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1 Class

Hello, my name is Karel. Requirements for getting credit ”zapocet”. What are you interested in?
How you should study. . .

0. Do you need me to recapitulate something? You should know: how to solve a system of
linear equations using Gaussian elimination (Gauss-Jordan), how to multiply matrices, how
to tell coordinates. We will focus on linear maps when we need to.

Can you code? In a programming language of your choice and nothing complicated.

1. Let B be a basis of R4 with vectors:

(1/2, 1/2, 1/2, 1/2)T , (1/2,−1/2,−1/2, 1/2)T , (−1/2, 1/2,−1/2, 1/2)T , (−1/2,−1/2, 1/2, 1/2)T

Find the matrix corresponding to change of basis from the canonical basis to B (that is find
the matrix B [id]K such that [u]B = B [id]K [u]K . Find coordinates of the vector (3, 1, 4, 1)T

in basis B. Did you noticed something about matrix B [id]K?

Solution: When we say that a vector v has coordinates [v]B = (α1, α2, α3, α4)T with
respecto to the basis B we mean that

v = α1


1/2
1/2
1/2
1/2

+α2


1/2
−1/2
−1/2
1/2

+α3


−1/2
1/2
−1/2
1/2

+α4


−1/2
−1/2
1/2
1/2

 =


1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2
1/2 −1/2 −1/2 1/2
1/2 1/2 1/2 1/2



α1

α2

α3

α4


We may thus say that

[v]K = K [id]B [v]B

where the matrix of the change of basis from B to the canonical basis

K =
{

(1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T
}

where the matrix of change of basis

K [id]B =


1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2
1/2 −1/2 −1/2 1/2
1/2 1/2 1/2 1/2

 .

From the equation
[v]K = K [id]B [v]B

and the fact that columns of K [id]B are linearly independent and the matrix is square we
have that

(K [id]B)−1[v]K = [v]B

and thus

B [id]K = (K [id]B)−1

We may notice that for this particular matrix with columns equal to vectors of the basis B
we have that its transpose is equal to its inverse. This does not hold for all bases at all!
But such bases are extremely important and we call such matrices that satisfy A−1 = AT

orthonormal and such bases orthonormal.

2. Let V be a vector space over R, we define a dot product (or a scalar product) as a binary
operation 〈· | ·〉 : V 2 → R, such that for each u, v, w ∈ V a c ∈ R we have:
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(a) 〈u | u〉 ≥ 0 and equality holds only for u = ~0

(b) 〈u+ v | w〉 = 〈u | w〉+ 〈v | w〉

(c) 〈cu | v〉 = c〈u | v〉

(d) 〈u | v〉 = 〈v | u〉 (respectively 〈u | v〉 = 〈v | u〉 for complex numbers).

We say that u, v are orthogonal if 〈u | v〉 = 0.

We may define a norm using a dot product: ‖u‖ =
√
〈u | u〉. Intuitively a norm gives you

the length of a vector. Note that a norm can be defined in a more general way but this
definition is extremely useful.

Geometric interpretation of the standard dot product in Rn is 〈u | v〉 = ‖u‖‖v‖ cos(ϕ), where
ϕ is the angle between vectors u, v (compare with the definition of orthogonality).

Moreover orthogonality of vectors implies linear independence.

3. Show that the following are dot products.

(a) (Standard dot product) In Rn we define 〈u | v〉 = uT v =
∑n

i=1 uivi

Solution: Just check the definition and use properties of matrix operations.

(b) In the space C[a,b] of all continuous functions on the interval [a, b] we define a dot product

〈f | g〉 =
∫ b

a
f(x)g(x)dx.

Solution: Just check the definition and use properties integrals.

4. Compute standard dot products of given vectors: (1, 2, 3)T , (0, 0, 1)T , (1,−2, 1)T . Which
ones are orthogonal? What is the length of the first vector? How far apart are the first and
third vector?

Solution:

〈(1, 2, 3)T |(0, 0, 1)T 〉 = 1 · 0 + 2 · 0 + 3 · 1 = 3 – these vectors are not orthogonal,

〈(1, 2, 3)T |(1,−2, 1)T 〉 = 1− 4 + 3 = 0 – these vectors are orthogonal,

〈(0, 0, 1)T |(1,−2, 1)T 〉 = 1 – these vectors are not orthogonal.

The length of the first vector is ‖(1, 2, 3)T ‖ =
√

12 + 22 + 32 =
√

14.

The first and the third vectors are ‖(1, 2, 3)T − (1,−2, 1)T ‖ = ‖(0, 4, 2)T ‖ =
√

20 apart.

5. Let us denote the rows of a matrix A as v1, . . . , vm and columns of a matrix B by w1, . . . , wp.
What are the entries of the matrix AB?

Solution: (AB)i,j = 〈vi|wj〉

Prove that the row space of a matrix A and the kernel of the matrix A are orthogonal.

Solution: The kernel is the vector space of all solutions of the homogenous system of linear
equations. Thus for each vector v ∈ Ker(A) when we substitute v to a row we get zero (it is
a solution where all right sides are equal to zero). In other words ∀v ∈ Ker(A) : Av = ~0.

2 Class

1. For the dot product 〈f |g〉 =
∫ 1

−1 f(x)g(x) dx show that functions 3x2 − 1 a 5x3 − 3x are
orthogonal.

Solution:
∫ 1

−1(3x2− 1)(5x3− 3x) dx =
∫ 1

−1 15x5− 14x3 + 3x dx = [ 156 x
6 + 7

2x
4 + 3

2x
2]1−1 = 0
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2. Let A be a symmetric real matrix such that uTAu > 0 for each non-zero vector u ∈ Rn we
call such matrices positive definite. Let us define a dot product as 〈u|v〉 = uTAv. Show that
this is indeed a dot product if and only if A is positive definite.

Solution: Check the definition.

Given a dot product 〈u|v〉 as a black-box find a way how to find the corresponding positive
definite matrix A which defines it.

Solution: Ai,j = 〈ei | ej〉 – look at the dot products of vectors of the canonical basis and
what is the term eTi Aej .

Show that a sum of two positive definite matrices is a positive definite matrix. Show that a
positive multiple of a positive definite matrix is a positive definite matrix.

Solution: Check the definition.

3. Show that vectors v ∈ R3 satisfying 〈(1, 0,−3)T |v〉 = 0 form a vector space (subspace of R3).
In other words

{
~v ∈ R3|〈(1, 0,−3)T |v〉 = 0

}
form a subspace of R3.

Solution: Check the definition – what are the solutions of Ax = 0.

Show that vectors in R3 satisfying 〈(1, 0,−3)T |v〉 = 2 are an affine space.

Solution: Check the definition – what are the solutions of Ax = b.

4. Let (2, 5)T , (3, 1)T be two vectors in the real plane R2. What multiple of the first vector
should we subtract from the second one so that the result is perpendicular to the first vector.
What multiple of the second vector should we subtract from the first one so that the result
is perpendicular to the second vector.

Solution: Simple algebraic solution. We want to subtract c-times vector u from the
vector v in such a way that v− cu is orthogonal to u (we do not know the scalar c). We thus
need

〈v − cu | u〉 = 0 (1)

〈v | u〉 − c〈u | u〉 = 0 (2)

〈v | u〉 = c〈u | u〉 (3)

〈v | u〉
〈u | u〉

= c (4)

Equation (2) is just using properties of inner products. There is no division by zero in
equation 4 as the vektor u is of non-zero length.

Geometric intuition: TODO translate

Řešme druhou část, ilustrace viz obrázek 1. Délka vektoru u = (2, 5) je ‖(2, 5)‖ =
√

22 + 52 =√
29. Délka vektoru v = (3, 1) je ‖(3, 1)‖ =

√
32 + 12 =

√
10. Vektor se stejným směrem

jako v a jednotkovou délkou je v/‖v‖ = (3/
√

10, 1/
√

10). Skalárńı součin 〈u|v〉 = 6 +
5 = 11. Vzpomeňme si na středoškolskou goniometrii, vid́ıme že pokud by vektor v měl

jednotkovou délku, promı́tl by se na cos(ϕ)
‖u‖ u. Využit́ım podobnosti trojúhelńık̊u a vztahu

〈x|y〉 = ‖x‖‖y‖ cosϕ dostaneme prvńı krok Gram-Schmidtovy ortogonalizace, tedy vyjádřeńı
kolmého vektoru v − u〈u|v〉/〈u|u〉 = (3 − (22/29), 1 − (55/29)). Ověřme ještě ortogonalitu:
〈(2, 5)|(3− (22/29), 1− (55/29))〉 = 6− 44/29 + 5− 275/29 = 0.
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x

y

u = (2, 5)

v = (3, 1)

v/‖v‖ = (3/
√

10, 1/
√

10)

cos(ϕ)
‖u‖ u

‖v‖ cos(ϕ)
‖u‖ u = u〈u|v〉/〈u|u〉 = (22/29, 55/29)

v − u〈u|v〉/〈u|u〉 = (3− (22/29), 1− (55/29))

ϕ

Figure 1: Poč́ıtáńı kolmé projekce vektoru v na vektor u.

5. Do Gram-Schmidt on the rows of the following matrices:

1 1 1 1
4 1 4 1
1 2 3 4

 ,


2 0 1 2
4 3 2 4
6 −5 3 6
−4 2 4 2
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6. Show that a norm defined by a dot product (‖v‖ =
√
〈v|v〉) satisfies the Parallelogram Law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Solution: Expand the left side and use linearity of dot products.

Can the norm ‖x‖1 =
∑
|xi| or the norm ‖x‖∞ = max |xi| be given by a dot product?

Solution: No, use the first part of this problem.

Bonus Show that there are no four points in the real plane R2 such that the distance between each
two of those is an odd number (these distances may or may not be the same).

Solution: 33 miniatures by prof. Matoušek
https://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf

3 Class

1. Which pairs of following vectors are perpendicular with respect to the standard scalar prod-
uct? (1, 2, 3), (5, 2,−3), and (−2,−1,−4)

Which properties of the relation of perpendicularity hold: reflexivita, symmetry, tranzitivity?

Solution: (1, 2, 3) ⊥ (5, 2,−3), (5, 2,−3) ⊥ (−2,−1,−4), ale (1, 2, 3) 6⊥ (−2,−1,−4).

The relation is just symmetric. It is not transitive or reflexive.

2. Do Gram-Schmidt on the rows of the following matrix:

0 3 4 0
0 0 5 0
2 1 0 2


3. How far is the point (1, 2, 0, 1)T from the plane spanned by vectors (1, 1, 0, 0)T , (2,−1, 0, 0)T ?

Solution: We orthonormalize the vectors determining the plane and we get: (1/
√

2, 1/
√

2, 0, 0)T ,
(1/
√

2,−1/
√

2, 0, 0)T . After subtracting the projection of (1, 2, 0, 1)T to the orthonormal ba-
sis (1/

√
2, 1/
√

2, 0, 0)T , (1/
√

2,−1/
√

2, 0, 0)T we get the vector (0, 0, 0, 1)T and its length is
equal to one (and is equal to the distance we were supposed to find). We just did the
Gram-Schmidt and the result was the length of ~y3.

One can even see that the vectors (1, 1, 0, 0)T , (2,−1, 0, 0)T span everything in the first two
coordinates thus the distance from this plane is equal to the length of (0, 0, 0, 1)T .

4. Using projection find the best solution of the following system of equations: Ax = b where

A =


2 1 0
4 2 0
2 −4 −1
1 −2 2

 , b = (10, 5, 13, 9)T

Notice that the columns of A are perpendicular. How bad is your solution (i.e. compute
b−Ax)?

The least squares method is often used when the errors are small – but it is hard to compute
with such systems with pen and paper. Is the solution the same as the solution of the system
ATAx = AT b?

5. Using Gram-Schmidt find an orthonormal basis of the row-space of the following matrix and

expand it to an orthonormal basis of R4.


2 4 2 1
−1 −2 −2 −1
1 2 4 2
1 2 3 4
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6. Show that a norm defined by a dot product (‖v‖ =
√
〈v|v〉) satisfies the Parallelogram Law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Solution: Expand the left side and use linearity of dot products.

Can the norm ‖x‖1 =
∑
|xi| or the norm ‖x‖∞ = max |xi| be given by a dot product?

Solution: No, use the first part of this problem.

7. Show that columns of Hadamard matrices Hm ∈ R2m×2m defined as

H0 =
(
1
)
,

Hm =
1√
2

(
Hm−1 Hm−1
Hm−1 −Hm−1

)
,

are orthonormal.

Bonus Controlling matrix multiplication: someone is selling you a program that can multiply two
matrices fast. Can you control that it returns correct results? It is enough to check if
Cx = A(Bx) where C is the output of the program and x is uniformly random {0, 1} vector
of the right length. Show that if C 6= AB then with big probability Cx = ABx does not
hold.

4 Class

1. Using projection find the best solution of the following system of equations: Ax = b where

A =


2 1 0
4 2 0
2 −4 −1
1 −2 2

 , b = (10, 5, 13, 9)T

Notice that the columns of A are perpendicular. How bad is your solution (i.e. compute
b−Ax)?

The least squares method is often used when the errors are small – but it is hard to compute
with such systems with pen and paper. Is the solution the same as the solution of the system
ATAx = AT b?

2. Determine a basis of the orthogonal complement of the row space of the matrix A =(
1 2 3
4 4 1

)
.

Solution: It is the kernel of A (dot products are zero – we are solving a homogenous system
of linear equations).

3. Intro to determinants – geometric intuition, why is there the sign needed, definition.

Computing determinants of 2 × 2 matrices and the influence of row operations. Geometric
intuition in the plane.

4. Compute determinants of following real matrices:4 1 2
0 −1 1
1 2 1

 Solution: Determinant is equal to −9.

 3 2 −1
−1 1 2
2 −1 3

 Solution: Determinant is equal to 30.
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0 1 1
1 0 1
1 1 0

 Solution: Determinant is equal to 2.

18 11 11
11 11 11
11 11 24

 Solution: Use row operations first. Determinant is equal to 1001.

5 Class

1. I need you to remember the following string: JFMAMJJASOND.

• How should you remember this? There is JASOND in the end, so that is easier.

• Why should you know this? Is it enough to learn this string by heart or should you be
able to use it? What does it mean to use it?

What does it mean to use knowledge in programming? Is it useful to know by hear how
to write a for loop or is it better to know how to use it to output first 99 numbers?

2. Talking about Test 2. How does the previous problem apply to learning linear algebra?

3. Fibonacci – how to compute Fn fast?

4. What is the matrix of the linear transformation where f((1, 2)T ) = (3, 4)T and f((1, 1)T ) =
(4, 3)T ?

5. What is the matrix of first derivatives of polynomial with degree at most five?

6. Are there linear maps f0, f1, f2, f3 such that:

• f0 is injective and surjective,

• f1 is not injective but is surjective,

• f2 is injective but not surjective,

• f3 is not injective and not surjective?

6 Class

1. Intro to determinants – geometric intuition, why is there the sign needed, definition.

Computing determinants of 2 × 2 matrices and the influence of row operations. Geometric
intuition in the plane.

2. Compute determinants of following real matrices:4 1 2
0 −1 1
1 2 1

 Solution: Determinant is equal to −9.

 3 2 −1
−1 1 2
2 −1 3

 Solution: Determinant is equal to 30.

0 1 1
1 0 1
1 1 0

 Solution: Determinant is equal to 2.
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18 11 11
11 11 11
11 11 24

 Solution: Use row operations first. Determinant is equal to 1001.

7 Class

1. Compute the inverse matrix using the adjugate matrix:

 1 0 1
−2 1 0
0 1 1

. Solution: TODO,

https://en.wikipedia.org/wiki/Adjugate_matrix

2. Compute the determinant of the real matrix:



1 2 3 4 5 . . . n
−1 0 2 3 4 . . . n− 1
−1 −2 0 3 4 . . . n− 1
−1 −2 −3 0 4 . . . n− 1
−1 −2 −3 −4 0 . . . n− 1
...

...
...

...
. . .

−1 −2 −3 −4 . . . 1− n 0


.

Solution: Add the first row to all others. Determinant is equal to n!.

3. Compute determinants of following matrices:
a1 + x a2 a3 . . . an
a1 a2 + x a3 . . . an
a1 a2 a3 + x . . . an
...

...
...

. . .
...

a1 a2 a3 . . . an + x

, Solution:

Subtract the last row from all others (a remains just on the last row), then add all columns
to the last one.

Determinant is equal to (a1 + · · ·+ an + x)xn−1.



x −1 0 . . . 0

0 x −1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 x −1
a0 a1 . . . an−1 an

, Solution:

Eleminate entries on the diagonal using adding x times the next column to the previous one
(starting from the penultimate column). There will be −1 above the diagonal and the bottom
row will become a0 +xa1 +x2a2 + · · ·+xnan . . . , an−2 +xan−1 +x2an, an−1 +xan, an. There
is only one permutation that contributes to the determinant in the sum from the definition.

Alternatively do an expansion using the first column.

Determinant is equal to
∑n

i=0 x
iai.

a+ 1 a 0 . . . 0

1 a+ 1 a
. . .

...

0 1 a+ 1
. . . 0

...
. . .

. . .
. . . a

0 . . . 0 1 a+ 1


Solution:

9
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Let us denote this matrix An we have that |A1| = a+1, |A2| = a2+a+1 and using expansion
using the first column we get the recurrence |An| = (a+1)|An−1|−a|An−2|. This recurrence
has a unique solution.

Determinant is equal to an + an−1 + · · ·+ a+ 1.

4. Compute determinants of the following matrices:sinx cosx 1
sin y cos y 1
sin z cos z 1

, Solution:

Use expansion of the last column and the formula sin(x− y) = sinx cos y − cosx sin y.

Determinant is equal to sin(x− y) + sin(y − z) + sin(z − x). cosx sinx cos y sinx sin y
− sinx cosx cos y cosx sin y

0 − sin y cos y

 , Solution:

Using Sarrus rule cos2 x cos2 y + sin2 x sin2 y + sin2 x cos2 y + cos2 x sin2 y = 1.

Determinant is equal to 1. 1 logb a logc a
loga b 1 logc b
loga c logb c 1

 Solution:

Use the formula loga b = ln b/ ln a and Sarrus rule or Gaussian elimination.

Determinant is equal to 0.

5. Numbers 697, 476, and 969 are divisible by 17. Without computing the determinant show

that the determinant of the following matrix is divisible by 17.

6 9 7
4 7 6
9 6 9


Solution: We know that determinant is linear with respect to each row. When we add 100
times the first column and 10 times the second column to the third column.

Formally:

∣∣∣∣∣∣
6 9 7
4 7 6
9 6 9

∣∣∣∣∣∣ =

∣∣∣∣∣∣
6 9 697
4 7 476
9 6 969

∣∣∣∣∣∣ = 17 ·

∣∣∣∣∣∣∣
6 9 697

17

4 7 476
17

9 6 969
17

∣∣∣∣∣∣∣
The last matrix consists of integers and thus its determinant is an integer.

6. Compute the volume of a parallelogram determined by vectors aT = (3, 1, 1), bT = (2, 1, 1),
and cT = (2, 3, 2). (A parallelogram in R3 consists of points which can be written as a linear
combination αa+ βb+ γc, where α, β, γ ∈ 〈0, 1〉.)

Solution: The volume is equal to the absolute value of determinant with columns equal to

vectors a, b, c in other words V =

∣∣∣∣∣det

3 2 2
1 1 3
1 1 2

∣∣∣∣∣ = | − 1| = 1.

The volume is equal to 1.

7. Let f be a linear map such that f : R3 → R3 maps vectors aT = (1, 3, 1), bT = (1, 0, 3), cT =
(1, 1, 1) to vectors f(a)T = (3, 1, 0), f(b)T = (1, 0, 2), f(c)T = (4, 1, 5).

Determine the volume of the ellipsoid f(B3) which is the image of a unit ball B3 (a real ball
of unit radius) with respect to the map f .

Solution: The linear map is given by the matrix such that f(u) = [f ]KKu where
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[f ]KK = BA−1 =

3 1 4
1 0 1
0 2 5

1 1 1
3 0 1
1 3 1

−1.

Volumes of bodies transformed by linear maps are multiplied by the coefficient |det([f ]KK)|,
that means V (f(B3)) = |det([f ]KK)| · 43π = | det(B)|

| det(A)| ·
4
3π = π

The volume of the ellipsoid is equal to π.

8. Compute the number of spanning trees in a graph drawn on the blackboard (a tree and a

more complicated graph).

Solution: Laplace matrix of the graph is

L =


4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 3 −1 0
−1 −1 −1 3 0
−1 −1 0 0 2


Using the theorem counting the number of spanning trees (for a proof see https://ocw.mit.
edu/courses/mathematics/18-314-combinatorial-analysis-fall-2014/readings/MIT18_

314F14_mt.pdf, or the book Invitation to discrete mathematics by Matoušek and Nešetřil),
there is even an outline of the proof on https://en.wikipedia.org/wiki/Kirchhoff%27s_

theorem ) is equal to

κ(G) = det(L1,1) =

∣∣∣∣∣∣∣∣
4 −1 −1 −1
−1 3 −1 0
−1 −1 3 0
−1 0 0 2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
4 −1 −1 −1
−1 3 −1 0
−1 −1 3 0
7 −2 −2 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
−1 3 −1
−1 −1 3
7 −2 −2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
−1 3 −1
0 −4 4
0 19 −9

∣∣∣∣∣∣ = −4

∣∣∣∣−1 1
19 −9

∣∣∣∣ = −4(9− 19) = 40.

We can make sure that the graph has 40 spanning trees combinatorially: K4 has 16 spanning
trees and for each of these there are two ways how to attach the upper vertex (from the left
or from the right) — in total 32 spanning trees.

Otherwise the spanning tree has to contain the roof and we have four spanning trees that
contain the bottom most edge (the base of the house) and four spanning trees that do not
contain it.

The graf has 40 spanning trees.

8 Class

1. The following matrices represent a linear transformations in the plane R2. Determine eigen-
values and the associated eigenvectors, and interpret these in geometric terms.(

2 0
0 2

)
Solution: The mapping is the scaling with factor 2. It has a single eigenvalue with multi-
plicity two: λ1 = λ2 = 2. Any vector is an eigenvector, the mapping scales it.
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(
2 0
0 1

)
Solution: The mapping is the scaling in the direction of the x-axis. The vectors on the axes
are the eigenvectors and correspond to the eigenvalues 1 and 2. All vectors outside the axes
change their direction.(

2 1
0 2

)
Solution: The mappping corresponds to a scaling and a skew. It has a single eigenvalue
of (algebraic) multiplicity 2, but the eigenvectors are only on the x-axis. Their geometric
multiplicity is 1.(

0 −1
−1 0

)
,

Solution: This is the axix symmetry along the axis of the 2nd and the 4th quadrant. It
has eigenvalues 1 and −1, that corresponds vectors on ths axis (stay on the place) and on
the line orthogonal to this axis (these change the direction, but not the length).

1
2

(
1 1
1 1

)
Solution: The map is the orthogonal projection on the axis of the 1st and the 3rd quadrant.
Eigenvalues are 1 and 0. They correspond to vectors on the axis (do not change) and to
those perpendicular to the axis (are mapped to the origin).(

0 −1
1 0

)
Solution: These corespond to the rotation by 90◦. It has no real eigenvalues, but could be
interpreted over C.(

cosϕ − sinϕ
sinϕ cosϕ

)
Solution: This is a rotation by angle α, has no real eigenvalues.

2. Determine eigenvalues and the corresponding eigenvectors for the following matrix over the
field C:(

2 6
6 −3

)
Solution: Eigenvalues λi of the matrix A are the root of the charakteristic

polynomial pA(t) = |A− tI|.

Eigenvectors corersponding to λi satisfy A~x = λi~x, i.e. the are the solutions of the homoge-
neous system (A− λiI)~x = ~0.∣∣∣∣2− t 6

6 −3− t

∣∣∣∣ = t2 + t− 42 = (t− 6)(t+ 7) hence λ1 = 6, λ2 = −7

Eigenvectors are calculated from the associated systems of linear equations

−4x1 + 6x2 = 0

6x1 − 9x2 = 0

with a solution ~x = (x1, x2)T = c · (3, 2)T .

For the second eigenvalue −7

9x1 + 6x2 = 0

6x1 + 4x2 = 0
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we get ~x = c · (2,−3)T .

Matrices of these systems are always singular. Observe that on matrices of order two it
means that the second row is a scalar multiple of the first one.(

0 1
−2 2

)
Solution: λ1 = 1 + i, ~x = c · (1, 1 + i)T ;
λ2 = 1− i, ~x = c · (1, 1− i)T ;(

1 5
2 4

)
Solution: λ1 = 6, ~x = c · (1, 1)T ;
λ2 = −1, ~x = c · (−5, 2)T ;(

5 10
4 −1

)
Solution: λ1 = 9, ~x = c · (5, 2)T ;
λ2 = −5, ~x = c · (−1, 1)T ;

3. Determine eigenvalues and the corresponding eigenvectors for the following matrix over the

field C. Decide whether this matrix is diagonalizable:

 2 −1 2
5 −3 3
−1 0 −2


Solution: A matrix is diagonalizable if and only if the spaces of eigenvectors have dimension
equal to the algebraic multiplicity of the associated eigenvalue.

This is satisfied e.g. when the matrix is of order n and has n distinct eigenvalues.

λ1 = λ2 = λ3 = −1, ~x = c · (1, 1,−1)T .

The matrix is not diagonalizable.

2 −1 −1
0 −1 0
0 2 1


Solution: λ1 = 2, ~x = c · (1, 0, 0)T ; λ2 = 1, ~x = c · (1, 0, 1)T ; λ3 = −1, ~x = c · (0, 1,−1)T ;

The matrix is diagonalizable. 1 −1 0
0 1 −4
−1 0 4


Solution: λ1 = λ2 = 3, ~x = c · (1,−2, 1)T ; λ3 = 0, ~x = c · (4, 4, 1)T ;

The matrix is not diagonalizable.

4. Determine eigenvalues and the corresponding eigenvectors for the following matrix over the
field Z5. Decide whether this matrix is diagonalizable:1 0 0

2 3 3
1 1 0


Solution: λ1 = 2, ~x1 = c · (0, 1, 3)T ; λ2 = λ3 = 1, ~x2 = c · (1, 0, 1)T , ~x3 = c · (1, 4, 0)T ;

It is diagonalizable. The diagonal form is e.g.

1 0 0
0 1 0
0 0 2
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9 Class

1. The matrix
10 0 7 −7
4 5 2 −2
16 4 15 −8
30 4 26 −19


has three eigenvalues 3,−4 and 5. Determine the remaining eigenvalue.

Solution: The most tedious way: factorize the characteristic polynomial by the monomials
of the known eigenvalues.

A bit simpler, but still complicated way: use the fact that the product of all eigenvalues
is the determinant of the matrix. (Could be derived by substititing 0 to the characteristic
polynomial.)

The most simple approach: use the fact that the sum of all eigenvalues is equal to the
sum of the elements on the diagonal. (Could be derived from the coefficient by tn−1 in the
characteristic polynomial.)

The missing eigenvalue is 7.

2. Factorize the following matrix as RJR−1, where R is regular and J is in the Jordan normal
form.(
−11 30
−10 24

)
Solution: When the multiplicity of each eigenvalue is one, the Jordan’s

factorization RJR−1 can be constructed from a diagonal matrix J with eigenvalues on the
diagonal and R with the eigenvectors as columns.∣∣∣∣−11− t 30
−10 24− t

∣∣∣∣ = t2 − 13t+ 36 = (t− 9)(t− 4) hence λ1 = 9, λ2 = 4.

For λ1 = 9 we have −20x1 + 30x2 = 0 with a solution x = (x1, x2)T = (3, 2)T .

For λ2 = 4 we have −15x1 + 30x2 = 0 with a solution x = (2, 1)T .

R =

(
3 2
2 1

)
, J =

(
9 0
0 4

)
, R−1 =

(
−1 2
2 −3

)
0 2 −2

1 −1 5
2 −4 8

 Solution: R =

0 1 2
1 2 1
1 1 0

, J =

4 0 0
0 2 0
0 0 1

, R−1 =

 1 −2 3
−1 2 −2
1 −1 1


 2 0 0
−4 1 3
−4 0 4

 Solution: R =

0 1 0
1 2 1
1 2 0

, J =

4 0 0
0 2 0
0 0 1

, R−1 =

−2 0 1
1 0 0
0 1 −1


4 −2 0

0 2 0
6 −5 1

 Solution: R =

1 1 0
0 1 0
2 1 1

, J =

4 0 0
0 2 0
0 0 1

, R−1 =

 1 −1 0
0 1 0
−2 1 1


3. Transform the following matrix into Jordan normal form and determine eigenvectors, and if

necessary also generalized eigenvectors.

 1 1 1
0 1 0
−1 0 3

 Solution: The generalized eigenvec-

tor xi can be obtained from the system(A− λI)xi = xi−1.
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Characteristic polynomial pA(t) =

∣∣∣∣∣∣
1− t 1 1

0 1− t 0
−1 0 3− t

∣∣∣∣∣∣ = (1− t)(2− t)2.

The system (A− 2I)x1 = ~0 has a solution x1 = p(1, 0, 1)T .

The eigenvalue λ = 2 has geometric multiplicity 1 and algebraic 2, we shall find a generalized
eigenvector. In the sequel we choose p = 1, i.e. x1 = (1, 0, 1)T .

The generalized eigenvector x2 we get from (A − 2I)x2 = x1. It has a solution x2 =
q(1, 0, 1)T + (−1, 0, 0)T .

The system (A− 1I)x = ~0 has solution x3 = r(2,−1, 1)T .

By a suitable choice of parameters q = 1 and r = 1 we get the desired matrix R. We also
calculate its inverse R−1.

R =

1 0 2
0 0 −1
1 1 1

 R−1 =

 1 2 0
−1 −1 1
0 −1 0


The given matrix can be factorized into Jordan normal form as

A =

 1 1 1
0 1 0
−1 0 3

 =

1 0 2
0 0 −1
1 1 1

2 1 0
0 2 0
0 0 1

 1 2 0
−1 −1 1
0 −1 0

 = RJR−1

4. Use Jordan normal form and calculate the third power and a square root of the following
matrix. (By a square root consider a matrix whose second power is the given matrix.)(
−11 30
−10 24

)
Solution: The third power of A = RJR−1 is straightforwardly A3 = RJ3R−1.

Analogously, the square root is RJ
1
2R−1, where J

1
2 has on the diagonal square roots of the

eigenvalues.

(In total 2n solutions on matrices of order n.)(
−11 30
−10 24

)
=

(
3 2
2 1

)(
9 0
0 4

)(
−1 2
2 −3

)
(

3 2
2 1

)(
729 0
0 64

)(
−1 2
2 −3

)
=

(
−1931 3990
−1330 2724

)
(

3 2
2 1

)(
3 0
0 2

)(
−1 2
2 −3

)
=

(
−1 6
−2 6

)
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