1. Which pairs of following vectors are perpendicular with respect to the standard scalar product? $(1,2,3),(5,2,-3)$, and $(-2,-1,-4)$
Which properties of the relation of perpendicularity hold: reflexivita, symmetry, tranzitivity?
2. Do Gram-Schmidt on the rows of the following matrix: $\left(\begin{array}{cccc}0 & 3 & 4 & 0 \\ 0 & 0 & 5 & 0 \\ 2 & 1 & 0 & 2\end{array}\right)$
3. How far is the point $(1,2,0,1)^{T}$ from the plane spanned by vectors $(1,1,0,0)^{T},(2,-1,0,0)^{T}$?
4. Using projection find the best solution of the following system of equations: $A x=b$ where $A=\left(\begin{array}{ccc}2 & 1 & 0 \\ 4 & 2 & 0 \\ 2 & -4 & -1 \\ 1 & -2 & 2\end{array}\right), b=(10,5,13,9)^{T}$
Notice that the columns of A are perpendicular. How bad is your solution (i.e. compute $b-A x)$?
The least squares method is often used when the errors are small - but it is hard to compute with such systems with pen and paper. Is the solution the same as the solution of the system $A^{T} A x=A^{T} b$?
5. Using Gram-Schmidt find an orthonormal basis of the row-space of the following matrix and expand it to an orthonormal basis of $\mathbb{R}^{4} .\left(\begin{array}{cccc}2 & 4 & 2 & 1 \\ -1 & -2 & -2 & -1 \\ 1 & 2 & 4 & 2 \\ 1 & 2 & 3 & 4\end{array}\right)$
6. Show that a norm defined by a dot product $(\|v\|=\sqrt{\langle v \mid v\rangle})$ satisfies the Parallelogram Law $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$.
Can the norm $\|x\|_{1}=\sum\left|x_{i}\right|$ or the norm $\|x\|_{\infty}=\max \left|x_{i}\right|$ be given by a dot product?
7. Show that columns of Hadamard matrices $H_{m} \in \mathbb{R}^{2^{m} \times 2^{m}}$ defined as

$$
\begin{gathered}
H_{0}=(1) \\
H_{m}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
H_{m-1} & H_{m-1} \\
H_{m-1} & -H_{m-1}
\end{array}\right),
\end{gathered}
$$

are orthonormal.
Bonus Controlling matrix multiplication: someone is selling you a program that can multiply two matrices fast. Can you control that it returns correct results? It is enough to check if $C x=$ $A(B x)$ where C is the output of the program and x is uniformly random $\{0,1\}$ vector of the right length. Show that if $C \neq A B$ then with big probability $C x=A B x$ does not hold.

