Monotone crossing number of complete graphs

Martin Balko, Radoslav Fulek and Jan Kynčl

Charles University, Prague

The story

Theorem: (Erdős–Szekeres)

 For every k > 1, there is a smallest f(k) such that among every f(k) points in general position in the plane some k points form a convex k-gon.

•
$$f(k) > 2^{k-2}$$

Theorem: (Erdős–Szekeres)

 For every k > 1, there is a smallest f(k) such that among every f(k) points in general position in the plane some k points form a convex k-gon.

•
$$f(k) > 2^{k-2}$$

Theorem: (Erdős–Szekeres)

 For every k > 1, there is a smallest f(k) such that among every f(k) points in general position in the plane some k points form a convex k-gon.

•
$$f(k) > 2^{k-2}$$

•
$$f(2) = 2, f(3) = 3, f(4) = 5$$
 (easy)

Theorem: (Erdős–Szekeres)

 For every k > 1, there is a smallest f(k) such that among every f(k) points in general position in the plane some k points form a convex k-gon.

•
$$f(k) > 2^{k-2}$$

•
$$f(2) = 2, f(3) = 3, f(4) = 5$$
 (easy)

Theorem: (Erdős–Szekeres)

 For every k > 1, there is a smallest f(k) such that among every f(k) points in general position in the plane some k points form a convex k-gon.

•
$$f(k) > 2^{k-2}$$

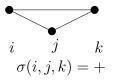
- f(2) = 2, f(3) = 3, f(4) = 5 (easy)
- *f*(5) = 9 (Makai and Turán)
- *f*(6) = 17 (Peters and Szekeres, 2006)

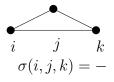
• $P = \{p_1, p_2, ..., p_n\}$ in general position, $x(p_1) < x(p_2) < \cdots < x(p_n)$

- $P = \{p_1, p_2, \dots, p_n\}$ in general position, $x(p_1) < x(p_2) < \dots < x(p_n)$
- T_n = set of ordered triples (i, j, k), $1 \le i < j < k \le n$

- $P = \{p_1, p_2, \dots, p_n\}$ in general position, $x(p_1) < x(p_2) < \dots < x(p_n)$
- T_n = set of ordered triples (i, j, k), $1 \le i < j < k \le n$
- signature function σ : T_n ⊂ [n]³ → {−,+}
 σ(i, j, k) ='+' ⇔ triangle p_ip_jp_k is counter-clockwise
 ⇔ point p_i is below segment p_ip_k

- $P = \{p_1, p_2, \dots, p_n\}$ in general position, $x(p_1) < x(p_2) < \dots < x(p_n)$
- T_n = set of ordered triples (i, j, k), $1 \le i < j < k \le n$
- signature function σ : T_n ⊂ [n]³ → {−, +}
 σ(i, j, k) ='+' ⇔ triangle p_ip_jp_k is counter-clockwise
 ⇔ point p_i is below segment p_ip_k

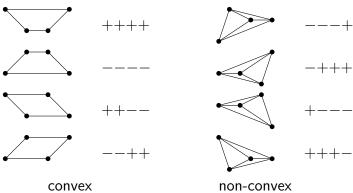


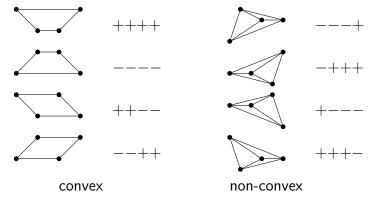


- $P = \{p_1, p_2, ..., p_n\}$ in general position, $x(p_1) < x(p_2) < \cdots < x(p_n)$
- T_n = set of ordered triples (i, j, k), $1 \le i < j < k \le n$
- signature function $\sigma : T_n \subset [n]^3 \to \{-,+\}$ $\sigma(i,j,k) = + \leftrightarrow \text{triangle } p_i p_j p_k \text{ is counter-clockwise}$ $\Leftrightarrow \text{ point } p_i \text{ is below segment } p_i p_k$

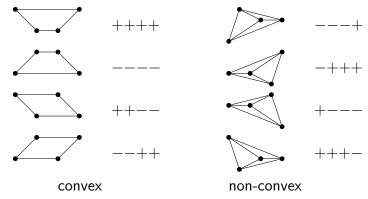
type of 4-tuple (i, j, k, l):

 $\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,l)\sigma(j,k,l)$

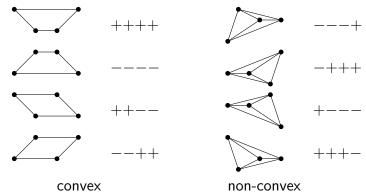




generalized 4-cup: $\sigma(i, j, k) = \sigma(j, k, l) = '+'$

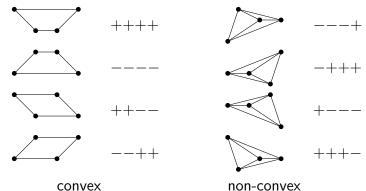


generalized 4-cup: $\sigma(i, j, k) = \sigma(j, k, l) = '+'$ generalized 4-cap: $\sigma(i, j, k) = \sigma(j, k, l) = '-'$



generalized 4-cup: $\sigma(i, j, k) = \sigma(j, k, l) = '+'$ generalized 4-cap: $\sigma(i, j, k) = \sigma(j, k, l) = '-'$

Conjecture: (Peters and Szekeres) For $n > 2^{k-2}$, any signature function on T_n induces a generalized convex *k*-gon.



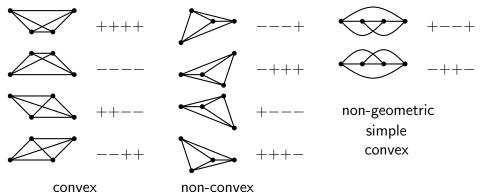
generalized 4-cup: $\sigma(i, j, k) = \sigma(j, k, l) = '+'$ generalized 4-cap: $\sigma(i, j, k) = \sigma(j, k, l) = '-'$

Conjecture: (Peters and Szekeres) For $n > 2^{k-2}$, any signature function on T_n induces a generalized convex *k*-gon.

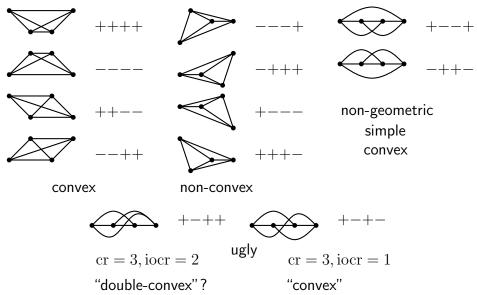
• proved for k = 5 and n = 9

Question: What is the <u>minimum number</u> of generalized convex *k*-tuples? In particular, 4-tuples?

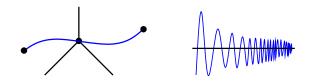
More types of 4-tuples

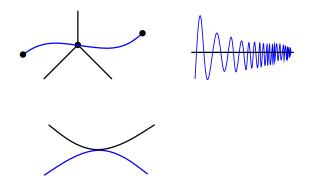


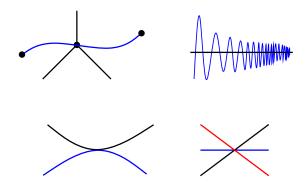
More types of 4-tuples



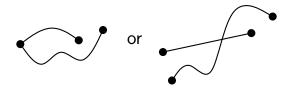
Monotone drawing: edges are x-monotone curves



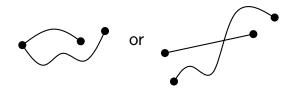




simple: any two edges have at most one common point

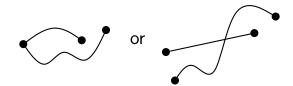


simple: any two edges have at most one common point



semisimple: adjacent edges do not cross

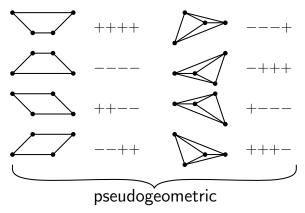
simple: any two edges have at most one common point



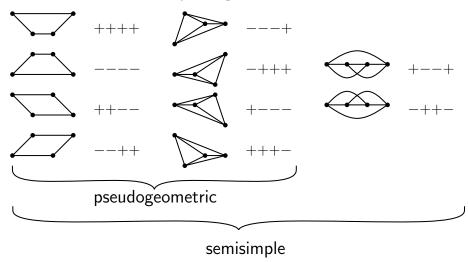
semisimple: adjacent edges do not cross



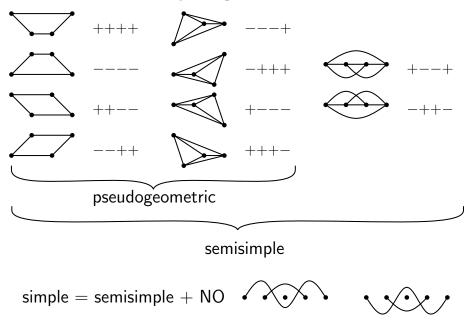
Hierarchy of signature functions:



Hierarchy of signature functions:



Hierarchy of signature functions:



Crossing numbers

cr(G) = crossing number of G = minimum number of crossings in a drawing of <math>G

Crossing numbers

cr(G) = crossing number of G = minimum number of crossings in a drawing of <math>G

 $\overline{cr}(G)$ = rectilinear crossing number of G

Crossing numbers

cr(G) = crossing number of G = minimum number of crossings in a drawing of <math>G

 $\overline{cr}(G)$ = rectilinear crossing number of G

mon-cr(G) = monotone crossing number of G

Crossing numbers

cr(G) = crossing number of G = minimum number of crossings in a drawing of <math>G

 $\overline{cr}(G)$ = rectilinear crossing number of G

mon-cr(G) = monotone crossing number of G

 $mon-ocr_+(G) =$

monotone semisimple odd crossing number of G = minimum number of pairs of edges with <u>odd</u> number of crossings in a monotone semisimple drawing of *G*

Crossing numbers

cr(G) = crossing number of G = minimum number of crossings in a drawing of <math>G

 $\overline{cr}(G)$ = rectilinear crossing number of G

mon-cr(G) = monotone crossing number of G

 $\operatorname{mon-ocr}_+(G) =$

monotone semisimple odd crossing number of G = minimum number of pairs of edges with <u>odd</u> number of crossings in a monotone semisimple drawing of *G*

mon-iocr(G) = **mon-ocr**₋(G) = **monotone independent odd crossing number** of G = minimum number of pairs of independent edges with <u>odd</u> number of crossings in a monotone drawing of G

Crossing numbers

cr(G) = crossing number of G = minimum number of crossings in a drawing of <math>G

 $\overline{cr}(G)$ = rectilinear crossing number of G

mon-cr(G) = monotone crossing number of G

 $\operatorname{mon-ocr}_+(G) =$

monotone semisimple odd crossing number of G = minimum number of pairs of edges with <u>odd</u> number of crossings in a monotone semisimple drawing of *G*

mon-iocr(G) = **mon-ocr**_(G) = **monotone independent odd crossing number** of G = minimum number of pairs of independent edges with <u>odd</u> number of crossings in a monotone drawing of G

> $cr(G) \le mon-cr(G) \le \overline{cr}(G)$ $mon-iocr(G) \le mon-ocr_+(G) \le mon-cr(G)$

Crossing numbers of complete graphs

n	5	6	7	8	9	10	11	12
$\overline{\mathrm{cr}}(K_n)$	1	3	9	19	36	62	102	153
$cr(K_n)$	1	3	9	18	36	60	100	150
$mon-cr(K_n)$	1	3	9	18	36	60		
mon-iocr (K_n)	1	3	9	18	36	60		

Crossing numbers of complete graphs

n	5	6	7	8	9	10	11	12
$\overline{\mathrm{cr}}(K_n)$	1	3	9	19	36	62	102	153
$cr(K_n)$	1	3	9	18	36	60	100	150
$mon-cr(K_n)$	1	3	9	18	36	60		
mon-iocr(K_n)	1	3	9	18	36	60		

Conjecture: (Hill; Guy) $\operatorname{cr}(\mathcal{K}_n) = \mathbb{Z}(n) := \frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$

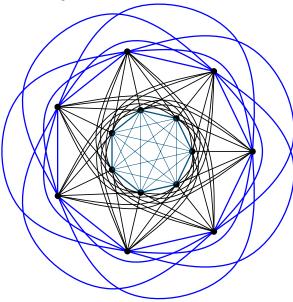
Crossing numbers of complete graphs

Conjecture: (Hill; Guy) $\operatorname{cr}(\mathcal{K}_n) = \mathbb{Z}(n) := \frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$

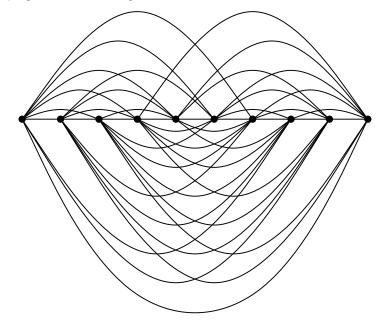
known:

 $\operatorname{cr}(K_n) \leq Z(n)$

cylindrical drawings:



2-page book drawings:



Theorem: (B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, The 2-page crossing number of K_n , arXiv:1206.5669 (2012))

The 2-page book crossing number of K_n is Z(n).

Theorem: (B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, The 2-page crossing number of K_n , arXiv:1206.5669 (2012)) The 2-page book crossing number of K_n is Z(n).

Main Theorem:

$$\operatorname{mon-cr}(K_n) = Z(n)$$

Theorem: (B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, The 2-page crossing number of K_n , arXiv:1206.5669 (2012)) The 2-page book crossing number of K_n is Z(n).

Main Theorem:

$$\operatorname{mon-cr}(K_n) = Z(n)$$

Theorem: (B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, LAGOS 2013)

 $\operatorname{mon-cr}(K_n) = Z(n)$

Theorem: (B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, The 2-page crossing number of K_n , arXiv:1206.5669 (2012)) The 2-page book crossing number of K_n is Z(n).

Main Theorem:

$$\operatorname{mon-ocr}_+(K_n) = \operatorname{mon-cr}(K_n) = Z(n)$$

Theorem:

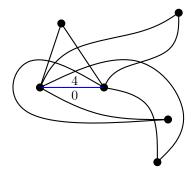
(B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, LAGOS 2013)

$$\operatorname{mon-cr}(K_n) = Z(n)$$

(common with Ábrego et al., 2012)

(common with Ábrego et al., 2012)

• k-edges



(common with Ábrego et al., 2012)

- k-edges
- ≤*k*-edges

(common with Ábrego et al., 2012)

- k-edges
- ≤*k*-edges
- $\leq\leq k$ -edges

(common with Ábrego et al., 2012)

- k-edges
- ≤*k*-edges
- $\leq\leq k$ -edges

Lemma 1: For every simple drawing D of K_n we have

$$\operatorname{cr}(D) = 3\binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k) E_k(D),$$

equivalently,

$$\operatorname{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 2} E_{\leq \leq k}(D) - \frac{1}{2} \binom{n}{2} \lfloor \frac{n-2}{2} \rfloor$$
$$-\frac{1}{2} \left(1 + (-1)^n \right) E_{\leq \leq \lfloor n/2 \rfloor - 2}(D).$$

(common with Ábrego et al., 2012)

Lemma 2: For every 2-page book drawing *D* of K_n and $0 \le k < n/2 - 1$, we have

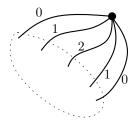
$$E_{\leq\leq k}(D)\geq 3\binom{k+3}{3}$$

• generalization of k-edges to semisimple drawings

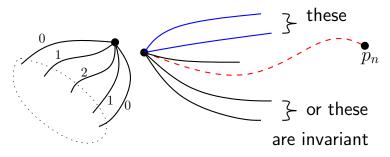
- generalization of k-edges to semisimple drawings
- generalization of Lemma 1 to <u>semisimple</u> drawings and <u>odd</u> crossing number

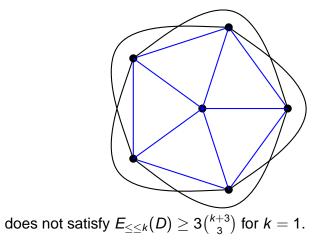
- generalization of k-edges to semisimple drawings
- generalization of Lemma 1 to <u>semisimple</u> drawings and <u>odd</u> crossing number
- generalization of Lemma 2 from 2-page book to monotone semisimple drawings

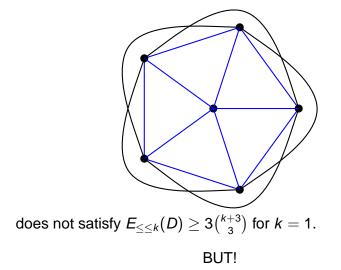
- generalization of k-edges to semisimple drawings
- generalization of Lemma 1 to <u>semisimple</u> drawings and <u>odd</u> crossing number
- generalization of Lemma 2 from 2-page book to monotone semisimple drawings

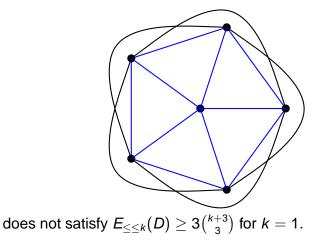


- generalization of k-edges to semisimple drawings
- generalization of Lemma 1 to <u>semisimple</u> drawings and <u>odd</u> crossing number
- generalization of Lemma 2 from 2-page book to monotone semisimple drawings









BUT!

it satisfies

$$E_{\leq\leq\leq k}(D)\geq 3\binom{k+4}{4}$$

Open questions

• Is mon-iocr(K_n)) $\geq Z(n)$?

Open questions

- Is mon-iocr $(K_n) \ge Z(n)$?
- Let $n \ge 3$ and let *D* be a simple drawing of K_n . Suppose that $0 \le k < n/2 1$. Is

$$E_{\leq\leq\leq k}(D)\geq 3\binom{k+4}{4}?$$