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Graph: G = (V, E), |V | < ∞, E ⊆
(

V

2

)

Topological graph: a drawing of a graph in the plane

vertices = points

edges = simple curves

- edges do not pass through any vertices other than
their end-points

- any two edges have only finitely many common points

- any intersection point of two edges is either a common
end-point or a crossing (no touching allowed)

- at most two edges can intersect in one crossing
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simple: any two edges have at most one common point

complete: E =
(

V

2

)

topological graph simple complete topological graph
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Topological graphs G, H are

isomorphic if there exists a homeomorphism (of the
sphere) which maps G onto H

weakly isomorphic if the same pairs of edges cross in G

and in H
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T (n) = number of isomorphism classes

Tw(n) = number of weak isomorphism classes

of simple complete topological graphs on n vertices

Theorem [J. Pach, G. Tóth, 2004]:

2Ω(n2) ≤ Tw(n) ≤ 2O(n2 log n)

Theorem 1:
T (n) = 2Θ(n4)

Lower bounds are attained even for extendable graphs

Remark: The number of weak isomorphism classes of
complete geometric graphs on n vertices is 2O(n log n)
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Graphs with maximum number of crossings

Tmax
w (n) = number of weak isomorphism classes of

simple complete topological graphs on n vertices with
(

n

4

)

crossings

Theorem [H. Harborth, I. Mengersen, 1992]:

Tmax
w (n) ≥ ec

√
n

Theorem 2:

Tmax
w (n) ≥ 2n(log n−O(1))
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Proof of Theorem 1

Lower bound: T (n) ≥ 2Ω(n4)
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Upper bound: T (n) ≤ 2O(n4)

Proposition: There is a two-to-one correspondence
between rotation systems and weak isomorphism classes
of simple complete topological graphs.
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Proposition: The number of non-isomorphic simple
arrangements of n pseudochords with fixed perimetric
order inducing k crossings is at most 2k.

2O(n2 log n) weak isomorphism classes

O(n3) pseudochords

⇒ 2O(n3 log n) perimetric orders

O(n4) crossings

⇒ 2O(n4) arrangements

⇒ 2O(n4) isomorphism classes
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