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Graph: G = (V,E),|V| < o0, E C (})
Topological graph: a drawing of a graph in the plane
vertices = points

edges — simple curves

- edges do not pass through any vertices other than
their end-points

- any two edges have only finitely many common points

- any intersection point of two edges is either a common
end-point or a crossing (no touching allowed)

- at most two edges can intersect in one crossing
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simple: any two edges have at most one common point

complete: £ = (g)

topological graph simple complete topological graph
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T'(n) = number of isomorphism classes

T (n) = number of weak isomorphism classes

of simple complete topological graphs on n vertices
Theorem [J. Pach, G. Toth, 2004]:

QQ(nz) < TW(TL) < 20(n2 logn)

Theorem 1: \
T(n) = 290

Lower bounds are attained even for extendable graphs

Remark: The number of weak isomorphism classes of
complete geometric graphs on 71 vertices is 90(nlogn)
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Graphs with maximum number of crossings

1% (n) = number of weak isomorphism classes of
simple complete topological graphs on n vertices with (Z)
crossings

Theorem [H. Harborth, |. Mengersen, 1992].
T3 (n) = eV

Theorem 2:
Tmax(n) > Qn(logn—O(l))
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