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The discrete ham-sandwich theorem: (Stone and Tukey, 1942)
If X1,X2, . . . ,Xd ⊂ R

d are disjoint finite sets in general position, then
there is a hyperplane that bisects each Xi exactly in half.
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2 be sets of red, green and blue points in general
position such that |R|+ |G|+ |B| = 2n and |R|, |G|, |B| ≤ n. Then
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Corollary: Given point sets X1,X2, . . . ,Xr ⊂ R
2 in general position

such that |X1|+ |X2|+ · · ·+ |Xr | = 2n and |Xi | ≤ n for every
i ∈ [d + 1], then there are n disjoint rainbow segments.

Proof: merging the smallest sets:

(4, 4, 3, 2, 1)→ (4, 4, 3, 3) → (4, 4, 6)

(also shortest rainbow perfect matching)
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→ we need a generalization of the discrete ham-sandwich theorem
to d + 1 sets in R

d .
First we show a continuous version, then discretize it.



Definition:
Let r ≥ d and let µ1, µ2, . . . , µr be finite Borel measures on R

d . We
say that µ1, µ2, . . . , µr are balanced in a subset X ⊆ R

d if for every
i ∈ [r ], we have

µi(X ) ≤
1
d
·

r
∑

j=1

µj(X ).
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1
2
, 1 − dω

)

≥
1

d + 1
.

For ω = 0 we get exactly the ham-sandwich theorem.
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We have H−(u) = H+(−u) for every u ∈ Sd .
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• f (u) and f (−u) symmetric about the center b of B
• our goal is to show that the image of f intersects the target

polytope , determined by the conditions “balanced” and
“nontrivial”
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g is antipodal map from Sd to R
d . By the Borsuk–Ulam theorem,

there exists u ∈ Sd such that g(u) = 0, which means that f (u) ∈ ℓ.


