Enumeration of Simple Complete Topological Graphs

Jan Kynčl Charles University, Prague

Graph:
$$G = (V, E), |V| < \infty, E \subseteq {V \choose 2}$$

Topological graph: a drawing of a graph in the plane

vertices = points

edges = simple curves

Topological graph: a drawing of a graph in the plane

vertices = points

- edges = simple curves
 - edges do not pass through any vertices other than their end-points

Topological graph: a drawing of a graph in the plane vertices = points

- edges = simple curves
 - edges do not pass through any vertices other than their end-points
 - any two edges have only finitely many common points

Topological graph: a drawing of a graph in the plane vertices = points

- edges = simple curves
 - edges do not pass through any vertices other than their end-points
 - any two edges have only finitely many common points
 - any intersection point of two edges is either a common end-point or a **crossing** (no touching allowed)

Topological graph: a drawing of a graph in the plane vertices = points

edges = simple curves

- edges do not pass through any vertices other than their end-points
- any two edges have only finitely many common points
- any intersection point of two edges is either a common end-point or a **crossing** (no touching allowed)
- at most two edges can intersect in one crossing

simple: any two edges have at most one common point complete: $E = {V \choose 2}$

simple: any two edges have at most one common point complete: $E = {V \choose 2}$

topological graph

simple complete topological graph

isomorphic if there exists a homeomorphism (of the sphere) which maps ${\cal G}$ onto ${\cal H}$

isomorphic if there exists a homeomorphism (of the sphere) which maps G onto H

isomorphic if there exists a homeomorphism (of the sphere) which maps G onto H

isomorphic if there exists a homeomorphism (of the sphere) which maps G onto H

isomorphic if there exists a homeomorphism (of the sphere) which maps G onto H

T(n) = number of isomorphism classes $T_{
m w}(n) =$ number of weak isomorphism classes of simple complete topological graphs on n vertices T(n) = number of isomorphism classes $T_w(n) =$ number of weak isomorphism classes of simple complete topological graphs on n vertices **Theorem** [J. Pach, G. Tóth, 2004]:

$$2^{\Omega(n^2)} \le T_{\mathbf{w}}(n) \le 2^{O(n^2 \log n)}$$

T(n) = number of isomorphism classes $T_w(n) =$ number of weak isomorphism classes of simple complete topological graphs on n vertices **Theorem** [J. Pach, G. Tóth, 2004]:

$$2^{\Omega(n^2)} \le T_{\mathbf{w}}(n) \le 2^{O(n^2 \log n)}$$

Theorem 1:

$$T(n) = 2^{\Theta(n^4)}$$

T(n) = number of isomorphism classes $T_{\rm w}(n) =$ number of weak isomorphism classes of simple complete topological graphs on n vertices **Theorem** [J. Pach, G. Tóth, 2004]:

 $2^{\Omega(n^2)} \le T_{\mathbf{w}}(n) \le 2^{O(n^2 \log n)}$

Theorem 1:

$$T(n) = 2^{\Theta(n^4)}$$

Lower bounds are attained even for **extendable** graphs

T(n) = number of isomorphism classes $T_{\rm w}(n) =$ number of weak isomorphism classes of simple complete topological graphs on n vertices **Theorem** [J. Pach, G. Tóth, 2004]:

 $2^{\Omega(n^2)} \le T_{\mathbf{w}}(n) \le 2^{O(n^2 \log n)}$

Theorem 1:

$$T(n) = 2^{\Theta(n^4)}$$

Lower bounds are attained even for **extendable** graphs

Remark: The number of weak isomorphism classes of complete **geometric** graphs on *n* vertices is $2^{O(n \log n)}$

Graphs with maximum number of crossings

 $T_{\rm w}^{\rm max}(n) =$ number of weak isomorphism classes of simple complete topological graphs on n vertices with $\binom{n}{4}$ crossings

Graphs with maximum number of crossings

 $T_{\rm w}^{\rm max}(n) =$ number of weak isomorphism classes of simple complete topological graphs on n vertices with $\binom{n}{4}$ crossings

Theorem [H. Harborth, I. Mengersen, 1992]:

 $T_{\rm w}^{\rm max}(n) \ge e^{c\sqrt{n}}$

Graphs with maximum number of crossings

 $T_{\rm w}^{\rm max}(n) =$ number of weak isomorphism classes of simple complete topological graphs on n vertices with $\binom{n}{4}$ crossings

Theorem [H. Harborth, I. Mengersen, 1992]:

 $T_{\rm w}^{\rm max}(n) \ge e^{c\sqrt{n}}$

Theorem 2:

$$T_{\rm w}^{\max}(n) \ge 2^{n(\log n - O(1))}$$

Proof of Theorem 1

Lower bound: $T(n) \geq 2^{\Omega(n^4)}$

Proof of Theorem 1

Lower bound: $T(n) \ge 2^{\Omega(n^4)}$

Proof of Theorem 1

Lower bound: $T(n) \ge 2^{\Omega(n^4)}$

Proposition: There is a two-to-one correspondence between rotation systems and weak isomorphism classes of simple complete topological graphs.

Proposition: There is a two-to-one correspondence between rotation systems and weak isomorphism classes of simple complete topological graphs.

star-cut representation:

Proposition: There is a two-to-one correspondence between rotation systems and weak isomorphism classes of simple complete topological graphs.

star-cut representation:

Proposition: There is a two-to-one correspondence between rotation systems and weak isomorphism classes of simple complete topological graphs.

star-cut representation:

 $2^{O(n^2\log n)}$ weak isomorphism classes

 $2^{O(n^2\log n)}$ weak isomorphism classes $O(n^3)$ pseudochords

 $2^{O(n^2 \log n)}$ weak isomorphism classes $O(n^3)$ pseudochords $\Rightarrow 2^{O(n^3 \log n)}$ perimetric orders

 $2^{O(n^2 \log n)}$ weak isomorphism classes $O(n^3)$ pseudochords $\Rightarrow 2^{O(n^3 \log n)}$ perimetric orders $O(n^4)$ crossings

 $2^{O(n^2 \log n)}$ weak isomorphism classes $O(n^3)$ pseudochords $\Rightarrow 2^{O(n^3 \log n)}$ perimetric orders $O(n^4)$ crossings $\Rightarrow 2^{O(n^4)}$ arrangements

 $2^{O(n^2 \log n)}$ weak isomorphism classes $O(n^3)$ pseudochords $\Rightarrow 2^{O(n^3 \log n)}$ perimetric orders $O(n^4)$ crossings $\Rightarrow 2^{O(n^4)}$ arrangements $\Rightarrow 2^{O(n^4)}$ isomorphism classes