The Complexity of Several Realizability Problems for Abstract Topological Graphs

Jan Kynčl

Charles University, Prague

Topological graph: a drawing of a graph in the plane

vertices = points

edges = simple curves

Topological graph: a drawing of a graph in the plane

vertices = points

- edges = simple curves
 - edges do not pass through any vertices other than their end-points

Topological graph: a drawing of a graph in the plane

vertices = points

- edges = simple curves
 - edges do not pass through any vertices other than their end-points
 - any two edges have only finitely many common points

Topological graph: a drawing of a graph in the plane vertices = points

edges = simple curves

- edges do not pass through any vertices other than their end-points
- any two edges have only finitely many common points
- any intersection point of two edges is either a common end-point or a **crossing** (no touching allowed)

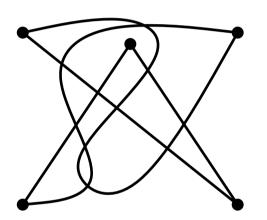
Topological graph: a drawing of a graph in the plane vertices = points

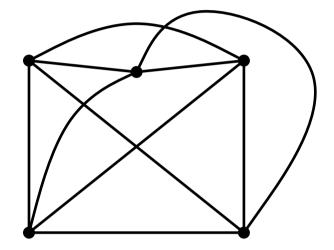
edges = simple curves

- edges do not pass through any vertices other than their end-points
- any two edges have only finitely many common points
- any intersection point of two edges is either a common end-point or a **crossing** (no touching allowed)
- at most two edges can intersect in one crossing

simple: any two edges have at most one common point complete: $E = {V \choose 2}$

simple: any two edges have at most one common point complete: $E = {V \choose 2}$





topological graph

simple complete topological graph

Abstract topological graph (AT-graph): A = (G, R); G = (V, E) is a graph, $R \subseteq {E \choose 2}$

A = (G, R); G = (V, E) is a graph, $R \subseteq {E \choose 2}$

in a topological graph $T \dots R_T = \text{set of crossing pairs of edges}$

A = (G, R); G = (V, E) is a graph, $R \subseteq {E \choose 2}$

in a topological graph $T \dots R_T = \text{set of crossing pairs of edges}$

AT-graph A is

realizable if there exists a topological graph T which is a drawing of G and $R_T = R$.

A = (G, R); G = (V, E) is a graph, $R \subseteq {E \choose 2}$

in a topological graph $T \dots R_T = \text{set of crossing pairs of edges}$

AT-graph A is

realizable if there exists a topological graph T which is a drawing of G and $R_T = R$.

simply realizable $\dots T$ is simple

A = (G, R); G = (V, E) is a graph, $R \subseteq {E \choose 2}$

in a topological graph $T \dots R_T = \text{set of crossing pairs of edges}$

AT-graph A is

realizable if there exists a topological graph T which is a drawing of G and $R_T = R$.

simply realizable $\dots T$ is simple

rectilinearly realizable ... edges of T are straight-line segments

A = (G, R); G = (V, E) is a graph, $R \subseteq {E \choose 2}$

in a topological graph $T \dots R_T = \text{set of crossing pairs of edges}$

AT-graph A is

realizable if there exists a topological graph T which is a drawing of G and $R_T = R$.

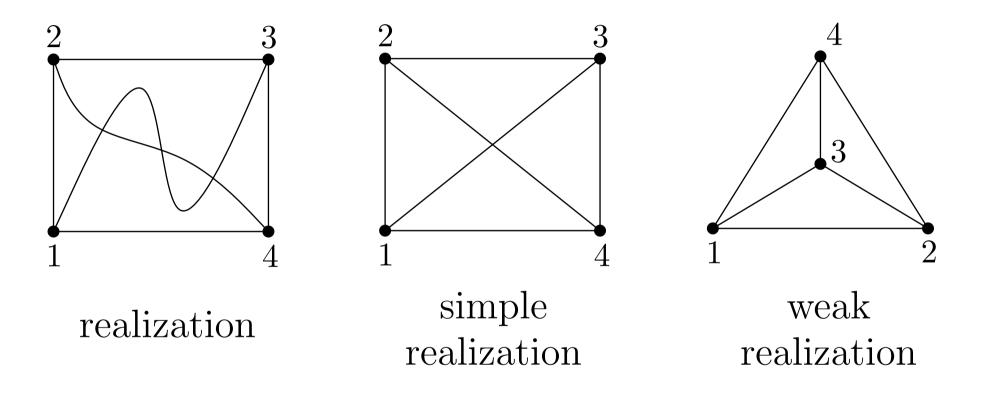
simply realizable $\dots T$ is simple

rectilinearly realizable ... edges of T are straight-line segments

weakly realizable ... $R_T \subseteq R$

Example: $A = (K_4, \{\{\{1,3\}, \{2,4\}\}\})$

Example: $A = (K_4, \{\{\{1,3\}, \{2,4\}\}\})$



instance: AT-graf A question: is A (simply, weakly, rectilinearly) realizable?

```
instance: AT-graf A question: is A (simply, weakly, rectilinearly) realizable?
```

Theorem: [J. Kratochvíl, 1991] The realizability and the weak realizability are NP-hard.

```
instance: AT-graf A question: is A (simply, weakly, rectilinearly) realizable?
```

Theorem: [J. Kratochvíl, 1991] The realizability and the weak realizability are NP-hard.

Theorem: [J. Pach, G. Tóth, 2002; M. Schaefer, D. Štefankovič, 2004] The realizability and the weak realizability are decidable.

```
instance: AT-graf A question: is A (simply, weakly, rectilinearly) realizable?
```

Theorem: [J. Kratochvíl, 1991] The realizability and the weak realizability are NP-hard.

Theorem: [J. Pach, G. Tóth, 2002; M. Schaefer, D. Štefankovič, 2004] The realizability and the weak realizability are decidable.

Theorem: [M. Schaefer, E. Sedgwick, D. Štefankovič, 2004] The realizability and the weak realizability are in NP.

	AT-graphs	complete AT-graphs
realizability		
weak r.		
simple r.		
weak simple r.		
weak rectilin. r.		

	AT-graphs	complete AT-graphs
realizability	NP-complete [K91, SSŠ04]	
weak r.	NP-complete [K91, SSŠ04]	
simple r.		
weak simple r.		
weak rectilin. r.		

	AT-graphs	complete AT-graphs
realizability	NP-complete [K91, SSŠ04]	
weak r.	NP-complete [K91, SSŠ04]	
simple r.	NP-complete	
weak simple r.	NP-complete	
weak rectilin. r.		

	AT-graphs	complete AT-graphs
realizability	NP-complete [K91, SSŠ04]	
weak r.	NP-complete [K91, SSŠ04]	
simple r.	NP-complete	
weak simple r.	NP-complete	
weak rectilin. r.	NP-hard	

	AT-graphs	complete AT-graphs
realizability	NP-complete [K91, SSŠ04]	NP-complete
weak r.	NP-complete [K91, SSŠ04]	NP-complete
simple r.	NP-complete	
weak simple r.	NP-complete	
weak rectilin. r.	NP-hard	

	AT-graphs	complete AT-graphs
realizability	NP-complete [K91, SSŠ04]	NP-complete
weak r.	NP-complete [K91, SSŠ04]	NP-complete
simple r.	NP-complete	
weak simple r.	NP-complete	NP-complete
weak rectilin. r.	NP-hard	NP-hard

	AT-graphs	complete AT-graphs
realizability	NP-complete [K91, SSŠ04]	NP-complete
weak r.	NP-complete [K91, SSŠ04]	NP-complete
simple r.	NP-complete	Ρ
weak simple r.	NP-complete	NP-complete
weak rectilin. r.	NP-hard	NP-hard

NP-hard problems

main idea of the proof:

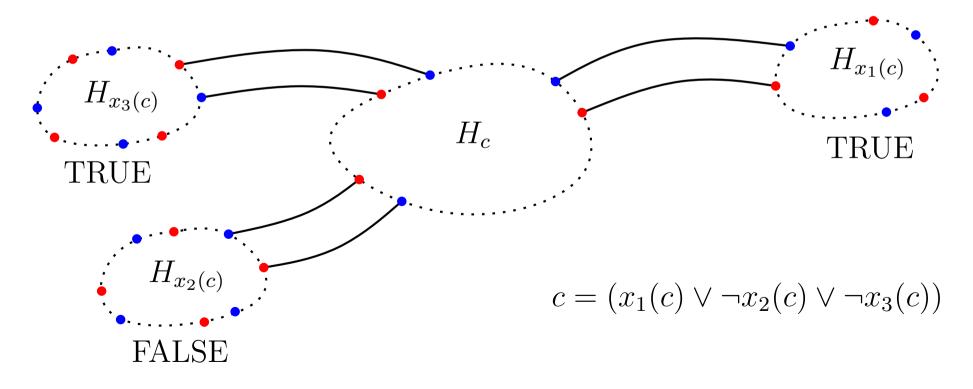
reduction from the planar 3-connected 3-SAT [J. Kratochvíl, 1991] which is an NP-complete problem [J. Kratochvíl, 1994]

NP-hard problems

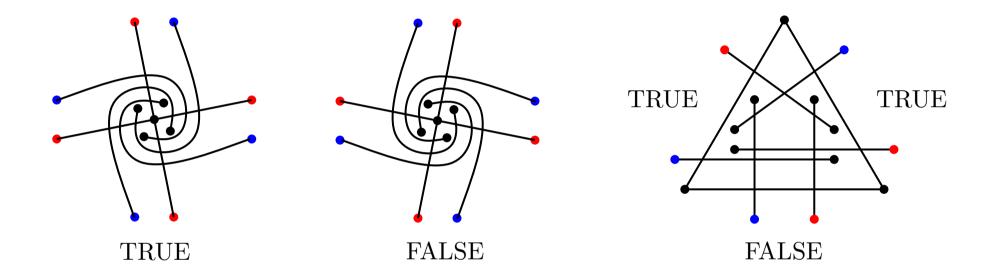
main idea of the proof:

reduction from the

planar 3-connected 3-SAT [J. Kratochvíl, 1991] which is an NP-complete problem [J. Kratochvíl, 1994]



example of variable and clause gadgets for the simple realizability:



Simple realizability of complete AT-graphs

Simple realizability of complete AT-graphs Proposition:

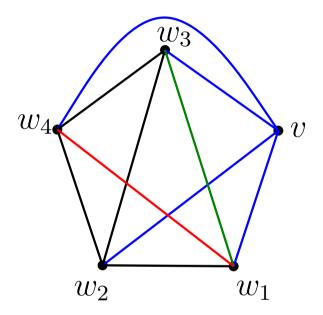
(1) A complete AT-graph determines the extended rotation system of its simple realization (up to inversion).

Simple realizability of complete AT-graphs Proposition:

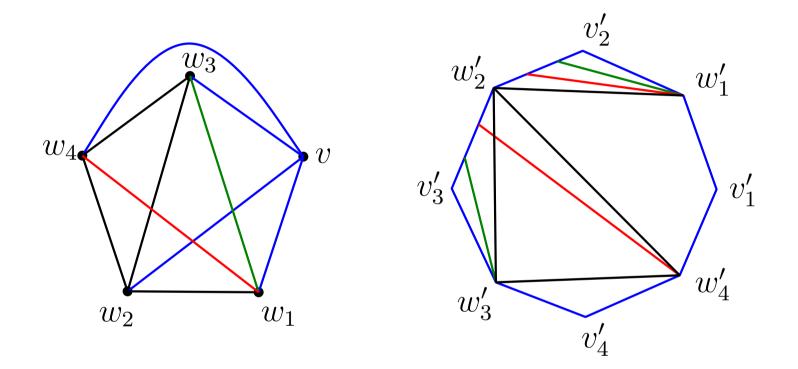
- (1) A complete AT-graph determines the extended rotation system of its simple realization (up to inversion).
- (2) For every edge e of a simple complete topological graph T and for each pair of edges $f, f' \in E(G)$ that have a common end-point and cross e, the AT-graph of T uniquely determines the order of crossings of e with the edges f and f'.

star-cut representation:

star-cut representation:



star-cut representation:



- for each induced subgraph on $5\ {\rm vertices}$: the rotation system

- for each induced subgraph on $5\ {\rm vertices}$: the rotation system
- the extended rotation system of the whole graph

- for each induced subgraph on 5 vertices: the rotation system
- the extended rotation system of the whole graph
- for a chosen vertex v, for each non-incident edge e: the order in which e crosses the edges of the star S(v)

- for each induced subgraph on 5 vertices: the rotation system
- the extended rotation system of the whole graph
- for a chosen vertex v, for each non-incident edge e: the order in which e crosses the edges of the star S(v)
- a (partial) star-cut representation

- for each induced subgraph on 5 vertices: the rotation system
- the extended rotation system of the whole graph
- for a chosen vertex v, for each non-incident edge e: the order in which e crosses the edges of the star S(v)
- a (partial) star-cut representation
- the order of the end-points of the pseudochords on the perimeter minimizing the total number of crossings

- for each induced subgraph on 5 vertices: the rotation system
- the extended rotation system of the whole graph
- for a chosen vertex v, for each non-incident edge e: the order in which e crosses the edges of the star S(v)
- a (partial) star-cut representation
- the order of the end-points of the pseudochords on the perimeter minimizing the total number of crossings
- the order of crossings of pseudochords with other pseudochords