Simple realizability of complete abstract topological graphs simplified

Jan Kynčl

Charles University, Prague

Topological graph: drawing of an (abstract) graph in the plane

Topological graph: drawing of an (abstract) graph in the plane

Topological graph: drawing of an (abstract) graph in the plane

Topological graph: drawing of an (abstract) graph in the plane

Topological graph: drawing of an (abstract) graph in the plane

simple: any two edges have at most one common point

simple: any two edges have at most one common point

topological graph

simple complete topological graph

topological graph drawing

simple complete topological graph simple drawing of K_5

$$A = (G, \mathcal{X}); G = (V, E)$$
 is a graph, $\mathcal{X} \subseteq {E \choose 2}$

 $A = (G, \mathcal{X}); G = (V, E)$ is a graph, $\mathcal{X} \subseteq {E \choose 2}$

- T is a simple realization of (G, \mathcal{X}) if
 - T is a simple drawing of G and
 - X is the set of crossing pairs of edges in T

 $A = (G, \mathcal{X}); G = (V, E)$ is a graph, $\mathcal{X} \subseteq {E \choose 2}$

- T is a simple realization of (G, \mathcal{X}) if
 - T is a simple drawing of G and
 - X is the set of crossing pairs of edges in T
- AT-graph A is **simply realizable** if it has a simple realization

 $A = (G, \mathcal{X}); G = (V, E)$ is a graph, $\mathcal{X} \subseteq {E \choose 2}$

- T is a simple realization of (G, \mathcal{X}) if
 - T is a simple drawing of G and
 - X is the set of crossing pairs of edges in T
- AT-graph A is **simply realizable** if it has a simple realization
- **Example:** $A = (K_4, \{\{\{1,3\}, \{2,4\}\}\})$

simple realization of A:

 $A = (G, \mathcal{X}); G = (V, E)$ is a graph, $\mathcal{X} \subseteq {E \choose 2}$

- T is a simple realization of (G, \mathcal{X}) if
 - T is a simple drawing of G and
 - X is the set of crossing pairs of edges in T
- AT-graph A is **simply realizable** if it has a simple realization
- **Example:** $A = (K_4, \{\{\{1,3\}, \{2,4\}\}\})$

simple realization of A:

 $A = (K_5, \emptyset)$

 $A = (G, \mathcal{X}); G = (V, E)$ is a graph, $\mathcal{X} \subseteq {E \choose 2}$

- T is a simple realization of (G, \mathcal{X}) if
 - T is a simple drawing of G and
 - X is the set of crossing pairs of edges in T
- AT-graph A is **simply realizable** if it has a simple realization
- **Example:** $A = (K_4, \{\{\{1,3\}, \{2,4\}\}\})$

simple realization of A:

 $\textit{A} = (\textit{K}_{5}, \emptyset)$ is not simply realizable

instance: AT-graph A question: is A simply realizable?

instance: AT-graph A question: is A simply realizable?

Previously known:

Theorem: (Kratochvíl and Matoušek, 1989) Simple realizability of AT-graphs is NP-complete.

Theorem: (K., 2011)

Simple realizability of complete AT-graphs is in P.

instance: AT-graph A question: is A simply realizable?

Previously known:

Theorem: (Kratochvíl and Matoušek, 1989) Simple realizability of AT-graphs is NP-complete.

Theorem: (K., 2011)

Simple realizability of complete AT-graphs is in P.

"Unfortunately, the algorithm is of rather theoretical nature." — P. Mutzel, 2008

instance: AT-graph A question: is A simply realizable?

Previously known:

Theorem: (Kratochvíl and Matoušek, 1989) Simple realizability of AT-graphs is NP-complete.

Theorem: (K., 2011) Simple realizability of complete AT-graphs is in P.

"Unfortunately, the algorithm is of rather theoretical nature." — P. Mutzel, 2008

"The proof in [..] only gives a highly complex testing procedure, but no description in terms of forbidden minors or crossing configurations."

— M. Chimani, 2011

def.: (H, \mathcal{Y}) is an **AT-subgraph** of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y} = \mathcal{X} \cap {\binom{E(H)}{2}}$

def.: (H, \mathcal{Y}) is an **AT-subgraph** of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y} = \mathcal{X} \cap {\binom{E(H)}{2}}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

def.: (H, \mathcal{Y}) is an **AT-subgraph** of (G, \mathcal{X}) if *H* is a subgraph of *G* and $\mathcal{Y} = \mathcal{X} \cap {\binom{E(H)}{2}}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph *A* with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but *A* itself is not.

def.: (H, \mathcal{Y}) is an **AT-subgraph** of (G, \mathcal{X}) if *H* is a subgraph of *G* and $\mathcal{Y} = \mathcal{X} \cap {\binom{E(H)}{2}}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph *A* with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but *A* itself is not.

 Theorem 1 ⇒ straightforward O(n⁶) algorithm (but does not find the drawing)

def.: (H, \mathcal{Y}) is an **AT-subgraph** of (G, \mathcal{X}) if *H* is a subgraph of *G* and $\mathcal{Y} = \mathcal{X} \cap {\binom{E(H)}{2}}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph *A* with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but *A* itself is not.

- Theorem 1 ⇒ straightforward O(n⁶) algorithm (but does not find the drawing)
- Ábrego, Aichholzer, Fernández-Merchant, Hackl, Pammer, Pilz, Ramos, Salazar and Vogtenhuber (2015) generated a list of simple drawings of K_n for n ≤ 9

Let $A = (K_n, \mathcal{X})$ be a given complete AT-graph with vertex set $[n] = \{1, 2, ..., n\}.$

Let $A = (K_n, \mathcal{X})$ be a given complete AT-graph with vertex set $[n] = \{1, 2, ..., n\}.$

Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.

Let $A = (K_n, \mathcal{X})$ be a given complete AT-graph with vertex set $[n] = \{1, 2, ..., n\}.$

Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.

three main steps:

1) computing the rotation system

Let $A = (K_n, \mathcal{X})$ be a given complete AT-graph with vertex set $[n] = \{1, 2, ..., n\}.$

Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.

three main steps:

- 1) computing the rotation system
- 2) computing the homotopy classes of edges with respect to a star

Let $A = (K_n, \mathcal{X})$ be a given complete AT-graph with vertex set $[n] = \{1, 2, ..., n\}.$

Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.

three main steps:

- 1) computing the rotation system
- 2) computing the homotopy classes of edges with respect to a star
- computing the minimum crossing numbers of pairs of edges

 $\text{AT-graph} \leftrightarrow \text{rotation system}$

 $\text{AT-graph} \leftrightarrow \text{rotation system}$

 $\text{AT-graph} \leftrightarrow \text{rotation system}$

1a) rotation systems of 5-tuples (up to orientation)

 $\text{AT-graph} \leftrightarrow \text{rotation system}$

1a) rotation systems of 5-tuples (up to orientation)1b) orienting 5-tuples (here 6-tuples needed)

 $\text{AT-graph} \leftrightarrow \text{rotation system}$

- 1a) rotation systems of 5-tuples (up to orientation)
- 1b) orienting 5-tuples (here 6-tuples needed)
- 1c) rotations of vertices

 $\text{AT-graph} \leftrightarrow \text{rotation system}$

- 1a) rotation systems of 5-tuples (up to orientation)
- 1b) orienting 5-tuples (here 6-tuples needed)
- 1c) rotations of vertices
- 1d) rotations of crossings

 $\textbf{AT-graph} \leftrightarrow \textbf{rotation system}$

- 1a) rotation systems of 5-tuples (up to orientation)
- 1b) orienting 5-tuples (here 6-tuples needed)
- 1c) rotations of vertices
- 1d) rotations of crossings

Ábrego et al. (pers. com.) verified that an abstract rotation system (ARS) of K_9 is realizable if and only if the ARS of every 5-tuple is realizable, and conjectured that this is true for any K_n .

• Fix a vertex *v* and a topological spanning star *S*(*v*), drawn with the rotation computed in Step 1

- Fix a vertex *v* and a topological spanning star *S*(*v*), drawn with the rotation computed in Step 1
- for every edge *e* not in S(v), compute the order of crossings of *e* with the edges of S(v).

- Fix a vertex *v* and a topological spanning star *S*(*v*), drawn with the rotation computed in Step 1
- for every edge *e* not in S(v), compute the order of crossings of *e* with the edges of S(v).
- drill small holes around the vertices, fix the endpoints of the edges on the boundaries of the holes

- Fix a vertex *v* and a topological spanning star *S*(*v*), drawn with the rotation computed in Step 1
- for every edge *e* not in S(v), compute the order of crossings of *e* with the edges of S(v).
- drill small holes around the vertices, fix the endpoints of the edges on the boundaries of the holes

cr(e, f) = minimum possible number of crossings of two curves from the homotopy classes of *e* and *f*

cr(e, f) = minimum possible number of crossings of two curves from the homotopy classes of *e* and *f*

cr(e) = minimum possible number of self-crossings of a curve from the homotopy class of e

cr(e, f) = minimum possible number of crossings of two curves from the homotopy classes of *e* and *f*

cr(e) = minimum possible number of self-crossings of a curve from the homotopy class of e

Fact: (follows e.g. from Hass–Scott, 1985) It is possible to pick a representative from the homotopy class of every edge so that in the resulting drawing, all the crossing numbers cr(e, f) and cr(e) are realized simultaneously.

cr(e, f) = minimum possible number of crossings of two curves from the homotopy classes of *e* and *f*

cr(e) = minimum possible number of self-crossings of a curve from the homotopy class of e

Fact: (follows e.g. from Hass–Scott, 1985) It is possible to pick a representative from the homotopy class of every edge so that in the resulting drawing, all the crossing numbers cr(e, f) and cr(e) are realized simultaneously.

We need to verify that

- cr(*e*) = 0,
- $cr(e, f) \leq 1$, and

•
$$\operatorname{cr}(\boldsymbol{e},f) = \mathbf{1} \Leftrightarrow \{\boldsymbol{e},f\} \in \mathcal{X}.$$

3b) parity of the crossing numbers (4- and 5-tuples)

3b) parity of the crossing numbers (4- and 5-tuples)3c) crossings of adjacent edges (5-tuples)

- 3b) parity of the crossing numbers (4- and 5-tuples)
- 3c) crossings of adjacent edges (5-tuples)
- 3d) multiple crossings of independent edges (5-tuples)

Picture hanging without crossings

Picture hanging without crossings

similar concept with crossings: Demaine et al., Picture-hanging puzzles, 2014.

- *T* is an **independent** \mathbb{Z}_2 -realization of (G, \mathcal{X}) if
 - T is a drawing of G and
 - \mathcal{X} is the set of pairs of independent edges that cross an odd number of times in \mathcal{T}

- *T* is an **independent** \mathbb{Z}_2 -realization of (G, \mathcal{X}) if
 - T is a drawing of G and
 - \mathcal{X} is the set of pairs of independent edges that cross an odd number of times in T
- AT-graph A is independently Z₂-realizable if it has an independent Z₂-realization

- *T* is an **independent** \mathbb{Z}_2 -realization of (G, \mathcal{X}) if
 - T is a drawing of G and
 - \mathcal{X} is the set of pairs of independent edges that cross an odd number of times in T
- AT-graph A is independently Z₂-realizable if it has an independent Z₂-realization
- **Obs.:** simple realization \Rightarrow independent \mathbb{Z}_2 -realization

- *T* is an **independent** \mathbb{Z}_2 -realization of (G, \mathcal{X}) if
 - T is a drawing of G and
 - \mathcal{X} is the set of pairs of independent edges that cross an odd number of times in T
- AT-graph A is independently Z₂-realizable if it has an independent Z₂-realization

Obs.: simple realization \Rightarrow independent \mathbb{Z}_2 -realization **Example:**

 $\textit{A} = \left(\textit{K}_{4}, \{\{\{1,3\},\{2,4\}\},\{\{1,2\},\{3,4\}\},\{\{1,4\},\{2,3\}\}\}\right)$

independent \mathbb{Z}_2 -realization of *A*:

- *T* is an **independent** \mathbb{Z}_2 -realization of (G, \mathcal{X}) if
 - T is a drawing of G and
 - \mathcal{X} is the set of pairs of independent edges that cross an odd number of times in T
- AT-graph A is independently Z₂-realizable if it has an independent Z₂-realization

Obs.: simple realization \Rightarrow independent \mathbb{Z}_2 -realization **Example:**

 $\textit{A} = \left(\textit{K}_{4}, \{\{\{1,3\},\{2,4\}\},\{\{1,2\},\{3,4\}\},\{\{1,4\},\{2,3\}\}\}\right)$

independent \mathbb{Z}_2 -realization of *A*:

$$A = (K_5, \emptyset)$$

- *T* is an **independent** \mathbb{Z}_2 -realization of (G, \mathcal{X}) if
 - T is a drawing of G and
 - \mathcal{X} is the set of pairs of independent edges that cross an odd number of times in T
- AT-graph A is independently Z₂-realizable if it has an independent Z₂-realization

Obs.: simple realization \Rightarrow independent \mathbb{Z}_2 -realization **Example:**

 $\textit{A} = \left(\textit{K}_{4}, \{\{\{1,3\},\{2,4\}\},\{\{1,2\},\{3,4\}\},\{\{1,4\},\{2,3\}\}\}\right)$

independent \mathbb{Z}_2 -realization of *A*:

 $\mathcal{A} = (\mathcal{K}_5, \emptyset)$ is not independently \mathbb{Z}_2 -realizable (Hanani–Tutte)

def.: Call an AT-graph (G, \mathcal{X}) even (or an even *G*) if $|\mathcal{X}|$ is even, and odd (or an odd *G*) if $|\mathcal{X}|$ is odd.

def.: Call an AT-graph (G, \mathcal{X}) even (or an even *G*) if $|\mathcal{X}|$ is even, and odd (or an odd *G*) if $|\mathcal{X}|$ is odd.

Theorem 3: Every complete AT-graph that is not independently \mathbb{Z}_2 -realizable has an AT-subgraph on at most six vertices that is not independently \mathbb{Z}_2 -realizable.

def.: Call an AT-graph (G, \mathcal{X}) even (or an even *G*) if $|\mathcal{X}|$ is even, and odd (or an odd *G*) if $|\mathcal{X}|$ is odd.

Theorem 3: Every complete AT-graph that is not independently \mathbb{Z}_2 -realizable has an AT-subgraph on at most six vertices that is not independently \mathbb{Z}_2 -realizable.

More precisely, a complete AT-graph is independently \mathbb{Z}_2 -realizable if and only if it contains no even K_5 and no odd $2K_3$ as an AT-subgraph.