Monochromatic triangles in two-colored plane

Vít Jelínek Jan Kynčl Rudolf Stolař Tomáš Valla

Euclidean Ramsey theory

Euclidean Ramsey theory

- X ... a finite set of points in \mathbb{E}^d
- *c* ... a finite number of colors

Euclidean Ramsey theory

- X ... a finite set of points in \mathbb{E}^d
- c ... a finite number of colors

Question: Does every coloring of \mathbb{E}^d with c colors contain a monochromatic copy of X?

copy of $X = \mbox{congruent copy}$ of $X = \mbox{set}$ obtained from X by translations and rotations

 X^\prime is monochromatic if all points of X^\prime have the same color.

YES

NO

YES

NO

YES

???

???

YES

NO

YES

NO

YES

???

???

???

???

YES

- $2 \operatorname{colors}$ NO $2 \operatorname{colors}$ YES
- $2 \operatorname{colors}$???
- $4 \operatorname{colors}$ NO
- 3 colorsYES
- $4 \operatorname{colors}$???
 - 5 colors???
 - 6 colors???
 - 7 colorsNO

case
$$d = 2, c = 2, |X| = 3$$

triangle ... a set of 3 points, includingdegenerate triangle ... a set of 3 collinear points

triangle ... a set of 3 points, including degenerate triangle ... a set of 3 collinear points (a, b, c)-triangle ... a triangle with sides of length a, b, cin counter-clockwise order

triangle ... a set of 3 points, including degenerate triangle ... a set of 3 collinear points (a, b, c)-triangle ... a triangle with sides of length a, b, cin counter-clockwise order unit triangle ... a (1, 1, 1) triangle

triangle ... a set of 3 points, including degenerate triangle ... a set of 3 collinear points (a, b, c)-triangle ... a triangle with sides of length a, b, cin counter-clockwise order unit triangle ... a (1, 1, 1) triangle coloring ... a partition of \mathbb{E}^2 into two sets, \mathcal{B} (black) and \mathcal{W} (white)

triangle ... a set of 3 points, including degenerate triangle ... a set of 3 collinear points (a, b, c)-triangle ... a triangle with sides of length a, b, cin counter-clockwise order unit triangle ... a (1, 1, 1) triangle coloring ... a partition of \mathbb{E}^2 into two sets, \mathcal{B} (black) and \mathcal{W} (white)

Coloring χ contains a triangle T if there is a monochromatic copy of T, otherwise χ avoids T.

Examples of known results

Examples of known results

Theorem [Erdös et al., 1973; Shader, 1979]

Every coloring contains every

- $\bullet\,$ triangle with a $30^\circ,\,90^\circ\,$ or $150^\circ\,$ angle
- triangle with a ratio between two sides equal to $2\sin 15^\circ$, $2\sin 36^\circ$, $2\sin 45^\circ$, $2\sin 60^\circ$ or $2\sin 75^\circ$
- (a, 2a, 3a)-triangle
- (a, b, c)-triangle satisfying $c^2 = a^2 + 2b^2$

Examples of known results

Theorem [Erdös et al., 1973; Shader, 1979]

Every coloring contains every

- \bullet triangle with a $30^\circ,\,90^\circ$ or 150° angle
- triangle with a ratio between two sides equal to $2 \sin 15^\circ$, $2 \sin 36^\circ$, $2 \sin 45^\circ$, $2 \sin 60^\circ$ or $2 \sin 75^\circ$
- (a, 2a, 3a)-triangle
- (a, b, c)-triangle satisfying $c^2 = a^2 + 2b^2$

Strip coloring avoiding a unit triangle:

Strip coloring avoiding a unit triangle:

Conjecture 1 [Erdös et al., 1973]

Every coloring contains every non-equilateral triangle.

Strip coloring avoiding a unit triangle:

Conjecture 1 [Erdös et al., 1973]

Every coloring contains every non-equilateral triangle.

Conjecture 2 [Erdös et al., 1973]

The strip coloring is the only coloring avoiding any triangle (up to scaling and modification of colors on the boundaries of the strips).

Theorem 1 Each coloring $\chi = (\mathcal{B}, \mathcal{W})$, where \mathcal{B} is a closed set (and \mathcal{W} is open), contains every triangle.

Theorem 1 Each coloring $\chi = (\mathcal{B}, \mathcal{W})$, where \mathcal{B} is a closed set (and \mathcal{W} is open), contains every triangle.

Theorem 2

• Each polygonal coloring contains every non-equilateral triangle.

Theorem 1 Each coloring $\chi = (\mathcal{B}, \mathcal{W})$, where \mathcal{B} is a closed set (and \mathcal{W} is open), contains every triangle.

Theorem 2

- Each polygonal coloring contains every non-equilateral triangle.
- Characterization of all polygonal colorings avoiding an equilateral triangle

Theorem 1 Each coloring $\chi = (\mathcal{B}, \mathcal{W})$, where \mathcal{B} is a closed set (and \mathcal{W} is open), contains every triangle.

Theorem 2

- Each polygonal coloring contains every non-equilateral triangle.
- Characterization of all polygonal colorings avoiding an equilateral triangle
- Conjecture 2 is false.

Reduction to equilateral triangles

Lemma [Erdös et al., 1973]

Let χ be a coloring of the plane.

- 1. If χ contains an (a, a, a)-triangle for some a > 0, then χ contains any (a, b, c)-triangle, where b, c > 0and a, b, c satisfy the (possibly degenerate) triangle inequality.
- 2. If χ contains an (a, b, c)-triangle, then χ contains an (a, a, a), (b, b, b), or (c, c, c)-triangle.

Corollary:

1. χ contains every triangle if and only if χ contains every equilateral triangle.

Corollary:

- 1. χ contains every triangle if and only if χ contains every equilateral triangle.
- 2. χ contains every non-equilateral triangle if and only if there exists an a > 0 such that χ contains all equilateral triangles except of the (a, a, a)-triangle.

Corollary:

- 1. χ contains every triangle if and only if χ contains every equilateral triangle.
- 2. χ contains every non-equilateral triangle if and only if there exists an a > 0 such that χ contains all equilateral triangles except of the (a, a, a)-triangle.
- 3. χ contains an (a, b, c)-triangle if and only if χ contains a (b, a, c)-triangle.

- it satisfies to find a monochromatic unit triangle

- it satisfies to find a monochromatic unit triangle ε -almost unit triangle ...an (a,b,c)-triangle whose edge-lengths satisfy $1-\varepsilon \leq a,b,c \leq 1+\varepsilon$

- it satisfies to find a monochromatic unit triangle ε -almost unit triangle ...an (a, b, c)-triangle whose edge-lengths satisfy $1 - \varepsilon \leq a, b, c \leq 1 + \varepsilon$ Q(a)... a square $[-a, a] \times [-a, a]$

- it satisfies to find a monochromatic unit triangle

 $\varepsilon\text{-almost}$ unit triangle ...an (a,b,c)-triangle whose edge-lengths satisfy $1-\varepsilon \leq a,b,c \leq 1+\varepsilon$

$$Q(a)$$
... a square $[-a, a] \times [-a, a]$

Proposition Let $Q(3) = \mathcal{B} \cup \mathcal{R}$ be an arbitrary coloring of the square Q(3) avoiding the unit triangle. Then for every $\varepsilon > 0$ both \mathcal{B} and \mathcal{R} contain an ε -almost unit triangle.

- it satisfies to find a monochromatic unit triangle

 $\varepsilon\text{-almost unit triangle}$...an (a,b,c)-triangle whose edge-lengths satisfy $1-\varepsilon \leq a,b,c \leq 1+\varepsilon$

$$Q(a)$$
... a square $[-a, a] \times [-a, a]$

Proposition Let $Q(3) = \mathcal{B} \cup \mathcal{R}$ be an arbitrary coloring of the square Q(3) avoiding the unit triangle. Then for every $\varepsilon > 0$ both \mathcal{B} and \mathcal{R} contain an ε -almost unit triangle.

(if \mathcal{B} is closed, then \mathcal{B}^3 is a compact set containing a sequence of $\frac{1}{n}$ -almost unit triangles...)

- given $\varepsilon > 0$ and a coloring $\chi = (\mathcal{B}, \mathcal{R})$ of Q(3)

- given $\varepsilon > 0$ and a coloring $\chi = (\mathcal{B}, \mathcal{R})$ of Q(3)
- assume that χ avoids the unit triangle and that \mathcal{R} does not contain any ε -almost unit triangle

- given $\varepsilon > 0$ and a coloring $\chi = (\mathcal{B}, \mathcal{R})$ of Q(3)
- assume that χ avoids the unit triangle and that \mathcal{R} does not contain any ε -almost unit triangle
- in Q(1), find a red point R and a blue point S, such that $|R-S|<\varepsilon$

- given $\varepsilon > 0$ and a coloring $\chi = (\mathcal{B}, \mathcal{R})$ of Q(3)
- assume that χ avoids the unit triangle and that \mathcal{R} does not contain any ε -almost unit triangle
- in Q(1), find a red point R and a blue point S, such that $|R-S|<\varepsilon$
- construct a circle ${\cal C}$ with the center S and radius 1

- given $\varepsilon > 0$ and a coloring $\chi = (\mathcal{B}, \mathcal{R})$ of Q(3)
- assume that χ avoids the unit triangle and that ${\cal R}$ does not contain any ε -almost unit triangle
- in Q(1), find a red point R and a blue point S, such that $|R-S|<\varepsilon$
- construct a circle ${\cal C}$ with the center S and radius 1
- denote $K(\alpha) = S + (\cos \alpha, \sin \alpha)$

- given $\varepsilon > 0$ and a coloring $\chi = (\mathcal{B}, \mathcal{R})$ of Q(3)
- assume that χ avoids the unit triangle and that ${\cal R}$ does not contain any ε -almost unit triangle
- in Q(1), find a red point R and a blue point S, such that $|R-S|<\varepsilon$
- construct a circle ${\cal C}$ with the center S and radius 1
- denote $K(\alpha) = S + (\cos \alpha, \sin \alpha)$
- $K(\alpha)$ and $K(\alpha+\frac{\pi}{3})$ must have different color

- given $\varepsilon > 0$ and a coloring $\chi = (\mathcal{B}, \mathcal{R})$ of Q(3)
- assume that χ avoids the unit triangle and that ${\cal R}$ does not contain any ε -almost unit triangle
- in Q(1), find a red point R and a blue point S, such that $|R-S|<\varepsilon$
- construct a circle ${\cal C}$ with the center S and radius 1
- denote $K(\alpha) = S + (\cos \alpha, \sin \alpha)$
- $K(\alpha)$ and $K(\alpha+\frac{\pi}{3})$ must have different color
- for every blue $K(\alpha)$, each $K(\beta)$, $|K(\beta) K(\alpha)| < \varepsilon$, is also blue.

- given $\varepsilon > 0$ and a coloring $\chi = (\mathcal{B}, \mathcal{R})$ of Q(3)
- assume that χ avoids the unit triangle and that ${\cal R}$ does not contain any ε -almost unit triangle
- in Q(1), find a red point R and a blue point S, such that $|R-S|<\varepsilon$
- construct a circle ${\cal C}$ with the center S and radius 1
- denote $K(\alpha) = S + (\cos \alpha, \sin \alpha)$
- $K(\alpha)$ and $K(\alpha+\frac{\pi}{3})$ must have different color
- for every blue $K(\alpha),$ each $K(\beta),$ $|K(\beta)-K(\alpha)|<\varepsilon,$ is also blue.
- \Rightarrow whole C is blue, a contradiction.

Polygonal colorings

A coloring $\chi = (\mathcal{B}, \mathcal{W})$ is polygonal, if

- \bullet each of the two sets ${\cal B}$ and ${\cal W}$ is contained in the closure of its interior
- The boundary of χ (a common boundary of \mathcal{B} and \mathcal{W}), is a union of straight line segments (called boundary segments), which can intersect only at their endpoints (boundary vertices).
- Every bounded region of the plane is intersected by only finitely many boundary segments.

 $|AB| < 1 \Leftrightarrow \theta_{AB} \in (\pi/3, 2\pi/3)$

- given a polygonal coloring $\chi = (\mathcal{B}, \mathcal{W})$ with a boundary Δ avoiding the unit triangle.

- given a polygonal coloring $\chi = (\mathcal{B}, \mathcal{W})$ with a boundary Δ avoiding the unit triangle.

- $\mathcal{C}(A)$... a unit circle centered at A

- given a polygonal coloring $\chi = (\mathcal{B}, \mathcal{W})$ with a boundary Δ avoiding the unit triangle.

- $\mathcal{C}(A)$... a unit circle centered at A

- a boundary point A is feasible, if it is not a boundary vertex and $\mathcal{C}(A)$ does not contain any boundary vertex. Other boundary points are called infeasible.

- given a polygonal coloring $\chi = (\mathcal{B}, \mathcal{W})$ with a boundary Δ avoiding the unit triangle.

- $\mathcal{C}(A)$... a unit circle centered at A

- a boundary point A is feasible, if it is not a boundary vertex and $\mathcal{C}(A)$ does not contain any boundary vertex. Other boundary points are called infeasible.

- orientation of boundary segments (white region on the left)

Lemma: Let *s* be a (horizontal) boundary segment containing a feasible point *A*, let $P(\alpha)$ denote the point $A + (\cos \alpha, \sin \alpha)$ on C(A). Let $B = P(\beta) \in \Delta$ and let *t* be a segment passing through *B*. Then

Lemma: Let *s* be a (horizontal) boundary segment containing a feasible point *A*, let $P(\alpha)$ denote the point $A + (\cos \alpha, \sin \alpha)$ on C(A). Let $B = P(\beta) \in \Delta$ and let *t* be a segment passing through *B*. Then

 $\bullet \ s$ and t are parallel

Lemma: Let *s* be a (horizontal) boundary segment containing a feasible point *A*, let $P(\alpha)$ denote the point $A + (\cos \alpha, \sin \alpha)$ on C(A). Let $B = P(\beta) \in \Delta$ and let *t* be a segment passing through *B*. Then

- s and t are parallel
- AB is not perpendicular to t, i.e, $\beta \notin \{-\frac{\pi}{2}, \frac{\pi}{2}\}$.

Lemma: Let *s* be a (horizontal) boundary segment containing a feasible point *A*, let $P(\alpha)$ denote the point $A + (\cos \alpha, \sin \alpha)$ on C(A). Let $B = P(\beta) \in \Delta$ and let *t* be a segment passing through *B*. Then

- s and t are parallel
- AB is not perpendicular to t, i.e, $\beta \notin \{-\frac{\pi}{2}, \frac{\pi}{2}\}$.
- $P(\alpha) \in \Delta$ if and only if $P(\alpha + \frac{\pi}{3}) \in \Delta$.

Lemma: Let *s* be a (horizontal) boundary segment containing a feasible point *A*, let $P(\alpha)$ denote the point $A + (\cos \alpha, \sin \alpha)$ on C(A). Let $B = P(\beta) \in \Delta$ and let *t* be a segment passing through *B*. Then

- $\bullet \ s$ and t are parallel
- AB is not perpendicular to t, i.e, $\beta \notin \{-\frac{\pi}{2}, \frac{\pi}{2}\}$.
- $P(\alpha) \in \Delta$ if and only if $P(\alpha + \frac{\pi}{3}) \in \Delta$.
- If $\beta \in (\frac{\pi}{6}, \frac{5\pi}{6})$ or $\beta \in (\frac{7\pi}{6}, \frac{11\pi}{6})$, then s and t have opposite orientation. If $|\beta| < \frac{\pi}{6}$ or $|\beta \pi| < \frac{\pi}{6}$, then s and t have the same orientation.
Local properties of χ

Lemma: Let *s* be a (horizontal) boundary segment containing a feasible point *A*, let $P(\alpha)$ denote the point $A + (\cos \alpha, \sin \alpha)$ on C(A). Let $B = P(\beta) \in \Delta$ and let *t* be a segment passing through *B*. Then

- $\bullet \ s$ and t are parallel
- AB is not perpendicular to t, i.e, $\beta \notin \{-\frac{\pi}{2}, \frac{\pi}{2}\}$.
- $P(\alpha) \in \Delta$ if and only if $P(\alpha + \frac{\pi}{3}) \in \Delta$.
- If $\beta \in (\frac{\pi}{6}, \frac{5\pi}{6})$ or $\beta \in (\frac{7\pi}{6}, \frac{11\pi}{6})$, then s and t have opposite orientation. If $|\beta| < \frac{\pi}{6}$ or $|\beta \pi| < \frac{\pi}{6}$, then s and t have the same orientation.
- For every θ there is exactly one value of $\alpha \in [\theta, \theta + \frac{\pi}{3})$ such that $P(\alpha) \in \Delta$.

Lemma: The size of the convex angle formed by two segments sharing an endpoint is greater than $\frac{2\pi}{3}$.

Lemma: The size of the convex angle formed by two segments sharing an endpoint is greater than $\frac{2\pi}{3}$.

 \Rightarrow No three boundary segments share a common endpoint.

Lemma: The size of the convex angle formed by two segments sharing an endpoint is greater than $\frac{2\pi}{3}$.

 \Rightarrow No three boundary segments share a common endpoint.

 \Rightarrow Every boundary component is a piecewise linear curve (closed or unbounded).

Lemma: The size of the convex angle formed by two segments sharing an endpoint is greater than $\frac{2\pi}{3}$.

 \Rightarrow No three boundary segments share a common endpoint.

 \Rightarrow Every boundary component is a piecewise linear curve (closed or unbounded).

Let $A \in \Delta$. For $t \in \mathbb{R}$ let A(t) be a point on the same boundary component as A, such that the directed length of the boundary curve between A and A(t) is t.

Let
$$p_i(t) = P_i(A(t))$$
 (for feasible $A(t)$).

Clearly, A(t) is a continuous function of t.

Lemma: The functions $p_i(t)$ can be extended to continuous functions by defining $P_i(A(t))$ for infeasible points A(t).

Lemma: The functions $p_i(t)$ can be extended to continuous functions by defining $P_i(A(t))$ for infeasible points A(t).

Lemma: Let $A \in \Delta$ be an arbitrary boundary point. For each i = 0, 1, ..., 5, all the unit segments of the form $A(t)p_i(t)$ have the same slope, independently of the choice of t.

 \Rightarrow The translation by vector $P_i(A) - A$ is Δ -invariant.

Lemma: The functions $p_i(t)$ can be extended to continuous functions by defining $P_i(A(t))$ for infeasible points A(t).

Lemma: Let $A \in \Delta$ be an arbitrary boundary point. For each $i = 0, 1, \ldots, 5$, all the unit segments of the form $A(t)p_i(t)$ have the same slope, independently of the choice of t.

 \Rightarrow The translation by vector $P_i(A) - A$ is Δ -invariant.

Lemma: Infeasible boundary points A have similar local properties as feasible points (the circle C(A) can touch the boundary at points different from $P_i(A)$).

Lemma: Let $A \in \Delta$ be an arbitrary boundary point. Then inside $\mathcal{C}(A)$, $P_1(A)$ is connected with $P_2(A)$, P_0 with A, A with P_3 , and P_4 with P_5 .

Lemma: Let $A \in \Delta$ be an arbitrary boundary point. Then inside C(A), $P_1(A)$ is connected with $P_2(A)$, P_0 with A, A with P_3 , and P_4 with P_5 .

 monochromatic triangles in colorings by regions with curved boundary

- monochromatic triangles in colorings by regions with curved boundary
- monochromatic triangles in measurable colorings

- monochromatic triangles in colorings by regions with curved boundary
- monochromatic triangles in measurable colorings
- polygonal chromatic number of the plane (lower bound is 6 [Woodall, 1973])

- monochromatic triangles in colorings by regions with curved boundary
- monochromatic triangles in measurable colorings
- polygonal chromatic number of the plane (lower bound is 6 [Woodall, 1973])
- measurable chromatic number of the plane (lower bound is 5 [Falconer, 1981])