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 For every k > 1, there is a smallest f(k) such that
among every f(k) points in general position in the plane
some k points form a convex k-gon.
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e f(2) =2,f(3) = 3,f(4) =5 (easy)
e f(5) = 9 (Makai and Turan)
e f(6) = 17 (Peters and Szekeres, 2006)
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o P ={ps1,ps, ..., pn} in general position,
X(Pp1) < x(p2) < -+ < x(pn)
e T, = setof ordered triples (i,j,k), 1 <i<j<k<n

e signature function o : T, C [n]® = {—,+}
o(i,j, k) ="+ < triangle p;p;px is counter-clockwise
< point p; is below segment p;px

i J k 0 J k
o(i,j, k) =
type of 4-tuple (i, ], k, I):

o(i, i, K)o(i,j,)o(i, k,1)a(i, k, 1)
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convex non-convex
generalized 4-cup: o(i,j, k) = o(j, k,1) ="+
generalized 4-cap: o(i,j,k) = o(j, k,l) ="'

Conjecture: (Peters and Szekeres) Forn > 2k=2 any
signature function on T,, induces a generalized convex k-gon.

e provedfork =5andn =29



Question: What is the minimum number of generalized
convex k-tuples? In particular, 4-tuples?
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cr = 3,iocr = 2 cr = 3,iocr =1

“double-convex”? “convex”
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cr(G) = rectilinear crossing number  of G
mon-cr (G) = monotone crossing number  of G

mon-ocr ,(G) =

monotone semisimple odd crossing number of G =
minimum number of pairs of edges with odd number of
crossings in a monotone semisimple drawing of G

mon-iocr (G) = mon-ocr _(G) =

monotone independent odd crossing number of G =
minimum number of pairs of independent edges with odd
number of crossings in a monotone drawing of G

cr(G) < mon-cr(G) < ¢f(G)
mon-iocr(G) < mon-ocr,(G) < mon-cr(G)
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Crossing numbers of complete graphs

n 5(6|7/8 |9 |10 11 |12
cr(Kn) 1/3[9|19|36|62| 102 | 153
cr(Ky) 113|918 |36 |60 | 100 | 150
mon-cr(K,) |[1|3]9|18 |36 |60
mon-iocr(K,) |1 |39 | 18 | 36 | 60

Conjecture:  (Hill; Guy)

owr-an -3 25

known:

cr(K,) < Z(n)
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Meanwhile...

Theorem: (B. M. Abrego, O. Aichholzer, S.
Fernandez-Merchant, P. Ramos, and G. Salazar, The 2-page
crossing number of K,, arXiv:1206.5669 (2012))

The 2-page book crossing number of K, is Z(n).

Main Theorem:

mon-ocr, (K,) = mon-cr(K;) = Z(n)

Theorem:
(B. M. Abrego, O. Aichholzer, S. Fernandez-Merchant, P.
Ramos, and G. Salazar, LAGOS 2013)

mon-cr(K,) = Z(n)
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e k-edges
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Lemma 1: For every simple drawing D of K, we have

[n/2]—1

cr(D) () an—z k)Ex(D),

equivalently,
cr(D) = 23,5 P E<a(D) — 1(3) |52
_§(1+(—1) )E<< in/2)—2(D).



Outline of the proof
(common with Abrego et al., 2012)

Lemma 2: For every 2-page book drawing D of K, and
0 <k <n/2-—1,we have

E-(D) > 3<k ;3)
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does not satisfy E<<(D) > 3(*{?) fork = 1.

BUT!

E<<«(D) > 3(k - 4)

it satisfies

4
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Open questions

e Is mon-iocr(Ky)) > Z(n)?

e Letn > 3 and let D be a simple drawing of K,,. Suppose
that0 <k <n/2—1.1s

K+ 4
E<<<(D) = 3( 4 )?



