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T
w
(G) = number of weak isomorphism classes

of simple topological graphs that realize G

Complete graphs

Theorem: (J. Pach and G. Tóth, 2006)

2Ω(n2) ≤ T
w
(Kn) ≤ 2O(n2 log n)

Main Theorem 1:

T
w
(Kn) ≤ 2n2

·α(n)O(1)
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Weak isomorphism classes, complete graphs

tools:

• weak isomorphism class ↔ a rotation system

• (J. Pach, J. Solymosi and G. Tóth, 2003)
Every simple complete topological graph with 4304

vertices contains one of the following subgraphs:

a convex graph C5 a twisted graph T6

v1 v2 v3 v4 v5 v6

• an upper bound on the size of a set of permutations with
bounded VC-dimension (J. Cibulka and JK, 2012)
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General graphs

Main Theorem 2: Let G be a graph with n vertices and m
edges. Then

T
w
(G) ≤ 2O(n2 log(m/n))

.

If m < n3/2, then

T
w
(G) ≤ 2O(mn1/2 log n)

.

Let ε > 0. If G is a graph with no isolated vertices and
satisfies m > (1 + ε)n or ∆(G) < (1 − ε)n, then

T
w
(G) ≥ 2Ω(max(m,n log n))

.

Corollary: There are at most 2O(n3/2 log n) intersection graphs
of n pseudosegments.
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Weak isomorphism classes, general graphs

tools for upper bounds:

• topological spanning tree T T -representation
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• types of (pseudo)chords ⇒ pairs of crossing edges

• bounded number of crossings of the pseudochords
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Complete graphs

Theorem: (JK, 2009)

2Ω(n4) ≤ T (Kn) ≤ 2(1/12+o(1))(n4)
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General graphs

Theorem: Let G be a graph with n vertices, m edges and no
isolated vertices. Then

T (G) ≤ 2m2+11.51mn+O(n log n) ≤ 223.118m2
+ c, and

T (G) ≤ 2m2+2mn(log(1+ m
4n )+3.443)+O(n log n) ≤ 211.265m2

+ c.

Let ε > 0. For graphs G with m > (6 + ε)n we have

T (G) ≥ 2Ω(m2)
.

For graphs G with m > ω(n) we have

T (G) ≥ 2m2/60 − c.

“very sparse” graphs → rooted connected planar loopless
maps (T.R.S. Walsh and A. B. Lehman, 1975)

T (G) ≤ 2(log2(256/27)+o(1))m2
≤ 23.246m2

+ c
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Isomorphism classes, general graphs

tools for upper bounds:

• topological spanning tree and T -representation

• simple quadrangulations of a disc
(R. C. Mullin and P. J. Schellenberg, 1968)

• chord diagrams (R. C. Read, 1979) and arrangements of
pseudochords with fixed boundary
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Open questions

• Is Tw(G) maximal for G = Kn, among graphs G with n
vertices?

• Or, more generally, is Tw(H) ≤ Tw(G) for H ⊆ G?

• What is the number of weak isomorphism classes of
drawings of G where every two edges have at most two
common points?


