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simple: any two edges have at most one common point

X
complete: E = (})

topological graph simple complete topological graph
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Weak isomorphism classes

T+(G) = number of weak isomorphism classes
of simple topological graphs that realize G

Complete graphs
Theorem: (J. Pach and G. Toth, 2006)

ZQ(nz) < Tw(Kn) < 20(n2 logn)

Main Theorem 1:

To(Kp) < 270
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Weak isomorphism classes, complete graphs

tools:
e weak isomorphism class <+ a rotation system

e (J. Pach, J. Solymosi and G. T6th, 2003)
Every simple complete topological graph with 43°°
vertices contains one of the following subgraphs:

I

a convex graph Cs a twisted graph Tj

e an upper bound on the size of a set of permutations with
bounded VC-dimension (J. Cibulka and JK, 2012)
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General graphs

Main Theorem 2: Let G be a graph with n vertices and m
edges. Then
Tw(G) < 20(n?log(m/n))

If m < n32, then
T4(G) < 20(mn*/2logn).

Lete > 0. If G is a graph with no isolated vertices and
satisfies m > (14 ¢)nor A(G) < (1 — ¢)n, then

TW(G) > ZQ(max(m,n log n))‘

Corollary: There are at most 20(n*/2logn) jntersection graphs
of n pseudosegments.
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Weak isomorphism classes, general graphs

tools for upper bounds:

e topological spanning tree T T -representation
V6
Vg / U1
C2 T
C1
5
U3 V2

e types of (pseudo)chords = pairs of crossing edges
e bounded number of crossings of the pseudochords
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Isomorphism classes

T(G) = number of isomorphism classes
of simple topological graphs that realize G

Complete graphs
Theorem: (JK, 2009)

29(!’]4) < T(Kn) < 2(1/12+0(1))(n4)
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General graphs

Theorem: Let G be a graph with n vertices, m edges and no
isolated vertices. Then

T(G) < 2m2+11.51mn+0(nlog n) < 223.118m2 tc, and
T(G) < 2m2+2mn(log(1+%)+3.443)+O(nIog n) < 211.265m2 +c.
Lete > 0. For graphs G with m > (6 + £)n we have
T(G) > 2%,
For graphs G with m > w(n) we have

T(G) >2™/% _¢.

“very sparse” graphs — rooted connected planar loopless
maps (T.R.S. Walsh and A. B. Lehman, 1975)

T(G) < 2(l09;(256/27)+o(1))m* < p3.246m* | ¢
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Isomorphism classes, general graphs
tools for upper bounds:

« topological spanning tree and 7 -representation

e simple quadrangulations of a disc
(R. C. Mullin and P. J. Schellenberg, 1968)

e chord diagrams (R. C. Read, 1979) and arrangements of
pseudochords with fixed boundary
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Open questions

e Is Ty (G) maximal for G = K,, among graphs G with n
vertices?

e Or, more generally, is T,(H) < T, (G) forH C G?
e What is the number of weak isomorphism classes of

drawings of G where every two edges have at most two
common points?



