Definition. A square matrix Q is orthogonal if $Q^T Q = I$.

Exercise 1: Let $u \in \mathbb{R}^n$ be a vector, prove that a matrix uu^T has rank 1. **Exercise 2:** Let $u \in \mathbb{R}^n$ be a vector, prove that a matrix $I - uu^T$ is orthogonal. **Exercise 3:** Let $u, v, w \in \mathbb{R}^3$ be an orthonormal basis. Let $A = uu^T + vv^T + ww^T$.

- 1. find Au, Av, Aw
- 2. let P = (u, v, w) (matrix with u, v, w as colomns), find AP
- 3. prove that A = I(!).

Exercise 4: Prove that an othonormal matrix $A \in \mathbb{R}^{2 \times 2}$ is only of the form

$$A = \begin{pmatrix} \cos\varphi & -\sin\varphi\\ \sin\varphi & \cos\varphi \end{pmatrix} \text{ or } A = \begin{pmatrix} \cos\varphi & \sin\varphi\\ \sin\varphi & -\cos\varphi \end{pmatrix}$$

Exercise 5: Show that $\forall a \in \mathbb{R}$ the matrix

$$A = \frac{1}{1+2a^2} \begin{pmatrix} 1 & -2a & 2a^2\\ 2a & 1-2a^2 & -2a\\ 2a^2 & 2a & 1 \end{pmatrix}$$

 $\ is \ orthonormal.$

Exercise 6: Let

$$\begin{pmatrix} a+b & b-a \\ a-b & b+a \end{pmatrix}$$

be a matrix with $a, b \in \mathbb{R}$. Give the conditions on a and b under which A is orthogonal.