Definition. A square matrix Q is orthogonal if $Q^{T} Q=I$.
Exercise 1: Let $u \in \mathbb{R}^{n}$ be a vector, prove that a matrix $u u^{T}$ has rank 1 .
Exercise 2: Let $u \in \mathbb{R}^{n}$ be a vector, prove that a matrix $I-u u^{T}$ is orthogonal.
Exercise 3: Let $u, v, w \in \mathbb{R}^{3}$ be an orthonormal basis. Let $A=u u^{T}+v v^{T}+w w^{T}$.

1. find $A u, A v, A w$
2. let $P=(u, v, w)$ (matrix with u, v, w as colomns), find $A P$
3. prove that $A=I(!)$.

Exercise 4: Prove that an othonormal matrix $A \in \mathbb{R}^{2 \times 2}$ is only of the form

$$
A=\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right) \text { or } A=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
\sin \varphi & -\cos \varphi
\end{array}\right)
$$

Exercise 5: Show that $\forall a \in \mathbb{R}$ the matrix

$$
A=\frac{1}{1+2 a^{2}}\left(\begin{array}{ccc}
1 & -2 a & 2 a^{2} \\
2 a & 1-2 a^{2} & -2 a \\
2 a^{2} & 2 a & 1
\end{array}\right)
$$

is orthonormal.

Exercise 6: Let

$$
\left(\begin{array}{ll}
a+b & b-a \\
a-b & b+a
\end{array}\right)
$$

be a matrix with $a, b \in \mathbb{R}$. Give the conditions on a and b under which A is orthogonal.

