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Tomáš Valla



Euclidean Ramsey theory

X . . . a finite set of points in E
d

c . . . a finite number of colors

Question: Does every coloring of E
d with c colors

contain a monochromatic copy of X?

copy of X = congruent copy of X = set obtained from X
by translations and rotations

X ′ is monochromatic if all points of X ′ have the same
color.
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case d = 2, c = 2, |X| = 3

triangle . . . a set of 3 points, including

degenerate triangle . . . a set of 3 collinear points

(a, b, c)-triangle . . . a triangle with sides of length a, b, c
in counter-clockwise order

unit triangle . . . a (1, 1, 1) triangle

coloring . . . a partition of E
2 into two sets, B (black) and

W (white)

Coloring χ contains a triangle T if there is a
monochromatic copy of T , otherwise χ avoids T .
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Examples of known results

Theorem [Erdös et al., 1973; Shader, 1979]

Every coloring contains every

• triangle with a 30◦, 90◦ or 150◦ angle

• triangle with a ratio between two sides equal to
2 sin 15◦, 2 sin 36◦, 2 sin 45◦, 2 sin 60◦ or 2 sin 75◦

• (a, 2a, 3a)-triangle

• (a, b, c)-triangle satisfying c2 = a2 + 2b2
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Strip coloring avoiding a unit triangle:

√
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Conjecture 1 [Erdös et al., 1973]

Every coloring contains every non-equilateral triangle.

Conjecture 2 [Erdös et al., 1973]

The strip coloring is the only coloring avoiding any triangle
(up to scaling and modification of colors on the boundaries
of the strips).
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Our results

Theorem 1 Each coloring χ = (B,W), where B is a
closed set (and W is open), contains every triangle.

Theorem 2

• Each polygonal coloring contains every non-equilateral
triangle.

• Characterization of all polygonal colorings avoiding an
equilateral triangle

• Conjecture 2 is false.



Our results

Theorem 1 Each coloring χ = (B,W), where B is a
closed set (and W is open), contains every triangle.

Theorem 2

• Each polygonal coloring contains every non-equilateral
triangle.

• Characterization of all polygonal colorings avoiding an
equilateral triangle

• Conjecture 2 is false.



Our results

Theorem 1 Each coloring χ = (B,W), where B is a
closed set (and W is open), contains every triangle.

Theorem 2

• Each polygonal coloring contains every non-equilateral
triangle.

• Characterization of all polygonal colorings avoiding an
equilateral triangle

• Conjecture 2 is false.



Our results

Theorem 1 Each coloring χ = (B,W), where B is a
closed set (and W is open), contains every triangle.

Theorem 2

• Each polygonal coloring contains every non-equilateral
triangle.

• Characterization of all polygonal colorings avoiding an
equilateral triangle

• Conjecture 2 is false.



Our results

Theorem 1 Each coloring χ = (B,W), where B is a
closed set (and W is open), contains every triangle.

Theorem 2

• Each polygonal coloring contains every non-equilateral
triangle.

• Characterization of all polygonal colorings avoiding an
equilateral triangle

• Conjecture 2 is false.



Reduction to equilateral triangles

Lemma [Erdös et al., 1973]

Let χ be a coloring of the plane.

1. If χ contains an (a, a, a)-triangle for some a > 0,
then χ contains any (a, b, c)-triangle, where b, c > 0
and a, b, c satisfy the (possibly degenerate) triangle
inequality.

2. If χ contains an (a, b, c)-triangle, then χ contains an
(a, a, a), (b, b, b), or (c, c, c)-triangle.
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Corollary:

1. χ contains every triangle if and only if χ contains every
equilateral triangle.

2. χ contains every non-equilateral triangle if and only if
there exists an a > 0 such that χ contains all
equilateral triangles except of the (a, a, a)-triangle.

3. χ contains an (a, b, c)-triangle if and only if χ contains
a (b, a, c)-triangle.
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Coloring by open and closed sets
(proof of Theorem 1)

- it satisfies to find a monochromatic unit triangle

ε-almost unit triangle ...an (a, b, c)-triangle whose
edge-lengths satisfy 1 − ε ≤ a, b, c ≤ 1 + ε

Q(a)... a square [−a, a] × [−a, a]

Proposition Let Q(3) = B ∪R be an arbitrary coloring
of the square Q(3) avoiding the unit triangle. Then for
every ε > 0 both B and R contain an ε-almost unit
triangle.

(if B is closed, then B3 is a compact set containing a
sequence of 1

n
-almost unit triangles...)
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proof of the proposition:

- given ε > 0 and a coloring χ = (B,R) of Q(3)

- assume that χ avoids the unit triangle and that R does
not contain any ε-almost unit triangle

- in Q(1), find a red point R and a blue point S, such that
|R − S| < ε

- construct a circle C with the center S and radius 1

- denote K(α) = S + (cos α, sin α)

- K(α) and K(α + π

3
) must have different color

- for every blue K(α), each K(β),
|K(β) − K(α)| < ε, is also blue.

⇒ whole C is blue, a contradiction. ¤
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Polygonal colorings
A coloring χ = (B,W) is polygonal, if

• each of the two sets B and W is contained in the
closure of its interior

• The boundary of χ (a common boundary of B and
W ), is a union of straight line segments (called
boundary segments), which can intersect only at their
endpoints (boundary vertices) .

• Every bounded region of the plane is intersected by
only finitely many boundary segments.



Theorem 2 Polygonal coloring χ avoids a unit triangle if
and only if χ is zebra-like (up to modification of the colors
on the boundary).
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proof of ’⇒’ (outline):

- given a polygonal coloring χ = (B,W) with a boundary
∆ avoiding the unit triangle.

- C(A) . . . a unit circle centered at A

- a boundary point A is feasible, if it is not a boundary
vertex and C(A) does not contain any boundary vertex.
Other boundary points are called infeasible.

- orientation of boundary segments (white region on the
left)
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Local properties of χ

Lemma: Let s be a (horizontal) boundary segment
containing a feasible point A, let P (α) denote the point
A + (cos α, sin α) on C(A). Let B = P (β) ∈ ∆ and
let t be a segment passing through B. Then

• s and t are parallel

• AB is not perpendicular to t, i.e, β /∈ {−π

2
, π

2
}.

• P (α) ∈ ∆ if and only if P (α + π

3
) ∈ ∆.

• If β ∈ (π

6
, 5π

6
) or β ∈ (7π

6
, 11π

6
), then s and t have

opposite orientation. If |β| < π

6
or |β − π| < π

6
, then

s and t have the same orientation.

• For every θ there is exactly one value of
α ∈ [θ, θ + π

3
) such that P (α) ∈ ∆.
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Global properties of χ

Lemma: The size of the convex angle formed by two
segments sharing an endpoint is greater than 2π

3
.

⇒ No three boundary segments share a common
endpoint.

⇒ Every boundary component is a piecewise linear curve
(closed or unbounded).

Let A ∈ ∆. For t ∈ R let A(t) be a point on the same
boundary component as A, such that the directed length
of the boundary curve between A and A(t) is t.

Let pi(t) = Pi(A(t)) (for feasible A(t)).

Clearly, A(t) is a continuous function of t.
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Lemma: The functions pi(t) can be extended to
continuous functions by defining Pi(A(t)) for infeasible
points A(t).

Lemma: Let A ∈ ∆ be an arbitrary boundary point. For
each i = 0, 1, . . . , 5, all the unit segments of the form
A(t)pi(t) have the same slope, independently of the
choice of t.

⇒ The translation by vector Pi(A) − A is ∆-invariant.

Lemma: Infeasible boundary points A have similar local
properties as feasible points (the circle C(A) can touch
the boundary at points different from Pi(A)).
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Lemma: Let A ∈ ∆ be an arbitrary boundary point. Then
inside C(A), P1(A) is connected withP2(A), P0 with A,
A with P3, and P4 with P5.

P0(A)

P1(A)

P2(A)

P4(A)

P5(A)

A

P3(A)

⇒ χ is zebra-like!
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Open problems

• monochromatic triangles in colorings by regions with
curved boundary

• monochromatic triangles in measurable colorings

• polygonal chromatic number of the plane

(lower bound is 6 [Woodall, 1973])

• measurable chromatic number of the plane

(lower bound is 5 [Falconer, 1981])
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