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Theorem: (Akiyama and Alon, 1989)

Given point sets X1, X,, ..., Xq C RY in general position, with
|X1] = |Xz] = - -+ = |Xq| = n, then there are n disjoint rainbow
(d — 1)-dimensional simplices.
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The discrete ham-sandwich theorem:  (Stone and Tukey, 1942)
If X1, X5,...,Xq C RY are disjoint finite sets in general position, then
there is a hyperplane that bisects each X; exactly in half.
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Theorem: (Kano, Suzuki and Uno, 2014)

Let R, G, B C IR? be sets of red, green and blue points in general
position such that |R| + |G| + |B| = 2n and |R|, |G|, |B| < n. Then
there are n disjoint rainbow segments.

Corollary: Given point sets Xy, X, ..., X, C R? in general position
such that [X;| + |[Xz| + - - - + |X;| = 2n and |X;| < n for every
i € [d + 1], then there are n disjoint rainbow segments.
Proof: merging the smallest sets:
(4,4,3,2,1) — (4,4,3,3) — (4,4,6)

(also shortest rainbow perfect matching)
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Theorem: The conjectureis true ford > 2 andr =d + 1.

Plan of proof: recursive cutting by a hyperplane, into a pair of
balanced subsets; that is, for each of the two halfspaces H, we want

1 r
IHNX| < EZ|H N X;.
j=1

Moreover, the total number of points in H must be positive and
divisible by d.

— we need a generalization of the discrete ham-sandwich theorem
tod + 1 sets in RY.
First we show a continuous version, then discretize it.



Definition:

Letr > d and let yiq, pto, . . ., j1; be finite Borel measures on RY. We
say that i1, fi2, . . ., jt; are balanced in a subset X C RY if for every
i € [r], we have
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Letd > 2, let uq, o, . . ., g1 be absolutely continuous finite Borel
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® W = u,(Rd) fori € [d + 1],

e wi=min{w;i € [d + 1]},
and assume that
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Then there exists a hyperplane h such that for each open halfspace
H defined by h, the measures py, iz, . . ., 1g+1 are balanced in H and

d+1 1 1

For w = 0 we get exactly the ham-sandwich theorem.
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analogous to the proof of the ham-sandwich theorem:
« parametrize half-spaces in RY by the points of
S% = {u=(ug,uy,...,ug) € R U2 +u?+---+ui =1}
if Jug| < 1, then
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analogous to the proof of the ham-sandwich theorem:

« parametrize half-spaces in RY by the points of
S% = {u=(ug,uy,...,ug) € R U2 +u?+---+ui =1}
if Jug| < 1, then

H™(u) := {(X1, X2, . .., Xg) € RY; ugXg + UpXp + -+ + UgXg < Ug},
HT(u) := {(X1, X2, ..., Xg) € RY; ugXq + UpXp + -+ - + UgXg > Ug},

and

H(1,0,0,...,0) := RY, H*(1,0,0,...,0) := 0,
H™(-1,0,0,...,0) :=0, H™(-1,0,0,...,0) := R".

We have H™(u) = H*(—u) for every u € S¢.
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f is continuous since y;(h) = 0 for every hyperplane h
f[s9] € B := [y [0, wi]
f(u) and f(—u) symmetric about the center b of B



define f = (fy,...,f441) : S¢ — RIF1 by
fi(u) == w(H™(u)).

f is continuous since y;(h) = 0 for every hyperplane h
f[s9] € B := [y [0, wi]
f(u) and f(—u) symmetric about the center b of B

our goal is to show that the image of f intersects the target
polytope , determined by the conditions “balanced” and
“nontrivial”
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assume w = wq41
t:=min (&, % —w)

2d d
e Q.= (tjt,”,,t,O), b:= ((,4}1/2,(,4}2/2,...,de+1/2),
e C = (wl—t7w2—t,...,wd —t,wd+1)
e (:=line ac

my 1= projection to a hyperplane orthogonal to ¢

g(u) := me(f(u) —b)

g is antipodal map from S¢ to RY. By the Borsuk—Ulam theorem,
there exists u € S% such that g(u) = 0, which means that f(u) € .



