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Improved enumeration of simple topological graphs,
submitted.

2. J. Kynčl,
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Improved enumeration of simple topological graphs,
submitted.

2. J. Kynčl,
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1. Enumeration of simple topological graphs

Graph: G = (V ,E ), V finite, E ⊆
(

V

2

)

Topological graph: drawing of an (abstract) graph in the
plane

vertices = points

edges = simple curves

• edges do not pass through any vertices other than their
end-points

• any two edges have only finitely many common points

• any intersection point of two edges is either a common
end-point or a crossing (no touching allowed)

• at most two edges can intersect in one crossing
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Complete graphs

Theorem: (J. Pach and G. Tóth, 2006)

2Ω(n2)
≤ T

w
(Kn) ≤ 2O(n2 log n)

Main Theorem 1:

T
w
(Kn) ≤ 2n

2
·α(n)O(1)

.
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tools:

• weak isomorphism class ↔ a rotation system

• (J. Pach, J. Solymosi and G. Tóth, 2003)

Every simple complete topological graph with 430
4
vertices

contains one of the following subgraphs:

a convex graph C5 a twisted graph T6

v1 v2 v3 v4 v5 v6

• an upper bound on the size of a set of permutations with
bounded VC-dimension (J. Cibulka and JK, 2012)
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General graphs

Main Theorem 2: Let G be a graph with n vertices and m

edges. Then

T
w
(G ) ≤ 2O(n2 log(m/n))

.

If m < n3/2, then

T
w
(G ) ≤ 2O(mn1/2 log n)

.

Let ε > 0. If G is a graph with no isolated vertices and at
least one of the conditions m > (1 + ε)n or ∆(G ) < (1− ε)n
is satisfied, then

T
w
(G ) ≥ 2Ω(max(m,n log n))

.

Corollary: There are at most 2O(n3/2 log n) intersection graphs
of n pseudosegments.
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Isomorphism classes

T (G ) = number of isomorphism classes

of simple topological graphs that realize G

Complete graphs

Theorem: (JK, 2009)

2Ω(n4)
≤ T (Kn) ≤ 2(1/12+o(1))(n4 )
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General graphs

Theorem: Let G be a graph with n vertices, m edges and no
isolated vertices. Then

T (G ) ≤ 2m
2+2mn(1+3 log2 3)+O(n log n)

≤ 223.118m
2

+ o(1), and

T (G ) ≤ 2m
2+2mn(log(1+ m

4n
)+2+log2 e)+O(n log n)

≤ 211.265m
2

+ o(1).

Let ε > 0. For graphs G with m > (6 + ε)n we have

T (G ) ≥ 2Ω(m2)
.

For graphs G with m > ω(n) we have

T (G ) ≥ 2m
2/60

− o(1).

“very sparse” graphs → rooted connected planar loopless
maps (T.R.S. Walsh and A. B. Lehman, 1975)

T (G ) ≤ 2(log2(256/27)+o(1))m2
≤ 23.246m

2
+ o(1)
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4. Continuous decay of the crossing number

cr(G ) = crossing number of G : the minimum possible
number of crossings in a drawing of G in the plane

Problem: How little can the crossing number of G decrease if
we delete some edges?

Theorem: (J. Fox and Cs. D Tóth, 2008)
For every ε > 0, there is an nε such that every graph G with
n(G ) ≥ nε vertices and m(G ) ≥ n(G )1+ε edges has a
subgraph G ′ with

m(G ′) ≤
(

1−
ε

24

)

m(G )

and

cr(G ′) ≥

(

1

28
− o(1)

)

cr(G ).
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Theorem: For every ε, γ > 0, there is an nε,γ such that every
graph G with n(G ) ≥ nε,γ vertices and m(G ) ≥ n(G )1+ε edges
has a subgraph G ′ with

m(G ′) ≤
(

1−
εγ

1224

)

m(G )

and
cr(G ′) ≥ (1− γ)cr(G ).

tools:

• finding many edge-disjoint earrings

• randomized embedding method
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2. Ramsey properties of intersection

graphs of segments

Theorem: For infinitely many positive integers k there exists
an arrangement of k log 169/ log 8 > k2.4669 segments with at most
k pairwise crossing and at most k pairwise disjoint segments.

Previous constructions:

k log 5/ log 2 > k2.3219 (D. Larman, J. Matoušek, J. Pach and
J. Törőcsik, 1994)

k log 27/ log 4
> k2.3774 (G. Károlyi, J. Pach and G. Tóth, 1997)
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3. Reachability in graphs on surfaces

Directed reachability:

s

t

Input: a directed graph G = (V ,E ) and two of its vertices
s, t

Question: does there exist a directed path from s to t in G?

Problem: What is the space complexity of directed rechability
in planar graphs, or graphs embedded in a certain surface?
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Theorem: (E. Allender et al., 2009) Directed reachability for
graphs embedded on the torus is logspace-reducible to planar
reachability.

Theorem: For each fixed connected compact surface S , the
reachability problem for graphs embedded in S is
logspace-reducible to planar reachability.


