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Theorem: (Erdős–Szekeres)

• For every k > 1, there is a smallest f (k) such that
among every f (k) points in general position in the plane
some k points form a convex k-gon.

• f (k) > 2k−2

Conjecture: (Klein-Szekeres) f (k) = 2k−2 + 1

• f (2) = 2, f (3) = 3, f (4) = 5 (easy)

• f (5) = 9 (Makai and Turán)

• f (6) = 17 (Peters and Szekeres, 2006)
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• Tn = set of ordered triples (i, j, k), 1 ≤ i < j < k ≤ n

• signature function σ : Tn ⊂ [n]3 → {−,+}

σ(i, j, k) =’+’ ⇔ triangle pipjpk is counter-clockwise

⇔ point pj is below segment pipk

i j k i j k

σ(i, j, k) = + σ(i, j, k) = −

type of 4-tuple (i, j, k , l):

σ(i, j, k)σ(i, j, l)σ(i, k , l)σ(j, k , l)
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Conjecture: (Peters and Szekeres) For n > 2k−2, any
signature function on Tn induces a generalized convex k-gon.

• proved for k = 5 and n = 9



Question: What is the minimum number of generalized
convex k-tuples? In particular, 4-tuples?
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ugly
cr = 3, iocr = 2 cr = 3, iocr = 1

“double-convex”? “convex”
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simple = semisimple + NO



Crossing numbers

cr(G) = crossing number of G = minimum number of
crossings in a drawing of G



Crossing numbers

cr(G) = crossing number of G = minimum number of
crossings in a drawing of G

cr(G) = rectilinear crossing number of G



Crossing numbers

cr(G) = crossing number of G = minimum number of
crossings in a drawing of G

cr(G) = rectilinear crossing number of G

mon-cr (G) = monotone crossing number of G



Crossing numbers

cr(G) = crossing number of G = minimum number of
crossings in a drawing of G

cr(G) = rectilinear crossing number of G

mon-cr (G) = monotone crossing number of G

mon-ocr +(G) =
monotone semisimple odd crossing number of G =
minimum number of pairs of edges with odd number of
crossings in a monotone semisimple drawing of G



Crossing numbers

cr(G) = crossing number of G = minimum number of
crossings in a drawing of G

cr(G) = rectilinear crossing number of G

mon-cr (G) = monotone crossing number of G

mon-ocr +(G) =
monotone semisimple odd crossing number of G =
minimum number of pairs of edges with odd number of
crossings in a monotone semisimple drawing of G

mon-iocr (G) = mon-ocr −(G) =
monotone independent odd crossing number of G =
minimum number of pairs of independent edges with odd
number of crossings in a monotone drawing of G



Crossing numbers

cr(G) = crossing number of G = minimum number of
crossings in a drawing of G

cr(G) = rectilinear crossing number of G

mon-cr (G) = monotone crossing number of G

mon-ocr +(G) =
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mon-iocr (G) = mon-ocr −(G) =
monotone independent odd crossing number of G =
minimum number of pairs of independent edges with odd
number of crossings in a monotone drawing of G

cr(G) ≤ mon-cr(G) ≤ cr(G)

mon-iocr(G) ≤ mon-ocr+(G) ≤ mon-cr(G)
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known:
cr(Kn) ≤ Z (n)
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Theorem: (B. M. Ábrego, O. Aichholzer, S.
Fernández-Merchant, P. Ramos, and G. Salazar, The 2-page
crossing number of Kn, arXiv:1206.5669 (2012))

The 2-page book crossing number of Kn is Z (n).

Main Theorem:

mon-ocr+(Kn) = mon-cr(Kn) = Z (n)

Theorem:
(B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P.
Ramos, and G. Salazar, LAGOS 2013)

mon-cr(Kn) = Z (n)
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Lemma 1: For every simple drawing D of Kn we have

cr(D) = 3

(

n
4

)

−

⌊n/2⌋−1
∑

k=0

k(n − 2 − k)Ek (D),

equivalently,

cr(D) = 2
∑⌊n/2⌋−2

k=0 E≤≤k(D)− 1
2

(

n
2

) ⌊

n−2
2

⌋

−1
2 (1 + (−1)n)E≤≤⌊n/2⌋−2(D).



Outline of the proof

(common with Ábrego et al., 2012)

Lemma 2: For every 2-page book drawing D of Kn and
0 ≤ k < n/2 − 1, we have

E≤≤k(D) ≥ 3

(

k + 3
3

)

.
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Open questions

• Is mon-iocr(Kn)) ≥ Z (n)?

• Let n ≥ 3 and let D be a simple drawing of Kn. Suppose
that 0 ≤ k < n/2 − 1. Is

E≤≤≤k(D) ≥ 3

(

k + 4
4

)

?


