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Euclidean Ramsey theory

X ...afinite set of points in E“
¢ ...afinite number of colors

Question: Does every coloring of E with ¢ colors
contain a monochromatic copy of X ?

copy of X = congruent copy of X = set obtained from X
by translations and rotations

X" is monochromatic if all points of X' have the same
color.
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cased =2,c=2,|X|=3

triangle ...a set of 3 points, including
degenerate triangle ...a set of 3 collinear points

(a, b, ¢)-triangle ...a triangle with sides of length a, b, ¢
In counter-clockwise order

unit triangle ...a (1,1, 1) triangle

coloring ...a partition of IE? into two sets, B (black) and

W (white)

Coloring 'y contains a triangle 1 if there is a
monochromatic copy of ', otherwise 'y avoids 1.
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Examples of known results
Theorem [Erdos et al., 1973; Shader, 1979]

Every coloring contains every
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e triangle with a ratio between two sides equal to
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Conjecture 1 [Erd0Os et al., 1973]
Every coloring contains every non-equilateral triangle.
Conjecture 2 [Erd0os et al., 1973]

The strip coloring is the only coloring avoiding any triangle
(up to scaling and modification of colors on the boundaries
of the strips).
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Our results

Theorem 1 Each coloring x = (B, W), where B is a
closed set (and )V is open), contains every triangle.

Theorem 2

e Each polygonal coloring contains every non-equilateral
triangle.

e Characterization of all polygonal colorings avoiding an
equilateral triangle

e Conjecture 2 is false.



Reduction to equilateral triangles
Lemma [Erdos et al., 1973]

Let x be a coloring of the plane.

1. If x contains an (a, a, a)-triangle for some a > 0,
then y contains any (a, b, ¢)-triangle, where b, ¢ > 0
and a, b, c satisfy the (possibly degenerate) triangle
inequality.

2. If x contains an (a, b, ¢)-triangle, then x contains an
(a,a,a), (b,b,b),or (c, c, c)-triangle.
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Corollary:

1. x contains every triangle if and only if x contains every
equilateral triangle.

2. x contains every non-equilateral triangle if and only if
there exists an a > 0 such that Y contains all
equilateral triangles except of the (a, a, a)-triangle.

3. x contains an (a, b, c)-triangle if and only if y contains
a (b, a, c)-triangle.
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Coloring by open and closed sets
(proof of Theorem 1)

- It satisfies to find a monochromatic unit triangle

e-almost unit triangle ...an (a, b, ¢)-triangle whose
edge-lengths satisfy 1 — e < a,b,c <1+ ¢

(Q)(a)... asquare |—a, al X |[—a,al

Proposition Let ()(3) = B U R be an arbitrary coloring
of the square (Q(3) avoiding the unit triangle. Then for
every € > ( both 5 and 'R contain an ¢-almost unit
triangle.

(if B is closed, then B is a compact set containing a

1

sequence of —-almost unit triangles...)
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proof of the proposition:
- given € > 0 and a coloring x = (B, R) of Q(3)

- assume that 'y avoids the unit triangle and that R does
not contain any £-almost unit triangle

-in (1), find a red point /? and a blue point .S, such that
IR—S|<e

- construct a circle C with the center .S and radius 1

- denote K (o) = S + (cos a, sin a)

- K () and K (o + %) must have different color

- for every blue K (), each K (),
IK(8) — K(«)| < ¢, is also blue.

= whole C is blue, a contradiction.




Polygonal colorings
A coloring x = (B, W) is polygonal, if
e ecach of the two sets [5 and VV is contained in the
closure of its interior

e The boundary of y (a common boundary of I3 and
W), is a union of straight line segments (called
boundary segments), which can intersect only at their
endpoints (boundary vertices) .

e Every bounded region of the plane is intersected by
only finitely many boundary segments.
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Theorem 2 Polygonal coloring x avoids a unit triangle if
and only if x is zebra-like (up to modification of the colors

on the boundary).
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AB| <1< 0,5 € (7/3,21/3)
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proof of '=-" (outline):

- given a polygonal coloring x = (13, V) with a boundary
A\ avoiding the unit triangle.

-C(A) ...aunit circle centered at A

- a boundary point A is feasible, if it is not a boundary
vertex and C(A) does not contain any boundary vertex.
Other boundary points are called infeasible.

- orientation of boundary segments (white region on the
left)

"



Local properties of y

Lemma: Let s be a (horizontal) boundary segment
containing a feasible point A, let P(«) denote the point

A+ (cosa,sina)onC(A). Let B = P(f) € A and
let £ be a segment passing through 5. Then



Local properties of y

Lemma: Let s be a (horizontal) boundary segment
containing a feasible point A, let P(«) denote the point

A+ (cosa,sina)onC(A). Let B = P(f) € A and
let £ be a segment passing through 5. Then

e s andt are parallel



Local properties of y

Lemma: Let s be a (horizontal) boundary segment

containing a feasible point A, let P(«) denote the point
A+ (cosa,sina)onC(A). Let B = P(f) € A and
let £ be a segment passing through 5. Then

e s andt are parallel

o ABis not perpendicularto t,i.e, 8 & {—73, 3



Local properties of y

Lemma: Let s be a (horizontal) boundary segment

containing a feasible point A, let P(«) denote the point
A+ (cosa,sina)onC(A). Let B = P(f) € A and
let £ be a segment passing through 5. Then

e s and ¢ are parallel

o ABis not perpendicularto t,i.e, 8 & {—73, 3

e P(a) € Aifandonly if P(ar + %) € A.



Local properties of y

Lemma: Let s be a (horizontal) boundary segment
containing a feasible point A, let P(«) denote the point
A+ (cosa,sina)onC(A). Let B = P(f) € A and
let £ be a segment passing through 5. Then

e s andt are parallel

o ABis not perpendicularto t,i.e, 8 & {—73, 3

e P(a) € Aifandonlyif P(a+ %) € A.

o lf3 e (%,2)or B e (I, 1?) then sandthave

opposite orientation. If | 3| < % or |3 — | < &, then
s and t have the same orlentatlon




Local properties of y

Lemma: Let s be a (horizontal) boundary segment
containing a feasible point A, let P(«) denote the point

A+ (cosa,sina)onC(A). Let B = P(f) € A and
let £ be a segment passing through 5. Then

e s andt are parallel

o ABis not perpendicularto t,i.e, 8 & {—73, 3

e P(a) € Aifandonlyif P(a+ %) € A.

o lf3 e (%,2)or B e (I, 1?) then sandthave

opposite orientation. If | 3| < % or |3 — | < &, then
s and t have the same orlentatlon

e For every 6 there is exactly one value of
o € 0,0 + %) such that P(a) € A,
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Global properties of y

Lemma: The size of the convex angle formed by two

segments sharing an endpoint is greater than 2?”

—> No three boundary segments share a common
endpoint.

— Every boundary component is a piecewise linear curve
(closed or unbounded).

Let A € A. Fort € R let A(t) be a point on the same
boundary component as A, such that the directed length
of the boundary curve between A and A(t) is t.

Let p;(t) = P;(A(t)) (for feasible A(t)).
Clearly, A(t) is a continuous function of ¢.
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A(t)p;(t) have the same slope, independently of the
choice of ¢.

= The translation by vector P;(A) — A is A-invariant.



Lemma: The functions p; () can be extended to
continuous functions by defining P;( A(t)) for infeasible
points A(t).

Lemma: Let A € A be an arbitrary boundary point. For
each? = 0,1, ..., 5, all the unit segments of the form

A(t)p;(t) have the same slope, independently of the
choice of ?.

= The translation by vector P;(A) — A is A-invariant.

Lemma: Infeasible boundary points A have similar local
properties as feasible points (the circle C’(A) can touch
the boundary at points different from P;( A)).



Lemma: Let A € A be an arbitrary boundary point. Then
inside C(A), P;(A) is connected with %2 (A), Py with A,
A with P3, and Py with P




Lemma: Let A € A be an arbitrary boundary point. Then
inside C(A), P;(A) is connected with %2 (A), Py with A,
A with P3, and Py with P

= X Is zebra-like!
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Open problems

e monochromatic triangles in colorings by regions with
curved boundary

e monochromatic triangles in measurable colorings

e polygonal chromatic number of the plane
(lower bound is 6 [Woodall, 1973])

® measurable chromatic number of the plane
(lower bound is 5 [Falconer, 1981])



