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Graph: G = (V, E), |V | < ∞, E ⊆
(

V

2

)

Topological graph: a drawing of a graph in the plane

vertices = points

edges = simple curves

- edges do not pass through any vertices other than
their end-points

- any two edges have only finitely many common points

- any intersection point of two edges is either a common
end-point or a crossing (no touching allowed)

- at most two edges can intersect in one crossing
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simple: any two edges have at most one common point

complete: E =
(

V

2

)

topological graph simple complete topological graph
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Abstract topological graph (AT-graph):

A = (G, R); G = (V, E) is a graph, R ⊆
(

E

2

)

in a topological graph T ... RT = set of crossing pairs of
edges

AT-graph A is

realizable if there exists a topological graph T which is a
drawing of G and RT = R.

simply realizable ... T is simple

rectilinearly realizable ... edges of T are straight-line
segments

weakly realizable ... RT ⊆ R
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Example: A = (K4, {{{1, 3}, {2, 4}}})
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(simple, weak, rectilinear) realizability:

instance: AT-graf A
question: is A (simply, weakly, rectilinearly) realizable?

Theorem: [J. Kratochvíl, 1991]
The realizability and the weak realizability are NP-hard.

Theorem: [J. Pach, G. Tóth, 2002;
M. Schaefer, D. Štefankovič, 2004]
The realizability and the weak realizability are decidable.

Theorem: [M. Schaefer, E. Sedgwick, D. Štefankovič,
2004]
The realizability and the weak realizability are in NP.
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Main results

Theorem:

AT-graphs complete AT-graphs

realizability NP-complete [K91, SSŠ04] NP-complete

weak r. NP-complete [K91, SSŠ04] NP-complete

simple r. NP-complete P

weak simple r. NP-complete NP-complete

weak rectilin. r. NP-hard NP-hard
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NP-hard problems
main idea of the proof:

reduction from the
planar 3-connected 3-SAT [J. Kratochvíl, 1991]
which is an NP-complete problem [J. Kratochvíl, 1994]

Hc

H
x1(c)

H
x2(c)

H
x3(c)

TRUE
TRUE

FALSE

c = (x1(c) ∨ ¬x2(c) ∨ ¬x3(c))
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example of variable and clause gadgets for the simple
realizability:

TRUE FALSE

TRUE TRUE

FALSE



Simple realizability of complete AT-graphs

Proposition:

(1) A complete AT-graph determines the extended rotation
system of its simple realization (up to inversion).

(2) For every edge e of a simple complete topological
graph T and for each pair of edges f, f ′ ∈ E(G) that
have a common end-point and cross e, the AT-graph of
T uniquely determines the order of crossings of e with
the edges f and f ′.
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Algorithm:

- for each induced subgraph on 5 vertices: the rotation
system

- the extended rotation system of the whole graph

- for a chosen vertex v, for each non-incident edge e: the
order in which e crosses the edges of the star S(v)

- a (partial) star-cut representation

- the order of the end-points of the pseudochords on the
perimeter minimizing the total number of crossings

- the order of crossings of pseudochords with other
pseudochords
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