those indexed by pairs {e, f} where f
is incident to v. The set of all drawings of G that can be obtained from D
by edge-vertex switches then corresponds to an affine subspace v+W where
W is the subspace generated by the set {w(e,v); v ∈ V (G), e ∈ E(G), v /∈ e}.

Since independently even embeddings of G are represented by the zero
vector, G is planar if and only if 0 ∈ v + W , equivalently, v ∈ W . This is
equivalent to the solvability of a system of M linear equations over Z2, where
each variable corresponds to one edge-vertex switch. In general, the vectors
w(e,v) are not linearly independent, so the number of variables in the system
could be slightly reduced.

Before running the algorithm, we check whether |E(G)| < 3|V (G)|; if
not, G is not planar by a consequence of Euler’s formula (Corollary 1.4).
After a straightforward preprocessing (selecting the initial drawing and find-
ing which pairs of edges cross oddly), the algorithm solves a system of
O(|E(G)||V (G)|) = O(|V (G)|2) linear equations inO(|E(G)|2) = O(|V (G)|2)
variables. This can be performed in O(|V (G)|6 time by Gaussian elimina-
tion, or in O(|V (G)|2ω) ≤ O(|V (G)|4.746) time using the algorithm by Ibarra,
Moran and Hui [40]. Here O(nω) is the complexity of multiplication of two
square n× n matrices; the best current algorithms for matrix multiplication
give ω < 2.3729 [30, 75]. Since our linear system is sparse, it is also possible
to use Wiedemann’s randomized algorithm [74], with expected running time
O(n4 log2 n) in our case.
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2.3 Intersection representations of planar graphs

One of the most important theorems about representation of planar graphs
is the Koebe–Andreev–Thurston theorem, also known as the circle packing
theorem.

Theorem 2.10 (The Koebe–Andreev–Thurston theorem, 1936–1970–1985).
The vertices v ∈ V (G) of any planar graph G can be represented by closed
disks Dv in the plane such that Du and Dv are tangent to each other if and
only if uv ∈ E(G), otherwise Du and Dv are disjoint.

Theorem 2.11 (de Fraysseix, de Mendez, Rosenstiehl, 1994 [27]). The ver-
tices v ∈ V (G) of any planar graph G can be represented by non-overlapping
triangles Tv in the plane so that Tu and Tv have a point of contact if and only
if uv ∈ E(G).

These two theorems give rise to the following question:

Question. Is it true that the vertices of every planar graph can be repre-
sented by (pseudo-)segments so that two of them intersect if and only if the
corresponding vertices are adjacent? A collection of pseudosegments is a
collection of simple curves such that every two of them cross at most once
and do not touch.

The following two theorems answer part of this problem.

Theorem 2.12 (Hartman, Newman, Ziv, 1991 [38]; de Fraysseix, de Mendez,
Pach, 1994 [26]). True for bipartite planar graphs.

Theorem 2.13 (Castro, Cobos, Dana, Márquez, Noy, 2002 [14]). True for
triangle-free planar graphs.

The problem was finally solved by Chalopin, Gonçalves and Ochem for
pseudosegments.

Theorem 2.14 (Chalopin, Gonçalves, Ochem, 2010 [16]). Every planar
graph has an intersection representation by pseudosegments in the plane.

Chalopin and Gonçalves then strengthened the proof to representations
by segments.

Theorem 2.15 (Chalopin, Gonçalves, 2009 [15]). Every planar graph has
an intersection representation by segments in the plane.
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2.4 Embeddings of graphs in three dimen-

sions

Our next subject are graphs in higher dimensions. A graph can be drawn
in R

3 in the following way: the vertices are points in R
3 and the edges are

simple curves such that they do not pass through any vertex and do not cross
any other edge.

Definition 2.16. (i) Let γ1, γ2 be two simple closed curves in R
3. Notice

that we cannot always transform γ1 into γ2 just by deforming the space
(such a deformation is called ambient isotopy), since the curves may be
knotted in different ways. If we allow deformations of the curve during
which the curve may cross itself, then it is possible to deform γ1 into
a circle γ which bounds a disc D. By reversing this deformation while
dragging the disc D with the curve, we obtain a disc-like surface D1,
which may intersect itself, and whose boundary is γ1. Then γ1 and γ2
are called linked if the number of times γ2 intersects D1 from “above”
is different from the number of times it intersects D1 from “below”.

D1

γ1

γ2

Figure 2.4: Two unlinked curves in R
3.

(ii) Two cycles C1, C2 in an embedding of a graph in R
3 are linked if the

corresponding closed curves γ1, γ2 are linked.

(iii) G is a linkless graph if it can be drawn in R
3 so that no two disjoint

cycles are linked.

Theorem 2.17 (Robertson–Seymour–Thomas). A graph G has a linkless
embedding in R

3 if and only if G has no minor belonging to the Petersen
family (shown in Figure 2.5).

Example 2.1. K6 is not a linkless graph, that is, it cannot be drawn without
two linked cycles.
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Figure 2.5: The Petersen family.
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[9] J. Blažek and M. Koman, A minimal problem concerning complete
plane graphs, in: Theory of Graphs and its Applications, Proc. Sym-
pos. Smolenice, 1963, 113–117, Publ. House Czechoslovak Acad. Sci.,
Prague, 1964.

80

http://sci.haifa.ac.il/~ackerman/publications/4crossings.old
http://sci.haifa.ac.il/~ackerman/publications/4crossings.old


BIBLIOGRAPHY 81

[10] L. Beineke and R. Wilson, The early history of the brick factory problem,
The Mathematical Intelligencer 32(2) (2010), 41–48.
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[43] T. Kővári, V. Sós and P. Turán, On a problem of K. Zarankiewicz,
Colloquium Math. 3 (1954) 50–57.
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[69] G. Tóth, Note on geometric graphs, J. Combin. Theory Ser. A 89(1)
(2000), 126–132.
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