
Chapter 1

Drawing planar graphs

A graph G consists of a finite set V (G) of vertices (points) and a set E(G)
of edges, where every edge is a 2-element subset {u, v} ⊆ V (G), u 6= v. For
the sake of simplicity, an edge {u, v} is often denoted by uv (or vu). Vertices
u and v are called the endpoints of uv ∈ E(G). If uv ∈ E(G), then we
say that u and v are connected (joined by an edge) in G, or that they are
adjacent. A graph H is a subgraph of G, written H ⊆ G, if V (H) ⊆ V (G)
and E(H) ⊆ E(G). Given a k-element set V = {v1, v2, . . . , vk}, the graphs
Pk and Ck defined by

V (Pk) = V, E(Pk) = {v1v2, v2v3, . . . , vk−1vk};

V (Ck) = V, E(Ck) = {v1v2, . . . , vk−1vk, vkv1}

are called a path of length k − 1 and a cycle of length k respectively. Ob-
viously Pk ⊆ Ck.

The most natural way of representing a graph in the plane is to assign
distinct points to its vertices and connect two points by a simple curve if
and only if the corresponding vertices are adjacent. A simple curve (also
a Jordan arc) connecting two points u, v ∈ R

2 is a continuous non-self-
intersecting curve φ : [0, 1] → R

2 with φ(0) = u and φ(1) = v. If no con-
fusion is likely to occur, we often talk about the points and curves in the
representation as vertices and edges, respectively. The actual positions of
the points and the curves play no role in this representation. However, we
usually require that a drawing of a graph satisfies the following conditions:

(1) the edges pass through no vertices except their endpoints,

(2) every two edges have only a finite number of intersection points,

(3) every intersection point of two edges is either a common endpoint or a
proper crossing (“touching” of the edges is not allowed), and
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Figure 1.1: Non-planar graphs: K5 (left), K3,3(right)

(4) no three edges pass through the same crossing.

Some drawings of a graph are much simpler than some others, and usually
we also want to produce a visually pleasing diagram. For instance we may re-
quire our arcs to be straight-line segments, we may wish to avoid or minimize
crossings, maximize angles between edges etc.

Definition 1.1. A graph G that can be represented in the plane so that
no two arcs meet at a point different from their endpoints is said to be
embeddable in the plane or planar. A particular representation of a
planar graph satisfying this property is called a plane graph.

Intuitively, it is easy to “see” that the graphs K5 and K3,3 depicted in
Figure 1.1 are not planar. However, to prove this precisely, one needs at least
a polygonal version of the following “intuitively obvious” fact. A simple

closed curve (also a Jordan curve) is a continuous map ϕ : [0, 1] → R
2

that is injective on [0, 1) and satisfies ϕ(0) = ϕ(1).

Theorem 1.2 (Jordan curve theorem). The complement of a simple closed
curve in the plane has exactly two connected components, one bounded and
the other one unbounded.

The closures of the two components of the complement of a simple closed
curve ϕ are also called the interior and exterior of ϕ.

For the readers who are interested in the proof of the of the Jordan curve
theorem, we recommend Thomassen’s proof [36]. Quite surprisingly, his proof
is based on the fact that K3,3 is not planar.

Now suppose thatK3,3 can be embedded in the plane. Then the arcs u1v2,
v2u3, u3v1, v1u2, u2v3, v3u1 would form a closed simple curve ϕ, and every arc
uivi (i = 1, 2, 3) would be entirely in the interior of ϕ or in the exterior of ϕ.
Assume without loss of generality that u1v1 and u2v2 lie in the interior of ϕ.
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Figure 1.2: A straight-line embedding of K5 − v1v5

Then they should cross each other, contradicting our assumption. (Notice
that we used the Jordan curve theorem in two places in this argument.)
Similarly, one can check that K5 is not embeddable in the plane. In fact, a
well-known theorem by Kuratowski (see Theorem 2.2) states that a graph
is not planar if and only if it has a subgraph that can be obtained from K5

or K3,3 by replacing the edges with paths, all of whose interior vertices are
distinct.

Deleting any edge (say v1v5) from K5, we obtain a planar graph. More-
over, this new graph can be embedded in the plane by using only straight-line
segments (see Figure 1.2).

Does every planar graph have such a representation? As we shall see, the
answer to this question is in the affirmative. Moreover, we will be able to
impose some further restrictions on our drawings to ensure that the resulting
diagrams are relatively balanced. But first we need some preparations.

1.1 Euler’s formula

Let G be a graph. The degree dG(v) ( or simply d(v)) of a vertex v ∈ V (G)
is the number of vertices adjacent to v (recall that v is never adjacent to
itself!). Denoting the number of vertices and edges of G by v(G) and e(G),
respectively, we clearly have

∑

v∈V (G)

d(v) = 2e(G). (1.1)

Consequently, G must have a vertex whose degree is at most 2e(G)/v(G).
A graph G is said to be connected if for any two vertices v, v′ ∈ V (G)

there is a sequence of vertices v1 = v, v2, v3, . . . , vk = v′ such that vivi+1 ∈
E(G) for all i (1 ≤ i ≤ k). In other words, G is connected if for any
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v, v′ ∈ V (G) there is a path Pk ⊆ G with v, v′ ∈ V (Pk). If G is connected
and v(G) ≥ 2, then d(v) ≥ 1 for any v ∈ V (G), that is, G has no isolated
vertices. It is easy to see that any connected graph has at least v(G) − 1
edges, and equality holds if and only if G has no cycle as a subgraph.

The arcs of a plane graph partition the rest of the plane into a number of
connected components, called faces. Exactly one of these faces is unbounded,
which is called the exterior face. The number of faces of a plane graph G
is denoted by f(G).

Theorem 1.3 (Euler’s formula). If G is a connected plane graph, then

v(G)− e(G) + f(G) = 2.

Proof. By induction on f . If f(G) = 1, then G has no cycle, thus by the
above remark e(G) = v(G) − 1 and the assertion is true. Assume that
f(G) = f ≥ 2, and we have already proved the theorem for all connected
plane graphs having fewer than f faces. Obviously, G must contain a cycle.
Delete any edge e that belongs to a cycle of G. For the resulting plane graph
G − e, f(G − e) = f(G) − 1, so we can apply the induction hypothesis to
obtain

v(G)− (e(G)− 1) + (f(G)− 1) = 2.

Let G be a plane graph. If an edge (arc) e of G belongs to the boundary
of only one face of G, then e is called a bridge. Let F (G) denote the set of
faces of G. For any f ∈ F (G), let s(f) be the number of sides of f , that is,
the number of edges belonging to the boundary of f , where all bridges are
counted twice. Obviously,

∑

f∈F (G)

s(f) = 2e(G). (1.2)

Corollary 1.4. Let G be any plane graph with at least three vertices. Then

(i) e(G) ≤ 3v(G)− 6,

(ii) f(G) ≤ 2v(G)− 4.

In both cases equality holds if and only if all faces of G have three sides.

Proof. It is sufficient to prove the statement for connected plane graphs.
Clearly, s(f) ≥ 3 for any face f ∈ F (G). Then

3f(G) ≤
∑

f∈F (G)

s(f) = 2e(G).
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By Euler’s formula, we obtain

v(G)− e(G) +
2

3
e(G) ≥ 2,

v(G)−
3

2
f(G) + f(G) ≥ 2,

as required.

If s(f) = 3 for some face f ∈ F (G), then f is called a triangle. If
all faces of G are triangles, then G is a triangulation. It is easy to show
that any plane graph can be extended to a triangulation by the addition of
edges (without introducing new vertices). Corollary 1.4 implies that, if G is
a triangulation, then it is maximal in the sense that no further edges can
be added to G without violating its planarity.

The chromatic number χ(G) of a graph G is the minimum number
of colors necessary to color the vertices of G so that no two vertices of the
same color are adjacent. According to the four-color theorem of Appel
and Haken, which settled a famous conjecture of Guthrie posed in the last
century, the chromatic number of any planar graph is at most 4. (The graph
in Figure 1.2 has chromatic number 4, showing that this bound cannot be
improved.) The proof of Appel and Haken is quite complicated, and uses
lengthy calculations by computers. However, a weaker statement can easily
be deduced from Corollary 1.4.

Corollary 1.5. If G is a planar graph, then χ(G) ≤ 5.

Proof. By induction on v(G). If v(G) ≤ 5, then the statement is true,
because one can assign a different color to each vertex of G. Assume that
v(G) = v ≥ 6, and that we have already established the result for all planar
graphs with fewer than v vertices.

It follows from Equation (1.1) and Corollary 1.4(i) that G has a vertex
u with d(u) ≤ 5. If d(u) ≤ 4, then we apply the induction hypothesis to the
graph G− u obtained from G by the removal of u (and all edges incident to
u). We get that the vertices of G− u can be colored by 5 colors so that no
two vertices of the same color are adjacent. Clearly, we can assign a color to
u, different from the (at most 4) colors used for its neighbors.

Suppose next that u is adjacent to 5 vertices ui (1 ≤ i ≤ 5). Since G is
planar, it cannot contain K5 as a subgraph. Thus, we can assume that, say
u1 and u2 are not adjacent. Let G

′ denote the graph obtained from G−u by
merging u1 and u2. That is, V (G′) = (V (G) \ {u, u1, u2}) ∪ {u′} and E(G′)
consists of all edges of G, whose both endpoints belong to V (G) \ {u, u1, u2},
plus those pairs wu′, for which w ∈ V (G) \ {u, u1, u2} and either wu1 or wu2
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belongs to E(G). It is easy to see that G′ is a planar graph, hence we can
apply the induction hypothesis to obtain a proper coloring of the vertices of
G′ by 5 colors. If we assign the color of u′ to both u1 and u2, then we obtain
a proper coloring of G − u such that the vertices ui (1 ≤ i ≤ 5) have at
most 4 different colors. Therefore, we can again color u differently from its
neighbors.

1.2 Straight-line drawing

In this section we are going to show that every planar graph G can be embed-
ded in the plane so that the arcs representing the edges of G are straight-line
segments that can meet only at their endpoints. An embedding with this
property is called a straight-line embedding of G. The existence of such
an embedding was discovered independently by Fáry, Tutte and Wagner, but
it also follows from an ancient theorem of Steinitz.

The proof presented here is based on a simple canonical way of construct-
ing a plane graph, which will allow us to use an inductive argument for finding
a proper position of the vertices one by one.

We need the following observation.

Lemma 1.6. Let G be a plane graph, whose exterior face is bounded by a
cycle u1, u2, . . . , uk. Then there is a vertex ui (i 6= 1, k) not adjacent to any
uj other than ui−1 and ui+1.

Proof. If there are no two non-consecutive vertices along the boundary of the
exterior face that are adjacent, then there is nothing to prove. Otherwise,
pick an edge uiuj ∈ E(G), for which j > i+1 and j−i is minimal. Then ui+1

cannot be adjacent to any element of {u1, . . . , ui−1, uj+1, . . . , uk} by planarity,
nor can it be adjacent to any other vertex of the exterior face different from
ui and ui+2, by minimality of j − i.

Let G be a graph (or a plane graph), and let U ⊆ V (G). The subgraph
of G induced by U is a graph (a plane graph) whose vertex set is U and
whose edge set consists of all edges of E(G) such that both of their endpoints
belong to U .

Now we are in the position to establish the following useful theorem.

Theorem 1.7 (Canonical Construction of Triangulations). Let G be a tri-
angulation on n vertices, with exterior face uvw. Then there is a labeling of
the vertices v1 = u, v2 = v, v3, . . . , vn = w satisfying the following conditions
for every k ∈ {4, . . . , n}:
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Figure 1.3: Gk−1 and vk in the exterior

(i) the boundary of the exterior face of the subgraph Gk−1 of G induced by
{v1, v2, . . . , vk−1} is a cycle Ck−1 containing the edge uv;

(ii) vk is in the exterior face of Gk−1, and its neighbors in V (Gk−1) are
some (at least two) consecutive elements along the path obtained from
Ck−1 by removal of the edge uv. (See Figure 1.3)

Proof. The vertices vn, vn−1, . . . , v3 will be defined by reverse induction. Set
vn = w, and let Gn−1 be the graph obtained from G by the deletion of vn.
Since G is a triangulation, the neighbors of w form a cycle Cn−1 containing
uv, and this cycle is the boundary of the exterior face of Gn−1.

Let k ∈ {4, . . . , n} be fixed and assume that vn, vn−1, . . . , vk have already
been determined so that the subgraph Gk−1 induced by V (G)\{vk, vk+1, . . . ,
vn} satisfies conditions (i) and (ii). Let Ck−1 denote the boundary of the
exterior face of Gk−1. Applying Lemma 1.6 to Gk−1, we obtain that there is a
vertex u′ on Ck−1, different from u and v, which is adjacent only to two other
vertices of Ck−1 (that is, to its immediate neighbors). Letting vk−1 = u′, the
subgraph Gk−2 ⊆ G induced by V (G)\{vk−1, vk, . . . , vn} obviously meets the
requirements.

Using this theorem, we can easily prove the main result of this section.

Corollary 1.8. Every planar graph has a straight-line embedding in the
plane.

Proof. It is sufficient to show that the statement is true for any maximal

planar graph, that is, for any graph that can be represented by a triangulation
(see Exercise 1.4 and the remark after Corollary 1.4).
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Let G be any triangulation with the canonical labeling v1 = u, v2 = v,
v3, . . . , vn = w, described above. We will determine the positions f(vk) =
(x(vk), y(vk)) of the vertices by induction on k.

Set f(v1) = (0, 0), f(v2) = (2, 0), f(v3) = (1, 1). Assume that f(v1),
f(v2), . . . , f(vk−1) have already been defined for some k ≥ 4 so that by con-
necting the images of the adjacent vertex pairs by segments, we obtain a
straight-line embedding of Gk−1 whose exterior face is bounded by the seg-
ments corresponding to the edges of Ck−1. Suppose further that

x(u1) < x(u2) < . . . < x(um),

y(ui) > 0 for 1 < i < m,
(1.3)

where u1 = u, u2, u3, . . . , um = v denote the vertices of Ck−1 listed in cyclic
order. By condition (ii) of Theorem 1.7, vk is connected to up, up+1, . . . ,
uq for some 1 ≤ p ≤ q ≤ m. Let x(vk) be any number strictly between
x(up) and x(uq). If we choose y(vk) > 0 to be sufficiently large and connect
f(vk) = (x(vk), y(vk)) to f(up), f(up+1), . . . , f(uq) by segments, then we ob-
tain a straight-line embedding of Gk meeting all the requirements (including
the auxiliary conditions (1.3) for the vertices of Ck).

Note that by the same method we can also establish the existence of
straight-line embeddings with some special geometric properties. For exam-
ple, we can require that the segments corresponding to the edges of Ck−1

form a convex polygon for every k ≥ 4.

Corollary 1.9. Let G be a planar graph with n vertices and 3n − 6 edges.
Then there are a labeling of the vertices v1, v2, . . . , vn and a straight-line em-
bedding of G such that for every 4 ≤ k ≤ n,

(i) the image of the subgraph of G induced by {v1, v2, . . . , vk−1} is a trian-
gulated convex polygon Ck−1, and

(ii) the image of vk lies in the exterior of Ck−1.

The same technique can be used to obtain a different kind of representa-
tion of planar graphs, found by Rosenstiehl and Tarjan.

Corollary 1.10. The vertices and the edges of any planar graph can be
represented by horizontal and vertical segments, respectively, such that

(i) no two segments have an interior point in common,

(ii) two horizontal segments are connected by a vertical segment if and only
if the corresponding vertices are adjacent.
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Figure 1.4: Illustration to Corollary 1.10. The thick segments are the pieces
of the upper envelope of s(v1), s(v2), . . . , s(vk−1).

Proof. As in the proof of Corollary 1.8, it is sufficient to establish the state-
ment for triangulations.

Let G be any triangulation with canonical labeling v1 = u, v2 = v, v3, . . . ,
vn. To every vk we shall assign a horizontal segment s(vk) whose endpoints
are (xk, k) and (x′

k, k). Set x1 = 0, x′

1 = 2, x2 = 2, x′

2 = 4, x3 = 1, x′

3 = 3.
Assume that s(v1), s(v2), . . . , s(vk−1) have already been determined for some
k ≥ 4 so that the segments corresponding to adjacent vertex pairs can be
connected by vertical segments, that is, the subgraph Gk−1 ⊆ G induced by
{v1, v2, . . . , vk−1} has a representation satisfying conditions (i) and (ii). Let
u1 = u, u2, . . . , um = v denote the vertices of the exterior face of Gk−1, listed
in cyclic order. Suppose further that the upper envelope of the segments
s(v1), s(v2), . . . , s(vk−1) consists of some portion of s(u1), s(u2), . . . , s(um), in
this order. (A point b ∈ s(vi) belongs to the upper envelope of s(v1),
s(v2), . . . , s(vk−1), if the vertical ray starting from b and pointing upwards
does not intersect any other segment s(vj), 1 ≤ j ≤ k − 1).

By condition (ii) of Theorem 1.7, vk is connected to up, up+1, . . . , uq for
some 1 ≤ p ≤ q ≤ m. Let b and b′ be any interior points of those portions
of s(up) and s(uq), respectively, that belong to the upper envelope of s(v1),
s(v2), . . . , s(vk−1). Letting xk and x′

k be equal to the x-coordinates of b
and b′, respectively, and drawing the vertical segments connecting s(vk) with
s(vp), . . . , s(vq), we obtain a representation of Gk with the required properties
(see Figure 1.4 ).
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1.3 Drawing a planar graph on a grid

In the previous section, we have seen that any planar graph has a straight-line
embedding (Corollary 1.8). However, the solution has a serious drawback:
as we embed the vertices recursively in the plane, we may be forced to map
a new vertex far away from all previous points, so that the size of the picture
may increase exponentially with the number of vertices. To put it differ-
ently, if we want to view the resulting drawing on a computer screen, then
many points will bunch together and become indistinguishable. To handle
this problem, in this section we shall restrict our attention to straight-line
drawings where each point is mapped into a grid point, that is, a point with
integer coordinates. Our goal is to minimize the size of the grid needed for
the embedding of any planar graph of n vertices. The set of all grid points
(x, y) with 0 ≤ x ≤ m, 0 ≤ y ≤ n is said to be an m by n grid.

Theorem 1.11. Any planar graph with n vertices has a straight-line embed-
ding in the 2n− 4 by n− 2 grid.

Proof. It suffices to prove the theorem for triangulations. Let G be a trian-
gulation with exterior face uvw, and let v1 = u, v2 = v, v3, . . . , vn = w be a
canonical labeling of the vertices (see Theorem 1.7).

We are going to show by induction on k that Gk, the subgraph of G
induced by {v1, v2, . . . , vk}, can be straight-line embedded on the 2k − 4 by
k − 2 grid, for every k ≥ 3. Let f3 be the following embedding of G3:

f3(v1) = (0, 0), f3(v2) = (2, 0), f3(v3) = (1, 1).

Suppose now that for some k ≥ 4 we have already found an embedding
fk−1(vi) = (xk−1(vi), yk−1(vi)), 1 ≤ i ≤ k − 1, with the following properties:

(a) fk−1(v1) = (0, 0), fk−1(v2) = (2k − 6, 0);

(b) If u1 = u, u2, . . . , um = v denote the vertices of the exterior face of
Gk−1 in cyclic order, then

xk−1(u1) < xk−1(u2) < . . . < xk−1(um);

(c) The segments fk−1(ui)fk−1(ui+1), 1 ≤ i < m, all have slope +1 or −1.

Note that (c) implies that the Manhattan (or Iowa) distance |xk−1(uj) −
xk−1(ui)| + |yk−1(uj) − yk−1(ui)| between the images of any two vertices ui

and uj on the exterior face of Gk−1 is even. Consequently, if we take a line
with slope +1 through ui and a line with slope −1 through uj, then they
always intersect at a grid point P (ui, uj).



CHAPTER 1. DRAWING PLANAR GRAPHS 12

Let up, up+1, . . . , uq be the neighbors of vk inGk (1 ≤ p < q ≤ m). Clearly,
P (up, uq) is a good candidate for fk(vk), except that we may not be able to
connect it to e.g. fk−1(up) by a segment avoiding fk−1(up+1). To resolve this
problem, we have to modify fk−1 before embedding vk. We shall move the
images of up+1, up+2, . . . , um one unit to the right, and then move the images
of uq, uq+1, . . . , um to the right by an additional unit. That is, let

xk(ui) =











xk−1(ui), for 1 ≤ i ≤ p,

xk−1(ui) + 1, for p < i < q,

xk−1(ui) + 2, for q ≤ i ≤ m,

yk(ui) = yk−1(ui), for 1 ≤ i ≤ m,

fk(ui) = (xk(ui), yk(ui)), for 1 ≤ i ≤ m,

and let fk(vk) be the point of intersection of the lines of slope +1 and −1
through fk(up) and fk(uq), respectively. Of course, fk(vk) is a grid point that
can be connected by disjoint segments to the points fk(ui), p ≤ i ≤ q, without
intersecting the polygon fk(u1)fk(u2) . . . fk(um). However, as we move the
image of some ui, it may be necessary to move some other points (not on the
exterior face) as well, otherwise we may create crossing edges.

In order to tell exactly which set of points has to move together with the
image of a given exterior vertex ui, we define recursively a total order ’≺’ on
{v1, v2, . . . , vn}. Originally, let v1 ≺ v3 ≺ v2. If the order has already been
defined on {v1, v2, . . . , vk−1}, then insert vk just before up+1. According to
this rule, obviously

u1 ≺ u2 ≺ · · · ≺ um .

Now we can extend the definition of fk to the interior vertices of Gk−1, as
follows. For any 1 ≤ i ≤ k − 1, let

xk(vi) =











xk−1(vi), if vi ≺ up+1,

xk−1(vi) + 1, if up+1 � vi ≺ uq,

xk−1(vi) + 2, if uq � vi,

yk(vi) = yk−1(vi),

fk(vi) = (xk(vi), yk(vi)).

Evidently, fk satisfies conditions (a), (b) and (c).
To complete the proof, it remains to verify that fk is a straight-line embed-

ding, that is, no two segments cross each other. A slightly stronger statement
follows by straightforward induction.
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Claim 1.12. Let fk−1 = (xk−1, yk−1) be the straight-line embedding of Gk−1,
defined above, and let α1, α2, . . . , αm ≥ 0. For any 1 ≤ i ≤ k−1, 1 ≤ j ≤ m,
let

x(vi) = xk−1(vi) + α1 + α2 + · · ·+ αj if uj � vi ≺ uj+1 ,

y(vi) = yk−1(vi) .

Then f ′

k−1 = (x, y) is also a straight-line embedding of Gk−1.

The claim is trivial for k = 4. Assume that it has already been confirmed
for some k ≥ 4, and we want to prove the same statement for Gk. The vertices
of the exterior face of Gk are u1, . . . , up, vk, uq, . . . , um. Fix now any nonnega-
tive numbers α(u1), . . . , α(up), α(vk), α(uq), . . . , α(um). Applying the induc-
tion hypothesis to Gk−1 with α1 = α(u1), . . . , αp = α(up), αp+1 = α(vk),
αp+2 = · · · = αq−1 = 0, αq = α(uq), αq+1 = α(uq+1), . . . , αm = α(um), we
obtain that the restriction of f ′

k to Gk−1 is a straight-line embedding. To see
that the edges of Gk incident to vk do not create any crossing, it is enough
to notice that fk and f ′

k map {vk, up+1, . . . , uq−1} to two translations of the
same set.
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