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or

complete: E =
(

V

2

)

topological graph simple complete topological graph

drawing simple drawing of K5
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• Abstract topological graph (AT-graph):

A = (G,X ); G = (V ,E) is a graph, X ⊆
(

E

2

)

• T is a simple realization of (G,X ) if

• T is a simple drawing of G and
• X is the set of crossing pairs of edges in T

• AT-graph A is simply realizable if it has a simple

realization

Example: A = (K4, {{{1, 3}, {2, 4}}})

simple realization of A:

1 4

2 3

A = (K5, ∅) is not simply realizable
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Simple realizability

instance: AT-graph A

question: is A simply realizable?

Previously known:

Theorem: (Kratochvı́l and Matoušek, 1989)

Simple realizability of AT-graphs is NP-complete.

Theorem: (K., 2011)

Simple realizability of complete AT-graphs is in P.

“Unfortunately, the algorithm is of rather theoretical nature.”

— P. Mutzel, 2008

“The proof in [..] only gives a highly complex testing

procedure, but no description in terms of forbidden minors or

crossing configurations.”

— M. Chimani, 2011
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Main result

def.: (H,Y) is an AT-subgraph of (G,X ) if H is a subgraph

of G and Y = X ∩
(

E(H)
2

)

Theorem 1: Every complete AT-graph that is not simply

realizable has an AT-subgraph on at most six vertices that is

not simply realizable.

Theorem 2: There is a complete AT-graph A with six vertices

such that all its induced AT-subgraphs with five vertices are

simply realizable, but A itself is not.

• Theorem 1 ⇒ straightforward O(n6) algorithm

(but does not find the drawing)

• Ábrego, Aichholzer, Fernández-Merchant, Hackl,

Pammer, Pilz, Ramos, Salazar and Vogtenhuber (2015)

generated a list of simple drawings of Kn for n ≤ 9
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Proof of Theorem 1 (sketch)

Let A = (Kn,X ) be a given complete AT-graph with vertex set

[n] = {1, 2, . . . , n}.

Main idea: take the previous “highly complex algorithm” and

find a small obstruction every time it rejects the input.

three main steps:

1) computing the rotation system

2) computing the homotopy classes of edges with respect

to a star

3) computing the minimum crossing numbers of pairs of

edges
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Step 1: computing the rotation system

v

AT-graph ↔ rotation system

1a) rotation systems of 5-tuples (up to orientation)

1b) orienting 5-tuples (here 6-tuples needed)

1c) rotations of vertices

1d) rotations of crossings

Ábrego et al. (pers. com.) verified that an abstract rotation

system (ARS) of K9 is realizable if and only if the ARS of

every 5-tuple is realizable, and conjectured that this is true

for any Kn.
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Step 3: computing the minimum crossing numbers

cr(e, f ) = minimum possible number of crossings of two

curves from the homotopy classes of e and f

cr(e) = minimum possible number of self-crossings of a

curve from the homotopy class of e

Fact: (follows e.g. from Hass–Scott, 1985) It is possible to

pick a representative from the homotopy class of every edge

so that in the resulting drawing, all the crossing numbers

cr(e, f ) and cr(e) are realized simultaneously.

We need to verify that

• cr(e) = 0,

• cr(e, f ) ≤ 1, and

• cr(e, f ) = 1 ⇔ {e, f} ∈ X .
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3a) characterization of the homotopy classes

v

3b) parity of the crossing numbers (4- and 5-tuples)

3c) crossings of adjacent edges (5-tuples)

3d) multiple crossings of independent edges (5-tuples)
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remove one nail:

β

α

N0

N3

N1

N2

similar concept with crossings:

Demaine et al., Picture-hanging puzzles, 2014.
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Independent Z2-realizability

• T is an independent Z2-realization of (G,X ) if

• T is a drawing of G and
• X is the set of pairs of independent edges that

cross an odd number of times in T

• AT-graph A is independently Z2-realizable if it has an

independent Z2-realization

Obs.: simple realization ⇒ independent Z2-realization

Example:

A = (K4, {{{1, 3}, {2, 4}}, {{1, 2}, {3, 4}}, {{1, 4}, {2, 3}}})

independent Z2-realization of A:

1

4

2

3

A = (K5, ∅) is not independently Z2-realizable (Hanani–Tutte)
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def.: Call an AT-graph (G,X ) even (or an even G) if |X | is even,

and odd (or an odd G) if |X | is odd.

Theorem 3: Every complete AT-graph that is not independently

Z2-realizable has an AT-subgraph on at most six vertices that is not

independently Z2-realizable.

More precisely, a complete AT-graph is independently Z2-realizable

if and only if it contains no even K5 and no odd 2K3 as an

AT-subgraph.


