
Improved Bounds for the Unsplittable

Flow Problem∗

Petr Kolman
Inst. for Theoretical Computer Science†

Charles University
Malostranské nám. 25

118 00 Prague, Czech Republic
kolman@kam.mff.cuni.cz

Christian Scheideler
Dept. of Computer Science
Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA
scheideler@cs.jhu.edu

September 10, 2004

Abstract

In this paper we consider the unsplittable flow problem (UFP): given
a directed or undirected network G = (V, E) with edge capacities and a
set of terminal pairs (or requests) with associated demands, find a subset
of the pairs of maximum total demand for which a single flow path can
be chosen for each pair so that for every edge, the sum of the demands
of the paths crossing the edge does not exceed its capacity. We present a
collection of new results for the UFP both in the offline (all requests are
given from the beginning) and the online (requests arrive at the system
one after the other) setting. A fundamental ingredient of our analysis is
the introduction of a new graph parameter, the flow number, that aims to
capture global communication properties of the network. With the help of
the flow number we develop a general method for transforming arbitrary
multicommodity flow solutions into solutions that use short paths only.
This generalizes a well-known theorem of Leighton and Rao [16] that
applies to uniform flows only. Both the parameter and the method may
therefore be of independent interest.

∗A preliminary version of this work appeared in the ACM-SIAM Symposium on Discrete
Algorithms, 2002

†Supported by the Ministry of Education of the Czech Republic as project LN00A056.

1 Introduction

In the unsplittable flow problem, denoted by UFP, we are given a directed or
undirected network G = (V,E), n = |V |, m = |E|, with edge capacities pre-
scribed by c : E → IR+ and a set T = {(si, ti) : 1 ≤ i ≤ k} of k terminal
pairs (or requests) with demands di ∈ [0, 1]. (The requirement that di ∈ [0, 1]
is not a restriction, since this can always be achieved by suitably scaling the
demands and capacities.) A feasible solution is a subset S ⊆ T of the requests
such that the demand of each request in S is satisfied by a single flow path and
the capacity constraints are fulfilled. The objective is to maximize the total
demand of the satisfied requests. The UFP is a natural generalization of the
classical edge disjoint paths problem.

One of the motivations for the UFP is the problem of allocating bandwidth
for traffic with different bandwidth requirements in heterogeneous networks.
Unfortunately, the UFP is MAXSNP-hard [7]. Therefore, the best one can hope
for (unless P = NP) is to find good approximate solutions. Approximation
algorithms for the UFP and related problems have been presented in several
prior works [9, 18, 11, 12, 6, 7, 3, 14]. Kleinberg [9] provides a comprehensive
background on these problems. Many of these algorithms begin with a linear
programming relaxation of the problem (i.e., instead of using a single path, a
commodity is shipped along multiple paths) and then round the solution in a
suitable way to obtain an approximate solution for the UFP.

Under the assumption that the maximum demand of a commodity, dmax,
does not exceed the minimum edge capacity, called no-bottleneck assumption in
the following, Kleinberg [9] presented an O(

√
m · max c(e)

min di
) approximation algo-

rithm for the UFP. This was subsequently improved by Baveja and Srinivasan [3]
to O(

√
m), by an LP-based algorithm. Azar and Regev [2] gave a simpler, com-

binatorial algorithm with the same approximation guarantee. Kolliopoulos and
Stein [11] presented the first nontrivial approximation, O(log m

√
m), for a more

general version of the UFP in which each request has an associated profit pi

and the goal is to maximize the total profit of accepted requests (UFP with
profits). They also showed that the total profit of a solution computed by
their algorithm is Ω

(
OPT 2/(m log2 m log log m)

)
where OPT denotes the total

profit of the optimal solution; the above mentioned algorithm of Baveja and
Srinivasan [3] guarantees a solution of total profit Ω(OPT 2/m).

Without the no-bottleneck assumption, Guruswami et al. [7] gave a random-
ized algorithm with an approximation ratio of O(

√
m log3/2 m). The algorithm

is based on a suitable rounding of an LP relaxation of the UFP. Recently, Azar
and Regev [2] described a deterministic algorithm with an approximation ratio
of O(

√
m log m). Both of these results require the ratio between the largest

edge capacity and minimum demand to be polynomially bounded. We present
an algorithm with an essentially optimal approximation ratio of O(

√
m), unless

P = NP , without using any assumption about the ratio of the edge capacities
and the demands. The bound is achieved with a simple greedy algorithm.

On the lower bound side, it was shown by Guruswami et al. [7] that on

1

directed networks it is NP-hard to approximate the UFP within a factor of
m1/2−ε, for any ε > 0. Azar and Regev proved that without the no-bottleneck
assumption, it is NP-hard to approximate the UFP with profits within Ω(m1−ε),
for any ε > 0. This paper does not deal with the UFP with profits.

The O(
√

m) approximation and the matching m1/2−ε lower bound [7] are not
very satisfying. However, it is important to correctly understand the meaning
of the lower bound: for any ε > 0 there exists a directed network for which it is
NP-hard to approximate the UFP within a factor of m1/2−ε. The lower bound
does not imply anything about the possibility to approximate the UFP for most
other networks (and, in fact, anything for any undirected network). However,
still if we think about general algorithms for arbitrary networks and m is the
only known parameter, we cannot get (much) better results than O(

√
m). Thus,

it is necessary to use other graph parameters, for example the edge expansion, to
be able to get below the

√
m approximation ratio for many classes of networks.

We will consider this approach for the rest of this section. All the time we will
assume that the no-bottleneck assumption holds.

For a special case of the UFP, the unit-capacity UFP (that is, all edges
have a capacity of one), Baveja and Srinivasan [3] gave an algorithm with an
O(∆2α−2 log3 n) approximation ratio, where ∆ is the maximum degree and α
is the edge expansion. A crucial building block of the paper is an observa-
tion of Kleinberg and Rubinfeld [10] that for a multicommodity flow problem
an almost optimal solution can always be obtained by flows of length at most
O(∆2α−2 log3 n). The algorithm itself is quite involved and the proof heav-
ily uses probabilistic tools like the FKG inequality. Combining the results of
Kleinberg and Rubinfeld [10] and Leighton and Rao [16], the approximation ra-
tio can be decreased to O(∆2α−2 log2 n). Recently, Kolman and Scheideler [14]
improved this ratio to O(∆2α−1 log n), and for certain classes of graphs in which
the diameter is much lower than α−1, they even prove stronger results, using
a so-called Shrewd algorithm. Using a new parameter called the flow number
F of a network, we improve the general approximation ratio further to O(F)
with F = O(∆ α−1 log n). Redefining ∆ and α with respect to the different
capacities (i.e., ∆ as the maximum total capacity leaving or leading to a node,
and α respecting the capacities) the bound can be extended to arbitrary undi-
rected networks. In contrast to the results of Bajeva and Srinivasan [3] both
our algorithm and its analysis are very simple and, especially, they do not need
tools from probabilistic analysis. Moreover, it is possible to make the algorithm
online.

Imposing a stronger restriction on the maximum demand than just the no-
bottleneck assumption (i.e., dmax ≤ cmin), namely, having the ratio cmin/dmax

lower bounded by a constant larger than 1, allows one to get much better ap-
proximation ratios. This setting is sometimes called UFP with small or bounded
demands [2, 3]. In our case (recall the di ∈ [0, 1] assumption), the minimum edge
capacity cmin itself serves as the lower bound, and it will be used as an additional
parameter. Based on techniques of Awerbuch et al. [1], Azar and Regev [2] re-
cently obtained an algorithm with an approximation ratio of O(cmin · n1/cmin),
for any 2 ≤ cmin ≤ log n. They note that the n in the bound can be replaced by

2

an upper bound d on the longest path in an optimal solution, however, without
giving any better bound on d other than the trivial n. Bajeva and Srinivasan [3]
again use the d = O(∆2α−2 log3 n) bound by Kleinberg and Rubinfeld [10] and
they present an algorithm with an approximation ratio of O(d1/(cmin−1)), for any
cmin ≥ 2. The latter result gives a better bound for large cmin. For example, for
cmin = Ω(log d) it implies an O(1)-approximation algorithm. We improve the
bound of Azar and Regev by presenting an algorithm with an approximation
ratio of O(cmin · (F 1/cmin − 1)) for all integral cmin ≥ 1 (which is O(log F) if
cmin ≥ log F).

The UFP has also been considered in the online setting where the requests
arrive one by one and decisions have to be made without any knowledge about
the future requests. For cmin = Ω(log n), Awerbuch, Azar and Plotkin [1] de-
scribe an optimal online algorithm with a competitive ratio of Θ(log n). Azar
and Regev [2] present a randomized algorithm with a competitive ratio of
O(cmin · (n1/cmin − 1)) for any cmin ≥ 2, and they show that no determinis-
tic online algorithm can achieve a better competitive ratio than this. This
online lower bound is of the same nature as the m1/2−ε offline lower bound by
Guruswami et al. [7] that was explained earlier. It is still possible to get better
bounds for many networks if other parameters are used. We present a determin-
istic online algorithm with a competitive ratio of O(cmin · (F 1/(cmin−1) − 1)) for
all cmin ≥ 2 and show that any deterministic online algorithm has a competitive
ratio of Ω(cmin · (F 1/(cmin−1) − 1)). Using randomization, it is possible to get
an O(cmin · (F 1/cmin − 1)) competitive ratio. We also show that if it is allowed
to cancel previously established paths, then there is a deterministic online al-
gorithm with a competitive ratio of O(cmin · (F 1/cmin − 1)), for all cmin ≥ 1.
This demonstrates that the ability to cancel paths is an important and powerful
feature. It has not been investigated prior to our work.

Our key technique to obtain most of our results is a technique to shorten flow
paths, captured in the Shortening Lemma, which may be of independent interest.
It allows to transform any feasible solution of a multicommodity flow problem
into a solution in which the maximal path length is only O(F) and the edge
capacities are overloaded by only a very small constant factor. This generalizes
a well-known result about short flow solutions for uniform multicommodity flow
problems (there is a commodity with demand one for every pair of nodes) by
Leighton and Rao [16, Theorem 18] to a result about short flow solutions for
arbitrary multicommodity flow problems, and also substantially improves and
generalizes the above mentioned bound O(log3 n) of Kleinberg and Rubinfeld
for bounded degree expanders [10, Theorem 6].

There have been several new results since the first publication of this work.
Chekuri and Khanna [5] improved the analysis of the old greedy algorithm for
the edge disjoint paths problem. They observed that in terms of the number of
vertices, the best lower bound is Ω(n1/2−ε) while the best upper bound is O(n)
only. They proved that the greedy algorithm gives an O(n2/3)-approximation in
undirected graphs and O(n4/5)-approximation in directed graphs; on the other
hand, there are directed and undirected instances in which the approximation
ratio of the greedy algorithm is Ω(n2/3). They showed that the bounds apply

3

also for the unit-capacity UFP. Based on their work, Kolman [13] proved the
same bounds for the general UFP with arbitrary demands and capacities. Haji-
aghayi and Leighton [8] improved the upper bound on the approximation ratio
of the greedy algorithm on directed graphs to O(n3/4) and Varadarajan and
Venkataraman further to O((n log n)2/3), almost matching the Ω(n2/3) lower
bound for the greedy.

The concept of the flow number was subsequently used by Chakrabarti et
al. [4] to design other, LP-based approximation algorithms for the UFP. In
contrast to our work, to measure the performance of an algorithm on a network
G, they use the flow number of the underlying graph G, denoted by FG, (i.e.,
FG depends only on the structure of the underlying graph, not on the edge
capacities). They present an O(FG log n) approximation for the UFP under
the no-bottleneck assumption, an O(FG) = O(F) approximation for the unit-
capacity UFP, an O((FG log n)1/cmin) approximation for the UFP with small
demands and an O(F 1/cmin

G) approximation for the unit-capacity UFP with small
demands. All algorithms are based on randomized rounding of a fractional flow
along short paths. In general, the two parameters F and FG are incomparable.
There are networks with F > FG but also networks with F ≤ FG. Thus, for
some instances of the UFP, the results of Chakrabarti et al. are an improvement,
but they are not an improvement for all.

1.1 Organization of the paper

We start in Section 2 with defining the key new parameter flow number and we
compare it with the expansion of a network. In Section 3, the Shortening lemma
is given. Section 4 deals with offline algorithms for the UFP, and in Section 5
we present online algorithms for the UFP. The paper ends with a conclusion
and open problems.

2 A New Network Measure

Many of the previous techniques have problems proving strong upper bounds
on approximation or competitive ratios of algorithms due to the use of inap-
propriate parameters. As can be seen from the lower bound of Guruswami et
al. [7], if m is the only parameter used, an upper bound of O(

√
m) is essen-

tially the best possible. Much better ratios can be shown if the expansion or
the routing number [17] of a network are used. These measures give very good
bounds for low-degree networks with uniform edge capacities, but are usually
very poor when applied to networks of high degree or highly nonuniform edge
capacities. For instance, when applying the previously known general bounds
to the hypercube on n nodes, then the best approximation ratio is O(log2 n).
However, it is possible to reduce it to O(log n). For the purpose of getting more
precise bounds for the approximation and competitive ratios of algorithms (that
allow, for example, the O(log n) bound for the hypercube) we introduce a new
network measure, the flow number F . Apart from allowing more precise results,

4

the flow number has the advantage that, in contrast to the expansion or the
routing number, it can be computed exactly in polynomial time. After defining
the flow number, we will compare it in this section with the expansion α of a
network and show that F = O(∆ α−1 log n).

Once the flow number is defined it is easy to prove the Shortening Lemma
which in turn makes it possible to significantly improve the previous upper
bounds on the approximation and competitive ratio for the UFP. To give an
example of its usefulness, for networks with flow number Θ(log n) like the hy-
percube, butterfly or expanders, when all capacities are equal to log log n, the
previous best bound on the competitive ratio was O(log log n·n1/log log n) whereas
we achieve a bound of O(log log n) only.

2.1 Basic notation

A network is a graph G = (V,E) with a function c : E → IR+ denoting the
capacities of the edges. By cmin = mine∈E c(e) we denote the minimum edge
capacity of G. Unless explicitly mentioned, we will assume that G is undirected.
(However, all of our results hold up to constant factors also for directed graphs
satisfying

∑
(v,w)∈E c(v, w) = Θ(

∑
(w,v)∈E c(w, v)), for every v ∈ V ; for the

purpose of presentation we restrict ourselves to undirected graphs.) If we simply
talk about a graph (and not about a network), we assume that all edges have
capacity one. The number of nodes in G will always be denoted by n and the
number of edges by m. For any node v, let c(v) =

∑
e={v,w}∈E c(e) denote

the capacity of v and let ∆ = maxv∈V c(v). Given any set of nodes U , let
c(U) =

∑
v∈U c(v), and given any set of edges H, let c(H) =

∑
e∈H c(e). Given

a network G = (V,E), we call c(V) the capacity of G.
For any set of nodes U , let Ū = V \U denote its complement, let |U | denote

its size, and let (U, Ū) denote the set of all edges connecting U and Ū . The edge
expansion of a network G (or simply expansion) is defined as

α = min
U⊂V

c(U, Ū)
min{|U |, |Ū |}

.

In a concurrent multicommodity flow problem there are k commodities, each
with a pair of terminal nodes (si, ti) and demand di. We say that the node si is
the source and the node ti is the destination; the commodity originates in si and
terminates in ti. A feasible solution is a set of flow paths for the commodities
that obey the capacity constraints but need not meet the specified demands.
The flow value of a feasible solution is the maximum value f such that at least
f · di units of commodity i are simultaneously routed for each i. The max-
flow for a multicommodity flow problem is defined as the maximum flow value
over all feasible solutions. In contrast to the UFP problem, the commodity
i between si and ti is allowed to be sent along multiple paths. For a path
p in a solution, the flow size of the path is the number of units routed along
it. We will need two special classes of multicommodity flow problems in the
paper. A balanced multicommodity flow problem (BMFP) is a multicommodity

5

flow problem such that for every node v ∈ V , the sum of the demands of the
commodities originating in v is equal to c(v) and the sum of the demands of the
commodities terminating in v is also equal to c(v). In a product multicommodity
flow problem (PMFP) [16], a nonnegative weight π(u) is associated with each
node u ∈ V . There is a commodity for every ordered pair of nodes and the
demand for the pair (u, v) is equal to π(u) · π(v).

2.2 The flow number

In research about network communication properties, permutation routing has
often been used as a benchmark for comparing different networks. This reflects
the idea that permutation routing represents the communication behavior of an
ideal parallel program: the communication is evenly balanced among the proces-
sors. Both the expansion and the routing number [17] are able to describe quite
accurately the ability of a network to route arbitrary permutations. However,
to achieve an even balance of the communication is only desirable in homoge-
neous network systems (e.g., parallel computers) but may not be desirable in
heterogeneous networks. Therefore, we suggest another benchmark, which is a
generalization of the routing number.

Suppose we have a network G = (V,E) with arbitrary non-negative edge
capacities. Given a concurrent multicommodity flow problem with feasible so-
lution S, let the dilation D(S) of S be defined as the length of the longest flow
path in S and the congestion C(S) of S be defined as the inverse of its flow
value (i.e., the congestion says how many times the edge capacities would have
to be increased in order to satisfy the demands of all commodities when using
the same set of paths). Let I0 be the PMFP in which π(v) = c(v)/

√
c(V) for

every node v, that is, each ordered pair of nodes (v, w) has a commodity of
demand c(v) · c(w)/c(V). The flow number F (G) of a network G is defined as
the minimum over all feasible solutions S of I0 of max{C(S), D(S)}. In the
case that there is no risk of confusion, we will simply write F instead of F (G).
Note that the flow number of a network is invariant to scaling of the capacities.

The smaller the flow number, the better are the communication properties of
the network. For example, F (line) = Θ(n), F (mesh) = Θ(

√
n), F (hypercube) =

Θ(log n) and F (expander) = Θ(log n). (This can be derived from results of
Leighton [15] and Scheideler [17].) The following result shows that F can be
computed exactly in polynomial time. This seems not to be possible for the
routing number or the expansion.

Claim 2.1 There is an algorithm that computes the exact value of the flow
number for every network in polynomial time.

Proof. Consider any network G = (V,E) with capacities given by c. Let
V = {v1, . . . , vn} and F be its flow number. The following strategy will serve
as a basic building block for our algorithm.

For any L ∈ IN, let GL = (V ′, E′) denote a directed leveled graph of depth
L. Each level has n nodes, and the node set in level i ∈ {0, . . . , L} is given

6

by Vi = {vi,1, . . . , vi,n}. The set E′ consists of all directed edges (vi,k, vj,`)
with j = i + 1 and either k = ` or {vk, v`} ∈ E. For any k and ` with
{vk, v`} ∈ E let Ek,` = {(vi,k, vi+1,`) : i ∈ {0, . . . , L − 1}}. Consider now the
multicommodity flow problem for GL in which for each pair of nodes (v0,k, vL,`)
there is a commodity of demand c(vk) ·c(v`)/c(V). Let S be any solution to this
problem. S is called feasible if for every Ek,` the sum of all the flows traversing
the edges in Ek,` ∪E`,k is at most c({vk, v`}). If we allow fractional flows, then
it is possible to compute via linear programming a solution S in polynomial
time that minimizes FL = max{C(S), L}, where C(S) is the congestion of S.

Having such an algorithm for GL, it is easy to see that F = minL FL. Since
the function g : {1, . . . , n} → IR+ with g(x) = Fx is first nonincreasing and then
nondecreasing, simple binary search can be applied to find F . ut

The following claim shows that the flow number does not only characterize
the ability of a network to handle balanced product multicommodity flows but
also to handle any balanced multicommodity flow.

Claim 2.2 For any network G with flow number F and any instance I of the
BMFP for G, there is a feasible solution for I with congestion and dilation at
most 2F .

Proof. The proof uses a strategy similar to the technique of Leighton and
Rao [16] for transforming a permutation into an instance of the uniform multi-
commodity flow problem. The idea is to decompose I into two multicommodity
flow problems: for every commodity i with source si and destination ti, the
first problem I1 has commodities iu from si to u for all u ∈ V with demands
diu

= di · c(u)/c(V), and the second problem I2 has commodities i′u from u to
ti for all u ∈ V with demands di′u = di · c(u)/c(V). For every commodity i from
the original problem, the total demand of corresponding commodities in I1 is
di and is di in I2 as well. Moreover, for every node u ∈ V , the amount of the
commodity iu terminating in u in I1 is equal to the amount of the commodity
iu′ originating in u in I2.

Both of the flow problems I1 and I2 are PMFPs with π(v) = c(v)/
√

c(V)
for every node v, because for any pair v, w ∈ V , the total demand of the com-
modities with source v and destination w in I1 is equal to∑

i: si=v

di · c(w)
c(V)

=
c(v) · c(w)

c(V)
= π(v) · π(w) ,

and in I2 is equal to∑
i: ti=w

di · c(v)
c(V)

=
c(v) · c(w)

c(V)
= π(v) · π(w) .

Thus, according to the definition of the flow number, both I1 and I2 have a
feasible solution with congestion and dilation at most F . Hence, the original
problem I has a feasible solution with congestion and dilation at most 2F , which
proves the claim. ut

7

2.3 Flow number vs. expansion

Next we compare the flow number with the expansion. Consider a PMFP with
weights π(u) for all nodes u, and let p denote the number of nodes with nonzero
weight. Without loss of generality, we assume that p =

∑
u∈V π(u) (otherwise

scale c and π appropriately). The min-cut of a PMFP is defined as

S = min
U⊂V

c(U, Ū)
π(U)π(Ū)

, where π(U) =
∑
u∈U

π(u) .

Leighton and Rao [16, Theorem 18] proved the following theorem about the
relationship between the min-cut, max-flow, and the length of the flow paths
for a PMFP:

Theorem 2.3 (Leighton, Rao, 1999) Given any PMFP for which the min-
cut has size S, there is a flow of size f = Ω(S/ log p) for which every flow path
has a length of at most

L = O

(
max{γ̂, c(V)/p} log p

p · S

)
, where γ̂ = max

u∈V :π(u)>0

c(u)
π(u)

.

The following definition will turn out to be useful. The weighted expansion
of a network G is defined as

β = min
U⊂V

c(U, Ū)
min{c(U), c(Ū)}

.

Using Theorem 2.3, we prove the following result.

Theorem 2.4 For any network G with expansion α and cmin ≥ 1 it holds for
its flow number F that

F = Ω(α−1) and F = O(∆ · α−1 log n)

where ∆ = maxv∈V c(v). Furthermore, there are families of networks that match
the upper and lower bounds.

Proof. We start with the following lemma:

Lemma 2.5 For any network G with weighted expansion β and flow number F
it holds that

F = Ω(β−1) and F = O(β−1 log n)

Proof. First we prove that F ≥ β−1/2. Let f be the max-flow of the problem
I0 used for the definition of F . Then it holds that for any set U ,

f ≤ c(U, Ū)
π(U) · π(Ū)

,

8

where π(U) · π(Ū) = c(U) · c(Ū)/c(V). We distinguish between two cases. If
c(U) ≥ c(V)/2, then c(U) · c(Ū)/c(V) ≥ c(Ū)/2. Thus,

f ≤ c(U, Ū)
c(Ū)/2

= 2
c(U, Ū)

min{c(U), c(Ū)}
.

If c(Ū) ≥ c(V)/2, then c(U) · c(Ū)/c(V) ≥ c(U)/2 and therefore

f ≤ c(U, Ū)
c(U)/2

= 2
c(U, Ū)

min{c(U), c(Ū)}
.

Hence, in both cases,

f ≤ 2
c(U, Ū)

min{c(U), c(Ū)}

and therefore f ≤ 2 · β or 2/f ≥ β−1. Using the fact that F ≥ 1/f it follows
that F = Ω(β−1).

Next we show that F = O(β−1 log n). Consider the PMFP I0 and let S be
the min-cut for it. Recall the notation used in Theorem 2.3. We require there
that p =

∑
u∈V π(u). In our case,

∑
u∈V π(u) =

∑
u∈V c(u)/

√
c(V) =

√
c(V),

but since F is invariant to scaling we can scale the capacities so that
√

c(V) = n
without changing F . Using the definitions of the minimum cut-ratio and the
weighted edge expansion it holds that

S = min
U⊆V

c(U, Ū)
π(U) · π(Ū)

= min
U⊆V

c(U, Ū)
c(U) · c(Ū)/c(V)

≥ min
U⊆V

c(U, Ū)
min{c(U), c(Ū)}

= β

because c(U) · c(Ū)/c(V) ≤ min{c(U), c(Ū)}. Furthermore, we have that for
any u ∈ V , γ̂ = c(u)/π(u) =

√
c(V) and c(V)/p =

√
c(V). Thus, ac-

cording to Theorem 2.3, there is a solution to the PMFP I0 such that L =
O((

√
c(V) log n)/(nS)) = O((log n)/S) = O(β−1 log n) and f = Ω(S/ log n) =

Ω(β/ log n), which implies the desired F = O(β−1 log n). ut

Next we prove a lemma that together with the previous lemma implies that
F = Ω(α−1) and F = O(∆α−1 log n). Recall that ∆ = maxv∈V c(v).

Lemma 2.6 For any network G with expansion α and weighted expansion β
and cmin ≥ 1 it holds that α−1 = Ω(β−1) and α−1 = O(∆β−1).

Proof. Since for any set of nodes U ⊆ V , |U | ≤ c(U) ≤ ∆|U |, the lemma
directly follows from the definitions of α and β. Note, that the requirement
cmin ≥ 1 is needed only for the lower bound part of the lemma. ut

It remains to show that the upper and lower bound for F are in general best
possible.

Lemma 2.7 For any α, 1/n ≤ α ≤ 1/ log n, there exists a constant degree
graph G with n vertices, expansion Θ(α) and flow number Θ(α−1).

9

Proof. We distinguish between two cases. First, 1/n1/2 ≤ α ≤ 1/ log n. In
this case, consider a d-dimensional Butterfly on n′ nodes for some n′ specified
later. We note that d = Θ(log n′). It is known that this graph has an expansion
of Θ(1/d) and a flow number of Θ(d) (e.g., [17]). The expansion is O(1/d) due
to the fact that its two (d− 1)-dimensional sub-butterflies have d · 2d−1 vertices
each but only 2d edges leaving them. If we replace now every edge by a path of
length `, then the number of nodes of the new graph G increases to n = ` · n′
and the expansion decreases to α = Θ(1/(d · `)). Furthermore, the flow number
increases to Θ(d · `). Hence, for any desired α, 1/n1/2 ≤ α ≤ 1/ log n, the graph
G with an expansion α can be obtained by setting ` = bα−1/ log nc and n′ = n/`
in the construction above.

Second, 1/n ≤ α ≤ 1/n1/2. In this case, consider the grid network with
bα−1c nodes in one dimension and n/bα−1c nodes in the other dimension. It is
easy to check that this graph has an expansion of Θ(α) and a flow number of
Θ(α−1). ut

Lemma 2.8 For any log n/n1−ε ≤ α ≤ 1 where ε is an arbitrary positive con-
stant, and any ∆ ≥ 0, there exists a constant degree network G with n vertices,
expansion Θ(α) and flow number F = Θ(∆α−1 log n).

Proof. We start with showing this for α = 1. Let G′ be a constant degree
expander, that is, the expansion of G′ is constant. Construct out of G′ a graph
G in which each edge in G′ is replaced by a path of length 3. Each middle edge
of a path is assigned a capacity of 1, and the border edges have a capacity of ∆.
Had all edges been of capacity ∆, the flow number would have been Θ(log n).
However, since the middle edges have capacity 1, the flow number increases
to Θ(∆ log n) = Θ(∆α−1 log n). This result can now be generalized to other
values of α by using the same construction as for the butterfly in the proof of
Lemma 2.7. ut

Combining the lemmata yields Theorem 2.4. ut

Previous best results about the approximability of the UFP gave upper
bounds of O(∆2 · α−1 log n) [14], and it seems difficult to improve them when
using the expansion as a parameter. If an approximation or competitive ratio
of O(F) can be proved (and we will indeed prove it), Theorem 2.4 implies much
better results, in particular for networks with F = Θ(α−1). Many of the stan-
dard networks (e.g., meshes, butterfly, De Bruijn) actually have this property.
Hence, the flow number F seems to be more suitable parameter for the UFP
than the expansion.

3 Flow Shortening

The main contribution of this section is the following lemma, which proves
that for every multicommodity flow solution there is an almost optimal solution
consisting of short paths only. Moreover, this short solution can be efficiently

10

computed using linear programming. For the rest of the paper, we will use the
Shortening lemma with ε = 1. Most of our upper bounds rely heavily on it.

Lemma 3.1 (Shortening Lemma) Suppose we are given a network with flow
number F . Then, for any ε ∈ (0, 1] and any feasible solution S to an instance of
the concurrent multicommodity flow problem with a flow value of f , there exists
a feasible solution with flow value f/(1 + ε) that uses paths of length at most
2 · F (1 + 1/ε). Moreover, the flow through any edge e not used by S is at most
ε · c(e)/(1 + ε).

Proof. Let O denote the set of paths in the solution S with flow value f and
let O′ ⊆ O consist of all paths from O that are longer than L, for L = 2 · F/ε.
We are going to shorten the paths in O′ at the cost of slightly decreasing the
satisfied demand of each commodity.

For a path p ∈ O′ between sp and tp, let ap,1 = sp, ap,2, · · · , ap,L denote its
first L nodes and bp,1, · · · , bp,L−1, bp,L = tp its last L nodes and let fp be the
size of the flow along p. Then the set U =

⋃
p∈O′

⋃L
i=1{ap,i, bp,i, fp} is (a subset

of) an instance of the BMFP. By Claim 2.2, there exists a feasible solution P
to U with flow value at least 1/(2F) consisting of paths of length at most 2F .
We are going to combine the initial and final parts of the long paths in O′ with
these “shortcuts” in P to obtain the desired short solution.

First, decrease the flows along all paths p ∈ O by a factor of 1/(1 + ε) so
that we have room to accommodate new, short paths for the paths in O′. These
short paths are constructed in the following way:

For every path p ∈ O′, we replace p by L flow systems Sp,i, i = 1, · · · , L.
Each flow system Sp,i consists of two parts:

1. the flow paths between ap,i and bp,i in P corresponding to the request
{ap,i, bp,i, fp} from U , now with a flow of fp/(L(1 + ε)), and

2. fp/(L(1+ε)) units of flow between ap,1 and ap,i along p, and fp/(L(1+ε))
units of flow between bp,i and bp,L along p.

For each i, the length of each path in the subsystem Sp,i is at most L+2 ·F , and
fP /(L(1 + ε)) units of flow are shipped along each path system Sp,i. Summed
over all i = 1 . . . L, we have fp/(1 + ε) units of flow between sp = ap,1 and
tp = bp,L, which is as high as the original flow through p reduced by 1/(1 + ε).
Hence, we can replace p by the systems Sp,i without changing the amount of
flow from sp to tp.

Now, it holds for every edge e that the flow traversing e due to the paths in
O is at most c(e)/(1 + ε), and due to the shortcuts in P is at most∑

p∈P: e∈p

fp

L(1 + ε)
≤ 2F

L(1 + ε)
· c(e) =

ε · c(e)
1 + ε

,

since ∑
p∈P: e∈p

fp

2F
≤ c(e) .

11

Thus, the flows in O and P sum up to at most c(e) for an edge e. Therefore,
the modification yields a feasible solution satisfying the desired properties. ut

4 Offline Algorithms for the UFP

The UFP seems to be much easier with the no-bottleneck assumption. There-
fore, we will assume for most of this section that the no-bottleneck assumption is
fulfilled (i.e., cmin ≥ dmax; remember also the assumption di ∈ [0, 1]), and only in
the last subsection we will deal with the UFP without this assumption. We start
with an elementary bounded greedy algorithm (elementary BGA) with an ap-
proximation ratio of O(F) and show that for directed networks this is essentially
the best possible (if nothing is known about cmin apart from cmin ≥ 1). Then we
present a weighted BGA with an approximation ratio of O(cmin(F 1/cmin − 1)),
which is O(log F) if cmin ≥ log F . Finally, we present a simple greedy algorithm
for the UFP without the no-bottleneck assumption with an approximation ratio
of O(

√
m).

For a request r let d(r) denote the demand of r and for a flow path p let
d(p) denote the demand of the request associated with p and fp be the flow
value of p. Note that d(p) might be different from fp if p belongs to a fractional
multicommodity flow solution.

4.1 The elementary BGA

Consider the following elementary bounded greedy algorithm (or in short, ele-
mentary BGA) [9]: Let L be a suitably chosen parameter. Given a request,
reject it if there is no feasible flow path of length at most L between its terminal
nodes. Otherwise accept it and select any such path for it.

Theorem 4.1 For any network G with flow number F , the approximation ratio
of the elementary BGA with parameter L = 4 ·F , when run on requests ordered
according to their demands starting with the largest, is at most O(F).

Proof. Let B denote the set of paths for the requests accepted by the BGA
and O be the set of paths in the optimal (integral) solution of the UFP. By
the Shortening Lemma it is possible to modify the optimal solution O into a
(fractional) solution O′ of the same flow value consisting of paths of length at
most 4F only, at the cost of overloading the capacity of edges by a factor of
two.

For a set of paths Q let ||Q|| =
∑

p∈Q fp, where fp is the flow value of p.
Furthermore, for any e ∈ E and p ∈ O′ let D(e, p) = ||{q : q ∈ B, e ∈ q, d(q) ≥
d(p) }|| and let D(e) denote the total capacity of edge e used by paths in B. A
path q ∈ B is a witness for a path p ∈ O′ if d(q) ≥ d(p) and q and p intersect in
at least one edge e such that D(e, p) + d(p) > c(e). A key element in our proof
will be the following fact.

Fact 4.2 Every path p ∈ O′ associated with a request that was not accepted by
the BGA must have a witness in B.

12

The fact holds, since otherwise the BGA would have been able to accept the
request. Now, let O1 ⊆ O′ consist of all the paths corresponding to requests
accepted by the BGA and let O2 = O′ \ O1. Clearly, ||O1|| ≤ ||B||. Let E′ ⊆ E
denote the set of all edges on which some path from O2 has a witness in B. By
Fact 4.2 each p ∈ O2 must have a witness in B. Since the total demand of the
paths in O2 traversing an edge exceeds the capacity of that edge by a factor of
at most two, we have ||O2|| ≤ 2

∑
e∈E′ c(e). For every path p ∈ O2 that has a

witness q ∈ B at edge e it must hold by definition that D(e, p) + d(p) > c(e)
and further D(e, p) ≥ d(q) ≥ d(p). Hence, 2D(e, p) > c(e) and therefore D(e) ≥
D(e, p) > c(e)/2. Thus, ||O2|| ≤ 4

∑
e∈E′ D(e) ≤ 16F · ||B||, because all paths

in B are of length at most 4F . Thus, altogether ||O|| ≤ (16F + 1)||B||, which
proves the theorem. ut

We note that if it is guaranteed that all requests have demands at most
1/2 or all requests have demands at least 1/2, than the algorithm works even
without the reordering (which is vital for Fact 4.2 to hold). This will be used
for constructions of the online algorithms.

4.2 A general lower bound for directed networks

Next we show that for directed graphs, the approximation ratio obtained by the
elementary BGA is essentially the best possible. The proof is by reduction from
the NP-hard problem 2DIRPATH: Given a directed graph H and four distinct
vertices s1, t1, s2, t2, are there two edge-disjoint directed paths, one from s1 to
t1 and the other from s2 to t2?

Before we state and prove the result, we first have to adapt the definition of
the flow number to directed graphs. For a node u let cout(u) denote the sum
of capacities of outgoing edges and cin(u) the sum of capacities of incoming
edges. The instance I0 of the concurrent multicommodity flow we consider in the
definition of the flow number has for each oriented pair of nodes (v, w) a single
commodity with demand cout(v) ·cin(w)/c(V). The flow number of the directed
network is the minimum over all feasible solutions S of I0 of max{C(S), D(S)}.

Theorem 4.3 For any ε > 0, it is NP-hard to approximate the UFP on directed
graphs with n vertices and flow number F = nγ , 0 < γ ≤ 1/2, within F 1−ε.

Proof. The proof is by reduction from the NP-hard problem 2DIRPATH,
using the ideas of a construction by Guruswami et al. [7]. Consider any fixed
ε > 0. Let k denote the number of vertices in a given directed graph H for which
the 2DIRPATH problem is to be decided. Furthermore, let G be any constant
degree directed graph with n = k1/2γε vertices with in-degree(v) =out-degree(v)
for every vertex v and flow number F = nγ (such a graph certainly exists). We
construct out of G and copies of H a directed graph G′ with Θ(n) vertices and
flow number F ′ = Θ(nγ) in the following way.

Let M be an l × l-mesh with l = F 1−ε in which all horizontal edges are
oriented to the right and all vertical edges are oriented downwards. Now, replace

13

every internal node v in M by a copy of H in such a way that the left incoming
edge to v is connected to s1, the right outgoing edge to t1, and the upper
incoming edge to s2, the lower outgoing edge to t2. This results in a directed
graph M ′ on F 1−ε · F 1−ε · k = F 2 nodes. Let a1, . . . , al/2 denote the first l/2
nodes on the highest row of M ′ and b1, . . . , bl/2 denote the last l/2 nodes on the
lowest row of M ′. In order to obtain the graph G′, we connect G to M ′ via l/2
edges leading to a1, . . . , al/2 and l/2 edges leaving b1, . . . , bl/2. The endpoints
of these edges in G are chosen in the following way (Figure 1).

G

l/2 edges

l/2 edges

M’

sources

dest.

l nodes

Figure 1: The construction of the graph G′.

Let T be any spanning tree in G. Start at some node v in T and follow the
edges of T in an Euler tour. For every i ∈ {1, . . . , l} let Si denote the set of
vertices visited between (i − 1)F + 1 and i · F steps of the Euler tour. Since
every node is visited at most twice in an Euler tour, a node can appear in at
most two different sets Si. For every i ∈ {1, . . . , l/2}, connect the first node of
set Si to node ai and the first node of set Sl/2+i to node bi. This results in a
directed graph G′ with the following property.

Lemma 4.4 The graph G′ has Θ(n) nodes and a flow number F ′ with F ′ =
Ω(F 1−ε) and F ′ = O(F 1+ε).

Proof. Since the diameter of M ′ is at least F 1−ε, the flow number of G′ is
Ω(F 1−ε). It remains to prove the upper bound. Consider the instance I0 of the
BMFP on G′. To show which paths to use for routing of the commodities, we
distinguish between three types of commodities:

1. commodities (u, v) with u, v ∈ G,

2. commodities (u, v) with u, v ∈ M ′,

3. commodities (u, v) with u ∈ G and v ∈ M ′ or with u ∈ M ′ and v ∈ G.

Commodities of type 1 can be easily connected via paths of congestion and
dilation at most F , since G itself has a flow number F .

14

Paths of commodities of type 2 will consist of several parts. First, we connect
all of them to the nodes b1, . . . , bl/2 in such a way that the congestion of these
parts in M ′ is O(F 1+ε) and for each i ∈ {1, 2, . . . , l/2}, the total demand of
paths ending in bi is O(F 1+ε). Similarly for the last part of the paths: for
each node in M ′, a path is chosen from one of the nodes a1, . . . , al in such
a way that the congestion of these parts in M ′ is O(F 1+ε) and for each i ∈
{1, 2, . . . , l/2}, the total demand of paths going from ai is O(F 1+ε). We still
have to describe the intermediate part. The point is that after extending every
initial part from bi to the corresponding node in G and from there evenly to the
nodes in Si, and similarly extending backwards each last part from ai to the
corresponding node in G and from there evenly to the nodes in Si, we are left
with an almost balanced instance of the multicommodity flow problem: if we
consider the matching pairs of the initial and final parts as separate commodities
with their demand equalling the demand of the matching parts, then the demand
originating and terminating in any vertex of G is at most O(F ε). Thus, by a
directed version of Claim 2.2, it is possible to route the intermediate parts with
congestion and dilation O(F 1+ε).

The commodities of type 3 can be dealt with in an analogous way. Putting
everything together, we have a way of routing the instance I0 with congestion
and dilation O(F 1+ε), which completes the proof. ut

Since Θ(n) = poly(k), the size of G′ is polynomial in the size of the graph
H. Consider the following instance of the UFP: let s1, . . . , sl/2 be the first l/2
nodes of the leftmost column of M ′ and t1, . . . , tl/2 be the first l/2 nodes of the
lowest row of M ′. The set of pairs to connect via a path of capacity 1 is given
by {(si, ti) : 1 ≤ i ≤ l/2}. Since connecting more than two of these pairs would
mean to solve the 2DIRPATH problem (cf. [7]), it is NP-hard to distinguish
whether there are l/2 = F 1−ε/2 disjoint paths or just a single one. ut

4.3 The weighted BGA

In order to get below the lower bound above for specific instances of the prob-
lem (e.g., for high capacity networks), additional parameters apart from F are
needed. Recall the definition of the minimum capacity, cmin = mine c(e). Since
we deal with the no-bottleneck assumption, we have cmin ≥ 1. We will assume
in this subsection that cmin is an integral value. Like other variants of the BGA,
also the weighted BGA will process the requests one after the other without any
later rearrangements. For an edge e and a request r let D(e, r) denote the load
of e after processing all requests before r. Furthermore, let fe(x) = F dxe/c(e)

for any edge e. The weight of an edge e before processing request r is defined
as w(e, r) = fe(D(e, r)), and the weight of a path p for a request r is defined
as w(p, r) =

∑
e∈p w(e, r). Now we are ready to describe the weighted BGA,

which is related to the AAP algorithm by Awerbuch, Azar and Plotkin [1] but
uses a simpler cost function that allows it to be implemented in a much more
efficient way.

Suppose we have a network G with minimum capacity cmin and flow number

15

F . The weighted BGA works as follows: Let L and W be suitably chosen
parameters. Given a request, reject it if there is no flow path p available for it
of length at most L and weight at most W . Otherwise, accept it and select any
such path for it.

The following theorem shows that the weighted BGA improves exponentially
with an increasing cmin. When reading the theorem, note that for the special
case of cmin ≥ log F it holds cmin · (F 1/cmin − 1) = O(log F). We believe that
a similar result can also be shown when using the Shortening Lemma in the
analysis of Azar and Regev [2].

Theorem 4.5 For any network G with minimum capacity cmin and flow number
F , the approximation ratio of the weighted BGA with parameters L = 4 · F
and W = 5 · F , when run on requests in non-increasing order of demands, is
O(cmin · (F 1/cmin − 1)).

Proof. Let B denote the set of paths for the requests accepted by the weighted
BGA and O be the set of paths in the optimal (integral) solution to the UFP. By
the Shortening Lemma it is possible to modify the solution O into a (fractional)
solution O′ of the same flow value consisting of paths of length at most 4F
edges only, at the cost of overloading the capacity of edges by a factor of at
most 2. Let O′

1 ⊆ O′ consist of all flow paths whose requests were rejected by
the weighted BGA.

We will need a few more definitions. Let the normalized weight of an edge
e before processing a request r be defined as w̄(e, r) = d(r) · w(e, r) and the
normalized weight of a path p as w̄(p, r) =

∑
e∈p w̄(e, r). For an edge e let

re
1, . . . , r

e
ke

be all the requests that were accepted by the weighted BGA and
routed through e in this order, and let D(e) denote the final load of e, that is,
D(e) =

∑ke

i=1 d(re
i). If there is no danger of confusion we will omit the upper

index e. Recall the definition of D(e, r) at the beginning of this subsection.
Consider now any flow path p ∈ O′

1 and let r be the request associated
with it. Then either (a) one of the edges along p, say e, has the property that
D(e, r) + d(r) > c(e), or (b) w(p, r) > W . This has the following consequences.

(a) Recall that d(r′) ∈ [0, 1] for every request r′. Thus, it must hold at the
end that D(e) > c(e)− 1. Let the requests contributing to D(e) before r
was processed be denoted by r1, . . . , rk. We distinguish between two cases.
If d(r) ≤ 1/2, then D(e, r) > c(e) − 1/2 and the sum of the normalized
weights at e after all requests have been processed is at least

k∑
i=1

w̄(e, ri) =
k∑

i=1

d(ri) · fe

i−1∑
j=1

d(rj)

 ≥
c(e)−2∑

i=0

F i/c(e) + 1
2F (c(e)−1)/c(e)

(using the fact that fe

(∑k−1
j=1 d(rj)

)
= F (c(e)−1)/c(e)). This is at least

1
2

c(e)−1∑
i=0

F i/c(e) =
F − 1

2(F 1/c(e) − 1)
.

16

If 1/2 < d(r) ≤ 1, then only D(e, r) > c(e) − 1. However, it is not
difficult to check that for every i ∈ {1, . . . , c(e) − 1} there must be a
request rj , j ∈ {1, . . . , k}, such that i− 1 < D(e, rj) ≤ i, and for request
r, c(e)− 1 < D(e, r) ≤ c(e). Since d(rj) > 1/2 for every j (recall that the
weighted BGA is run on requests sorted in non-increasing order of their
demands), the sum of the normalized weights of e after all requests have
been processed is again at least

k∑
i=1

w̄(e, ri) ≥
c(e)−1∑

i=0

1
2
· F i/c(e) =

F − 1
2(F 1/c(e) − 1)

.

In both cases, we will use this to assign to p a relative normalized weight
of

1
2c(e)

· F − 1
2(F 1/c(e) − 1)

.

This is at least
F − 1

4cmin(F 1/cmin − 1)
,

since for all e, c(e) ≥ cmin and therefore c(e) · (F 1/c(e) − 1) ≤ cmin ·
(F 1/cmin−1). (This follows from the fact that the derivation of the function
f(x) = x · (F 1/x − 1) is f ′(x) = (1− lnF/x)F 1/x − 1 and that f ′(x) < 0
for all x > 0: for x ≤ lnF , f ′(x) < 0 is obviously true; for x > lnF ,
F 1/x = eln F/x =

∑
i≥0

(ln F/x)i

i! and 1
1−ln F/x =

∑
i≥0(lnF/x)i, therefore

F 1/x < 1
1−ln F/x .) In the following, let γ(x) = x · (F 1/x − 1).

(b) Suppose that p = (e1, . . . , el). Since w(p, r) > W , it holds that
∑l

i=1 fei
(D(ei, r)) >

W . Analogously to the case (a), for every edge ei, the sum of the nor-
malized weights of the edge ei after all requests have been processed is at
least

dD(ei)−1e∑
j=0

F j/c(ei) =
F dD(ei)e/c(ei) − 1

F 1/c(ei) − 1
=

fei(D(ei))− 1
F 1/c(ei) − 1

.

Similarly to (a) we assign to p a relative normalized weight (now we sum
over all the edges ei) ∑

ei∈p

1
2c(ei)

· f(D(ei))− 1
2 · (F 1/c(ei) − 1)

,

which is again at least (by the definition of w(p))

w(p)− l

4 · γ(cmin)
≥ W − L

4 · γ(cmin)
≥ F

4 · γ(cmin)
.

17

Recalling where the relative normalized weight of a path comes from (roughly, it
is a lower bound on the sum, over all edges e on p, of the sum of the normalized
weights on the edge e over all requests accepted on e, multiplied by 1

2·c(e)), it
follows for every path p ∈ O′

1 that

F − 1
4 · γ(cmin)

≤
∑
e∈p

1
2c(e)

ke∑
i=1

w̄(e, re
i)

Hence, we get

||O′
1|| =

∑
p∈O′

1

fp =
4 · γ(cmin)

F − 1

∑
p∈O′

1

fp ·
F − 1

4 · γ(cmin)

≤ 4 · γ(cmin)
F − 1

∑
p∈O′

1

fp ·
∑
e∈p

1
2c(e)

ke∑
i=1

w̄(e, re
i)

≤ 4 · γ(cmin)
F − 1

∑
e∈E

∑
p∈O′:e∈p

fp

2c(e)
·

ke∑
i=1

w̄(e, re
i)

≤ 4 · γ(cmin)
F − 1

∑
e∈E

ke∑
i=1

w̄(e, re
i)

=
4 · γ(cmin)

F − 1
· w̄(B) ,

where w̄(B) =
∑

p∈B w̄(p, rp) and rp is the request that was accepted and routed
along p by the weighted BGA. From

w̄(B) =
∑
p∈B

d(p) · w(p, rp) ≤
∑
p∈B

d(p) ·W = W · ||B|| = 5F · ||B||

it follows that ||O′
1|| ≤ O(γ(cmin) · ||B||). Since ||O′ −O′

1|| ≤ ||B||, also ||O′|| ≤
O(γ(cmin)||B||), which concludes the proof. ut

4.4 The UFP without the no-bottleneck assumption

In contrast to the previous subsections here we allow cmin < 1, that is, demands
may be larger than the minimal edge capacity.

Consider the following careful BGA: Order the requests according to their
demands starting with the largest. Accept a request r if there exists a feasible
path p for it such that after routing r the total flow on at most

√
m edges of p is

larger than half of their capacity. We say that the request r uses these edges in
their upper half. Let B1 denote the solution we get. Let B2 denote the solution
consisting of only the largest request connected by any path. As our solution
we take the maximal of these two, that is B = max(B1,B2).

Theorem 4.6 The solution of the careful BGA is a (6
√

m+1)–approximation.

18

Proof. Let O denote the optimal unsplittable flow and O′ ⊆ O its subset
consisting of requests rejected by both runs of the careful BGA algorithm, that
is of requests neither in B1 nor in B2. Obviously ||O −O′|| ≤ 2 · ||B||. Consider
a path p ∈ O′. There are two possible reasons why the request r corresponding
to p was not routed along p by the careful BGA: either p was infeasible, which
means the existence of an edge e ∈ p where r did not fit in, or there are (at
least)

√
m edges e1, · · · , e√m on p that would be used by r in their upper half,

that is for each ei the sum of d(p) and the flow on ei in the moment of deciding
about p was larger than half of their capacity c(ei)/2.

Let us think about the first rejection reason. Since the requests were pro-
cessed according to their demands, the flow on e in the moment of rejecting p
was more than c(e)/2. Consider the paths from B1 participating on this flow
that use the edge e in the upper half. Again, due to processing the requests
according to their demands, the sum of flow values of these paths is at least
c(e)/4 (if d(p) ≤ c(e)/4, then there is less than c(e)/4 capacity available in e
and therefore the sum of flow values of paths that use e in the upper half is at
least c(e)/4; if d(p) > c(e)/4, then the smallest request routed though e uses
e in the upper half, and due to the ordering of the requests, its demand is at
least d(p) > c(e)/4). Each of these paths q is called a type I witness of p and
its weight for p is defined as d(q) · d(p)/c(e). Note that the total weight of each
path q ∈ B1 as a type I witness for paths in O′ is at most d(q) ·

√
m (q serves

as a type I witness only on edges that are used by it in the upper half and the
number of these is upper bounded by

√
m), and, on the other hand, each path

p ∈ O′ rejected for the first reason has witnesses in B1 with total weight at least
d(p)/4. Thus, the total demand of paths rejected for the first reason is at most
4
√

m||B1||.
If the path p ∈ O′ was rejected for the second reason then either (a) there

are more than
√

m/2 edges on p such that d(p) > c(e)/2 for each of them, or
(b) there are

√
m/2 edges each with a flow at least d(p). In the former case,

the total number of paths in the optimal solution that use more than a half of
capacity of more than

√
m/2 edges is less than 2

√
m and their total demand is

at most 2
√

m||B2||. In the latter case, the paths on the
√

m/2 edges are called
type II witnesses and the weight of q which meets on ei with p is defined as
d(q) · d(p)/c(ei). The weight of each path q ∈ B1 as a type II witness is at most
d(q) · m (q can serve as a type II witness on each edge e ∈ q, and the length
of q is upper bounded by the number of edges m) and, on the other hand, the
total weight of type II witnesses for each path in O′ rejected for the ‘2b’ reason
is at least d(p) ·

√
m/2. Therefore, by double counting, total demand of paths

rejected for the ‘2b’ reason is at most 2
√

m||B1||. ut

Note that the flow number is useless without the no-bottleneck assumption.
For example, think about an expander network G1(V,E1) on n nodes with all
edge capacities equal to 1 − ε, for some ε > 0, and about a mesh G2(V,E2) on
n nodes with all edge capacities equal to one. The flow number of a network
G(V,E1∪E2) is O(log n) but if all requests have demands larger than 1−ε, they
can only make use of the mesh subnetwork with flow number Θ(

√
n). Thus, the

19

flow number does not help to get better algorithms in this setting.

5 Online algorithms for the UFP

So far we only presented offline algorithms. Since in real systems requests usu-
ally arrive in a continuous fashion, it is important to find also efficient online
algorithms. Throughout the section we will assume that the no-bottleneck as-
sumption is true, i.e. cmin ≥ 1.

Our aim will be to ensure that at the end of any input sequence of requests,
the total demand of the connected paths is close to the best possible total
demand. That is, we search for algorithms with a competitive ratio that is as
small as possible. As a reminder, the competitive ratio of a deterministic online
algorithm is defined as

c = sup
σ

OPT (σ)
ON(σ)

,

where the supremum is taken over all possible sequences of requests σ, ON(σ) is
the profit of the online algorithm on σ, and OPT (σ) is the profit of an optimal
offline algorithm. In our case, the profit is the sum of all satisfied demands.
Similarly, the competitive ratio of a randomized online algorithm is defined as

c = sup
σ

OPT (σ)
E[ON(σ)]

.

5.1 Online algorithms that do not cancel paths

If cmin is an integral capacity of at least 2, then we can use the weighted BGA
presented in Section 4.3 to obtain the following result.

Theorem 5.1 For any network G with capacity cmin ≥ 2 and flow number
F , the competitive ratio of the weighted BGA with parameters L = 4 · F and
W = 5 ·F and cost function fe(x) = F dxe/(c(e)−1) is O(cmin · (F 1/(cmin−1) − 1)).

Proof. The proof works in the same way as the proof of Theorem 4.5. The
difference is that here the requests are not processed according to their demands,
which results in a weaker bound (i.e., the power 1/(cmin− 1) in the on-line case
versus 1/cmin in the off-line case). ut

The next theorem shows that this upper bound is the best possible by pro-
viding a matching lower bound. The proof follows the arguments given by Azar
and Regev [2] in their Ω(cmin · n1/(cmin)) lower bound. However, since the proof
does not appear in the published version of their paper, we provide for the sake
of completeness a full description of its improved version here. The trick to
improve their lower bound to the lower bound below is to offer an additional
request of demand ε at the beginning, where ε > 0 is sufficiently small. This
reduces the usable capacity for the following requests from cmin to cmin − 1.

20

Theorem 5.2 For all F and all integral 2 ≤ cmin ≤ log F there is a network G
of minimum edge capacity cmin and flow number Θ(F) such that the competitive
ratio of any deterministic online algorithm on G is Ω(cmin · F 1/(cmin−1)).

Proof. We will restrict ourselves to considering a linear array with edge ca-
pacities cmin consisting of n+1 nodes numbered from 0 to n. Obviously, in this
case F = Θ(n). The general case can simply be obtained by attaching a linear
array of F nodes and edge capacities cmin to a network with flow number F and
minimal edge capacity cmin. Let k = cmin − 1. For simplicity we also assume
that n = rk for some integer r.

For any deterministic online algorithm we are going to describe an input
sequence on which the given algorithm is Ω((k + 1) ·n1/k) times worse than the
optimal one. For any algorithm, the first request in the sequence will always
be a request between 0 and n with a small demand ε > 0. Any algorithm with
a bounded competitive ratio has to accept it. The rest of the sequence will be
described with a help of a complete r-ary tree T of height k: the root is at level
0 and the leaves are at level k. Given any drawing of the tree in the plane, we
number the nodes in each level from left to right with integers starting from 0.
Now we associate each node of T with a segment of our line graph. A node j
in level i, 0 ≤ i ≤ k, corresponds to the interval between nodes j · rk−i and
(j + 1) · rk−i. Note that for any non-leaf node of T its children’s segments are
disjoint (up to the border nodes) parts of its own segment.

The rest of the input sequence (till now we have just the first request) is
constructed as follows. All further request will be of demand one. We traverse
the tree in a depth first search manner, starting from the root. In each node u
we present to the algorithm a sequence of identical requests between end-nodes
of the interval corresponding to u until either i) the algorithm accepts one, or ii)
we have already presented k+1 such requests in this node. In the former case we
keep traversing the tree in the DFS order, in the later case we skip all nodes in
the subtree of u and then continue in the DFS traversal of the tree. Note that if
we happen to arrive to a leaf of the tree during the DFS traversal, the algorithm
cannot accept any of the requests presented here since there are already k other
accepted requests overlapping with the leaf’s corresponding interval plus the ε
request.

Let T ′ ⊆ T be a tree consisting of all nodes of T really visited by our traversal
of the tree. The profit of the algorithm is equal to the number of inner nodes of
T ′ plus ε. On the other hand, a better solution is to accept the k + 1 requests
for each leaf of T ′. Since the number of the leaves of T ′ is r−1 times larger than
the number of the inner nodes (can be proved by induction) the lower bound
follows. ut

The performance guarantee of the weighted BGA in the online setting (The-
orem 5.1) is asymptotically weaker than its performance guarantee in the off-line
setting (Theorem 4.5). However, there are still ways to get better algorithms
even in the online setting:

1. To use randomized algorithms. Both the elementary BGA and weighted

21

BGA can be easily modified into algorithms with the same performance
guarantee as their off-line counterparts. This is considered in Theorems 5.3
and 5.4.

2. To allow the on-line algorithm to cancel previously established paths. Sub-
section 5.2 deals with this setting.

For cmin = 1 , the randomized elementary BGA works as follows, using the
same trick as Azar and Regev [2]: With probability 1/2 either consider only
requests of demand less than 1/2 or consider only requests of demand at least
1/2. Use the elementary BGA with parameter L = 4F to decide whether to
accept or reject requests in the chosen group.

Theorem 5.3 The randomized elementary BGA has a competitive ratio of
O(F).

Proof. Let O be the set of paths accepted by the optimal solution. Further-
more, let O′ be the set of paths with demands less than 1/2 and O′′ be the set
of paths with demands at least 1/2. The result easily follows from the remark
after Theorem 4.1. With probability 1/2 the algorithm considers only those
requests (either smaller or larger than 1/2) that compose most of the optimal
profit and on this subsequence the performance is guaranteed by Theorem 4.1.

ut

The same separation trick also works when applied to the weighted BGA.

Theorem 5.4 The randomized weighted BGA has a competitive ratio of O(cmin·
(F 1/cmin − 1)) .

5.2 Online algorithms that cancel paths

In this section we will present online algorithms that are allowed to cancel
paths. However, any request whose path has been canceled is not allowed to
be reestablished later. Hence, the online algorithms we will consider are still
very restricted: the requests arrive one after the other, and for each of them the
algorithm has to decide before knowing the next requests in the input sequence
whether to accept it or not. If the request is accepted, a flow path has to
be provided for it that, in addition to the already established paths, does not
exceed the capacity of any edge. To achieve this, the algorithm is allowed to
cancel previously connected requests but cannot reconnect them later.

Consider the following online algorithm, called rude BGA with parameter
L: Given a request of demand d, check whether there is a flow path of value d
and length at most L available for it after canceling previously established paths
of total flow value at most d/2. If so, establish the new request along any of
these paths and cancel the corresponding old requests (if necessary). Otherwise,
reject the request.

We call paths that get canceled due to a request r victims of r. The rude
BGA has the following performance.

22

Theorem 5.5 The rude BGA with parameter 4F has a competitive ratio of
O(F).

Proof. Let B be the paths used at the end by the rude BGA and O be the
paths used by an optimal offline strategy. For any path p let fp be its flow value
and d(p) be the demand of the request associated with it. For any set of paths
Q let ||Q|| =

∑
p∈Q fp. Let B′ be the set of all flow paths ever selected by the

rude BGA, even if they were canceled later on.

Lemma 5.6
||B′|| ≤ 2 · ||B||.

Proof. Our strategy for proving the lemma will be to distribute the flow values
of the paths in B in a suitable way among the paths in B′. Suppose that in a
first step every path p ∈ B moves fq units of its flow to each of its victims q.
This is possible, since the flow value of p exceeds the flow values of its victims by
a factor of at least 2. Next, each victim q that got a value of fq moves a value of
fq′ to each of its victims q′. This is continued until all paths in B′ have received
a flow value. Since the rude BGA ensures that the sum of the flow values of
the victims of a path p is at most d(p)/2, it is easy to see that the values of the
paths in B are distributed by the above process among the paths in B′ so that
every path q ∈ B′ has a value of at least d(q)/2. Thus, ||B′|| ≤ 2 · ||B||. ut

For an edge e ∈ E let D(e) denote the sum of flow values of the paths in
B′ passing through edge e. A set of flow paths {q1, . . . , qk} ⊆ B′ is a set of
witnesses for a flow path p ∈ O if

∑
i d(qi) ≥ d(p)/2 and for every i, qi and p

share at least one edge. As in the previous proofs the goal is to show that the
requests rejected by the rude BGA but accepted by OPT have enough witnesses
in B′ without using each path in B′ too often as a witness.

According to Lemma 3.1 we can assume that all paths in O have a length of
at most 4 ·F and for every edge e the sum of the demands of paths in O crossing
e is at most 2c(e). Let O′ be the set of all paths in O that do not correspond
to requests accepted by B′. Since ||O \ O′|| ≤ ||B′|| it remains to bound ||O′||.

First note that each p ∈ O′ must have a set of witnesses in B′ since otherwise
the rude BGA would have been able to accept the corresponding request. Let
E′ ⊆ E denote the set of all edges e on which some path from O′ has a witness
in B′ and for which D(e) ≥ c(e)/2. Let O′′ ⊆ O′ be the set of paths that contain
at least one edge from E′. Then

||O′′|| ≤
∑
e∈E′

2c(e) ≤ 4
∑
e∈E′

D(e) ≤ 16 · F · ||B′|| ,

because all paths in B′ are of length at most 4 · F .
For each of the remaining paths p ∈ O′ \ O′′ it holds that there must be

a set of edges Ep with d(p) < 2
∑

e∈Ep
D(e) and d(p) > c(e) − D(e) for all

e ∈ Ep since otherwise the rude BGA would have been able to accept the
request corresponding to p. Let E′′ =

⋃
p∈O′\O′′ Ep be the set of all of these

23

edges. Since for every p ∈ O′ \O′′ we have D(e) < c(e)/2 for all e ∈ Ep it holds
that d(p) > c(e)/2 for all of these edges. Thus,

||O′ \ O′′|| =
∑

p∈O′\O′′

fp =
∑

p∈O′\O′′

fp

d(p)
· d(p)

<
∑

p∈O′\O′′

fp

d(p)
· 2

∑
e∈Ep

D(e) = 2
∑

e∈E′′

D(e)
∑

p∈O′\O′′: e∈Ep

fp

d(p)

< 4
∑

e∈E′′

D(e)
∑

p∈O′\O′′: e∈Ep

fp

c(e)
≤ 8

∑
e∈E′′

D(e) ≤ 32 · F · ||B′|| .

Therefore, ||O′|| ≤ 48 · F · ||B||, which completes the proof. ut

Next we show that for the case that cmin is known and cmin > 1, a better
competitive ratio can be achieved when using the following weighted rude BGA:
Let L and W be suitably chosen parameters. Given a request r, accept it there
is a flow path for r of length at most L and weight at most W , with a possible
cancellation of old paths with total weight at most W/2. Otherwise, reject it.

Theorem 5.7 For any network G with cmin > 1 and flow number F , the com-
petitive ratio of the weighted rude BGA with parameters L = 4 ·F and W = 5 ·F
is O(cmin · (F 1/cmin − 1)).

Proof. The proof is basically a combination of the proofs of Theorem 4.5
and Theorem 5.5: First, it is shown that the weighted rude BGA ensures that
w̄(B′) ≤ 2w̄(B). Then B′ (or actually the highest total demand each edge ever
reaches during the algorithm; all other requests can be neglected) is compared
with O and it is shown that ||O′|| ≤ 4·γ(cmin)

F−1 · w̄(B′).
Given a flow path p associated with a request r that was accepted by the

optimal algorithm but not by the weighted rude BGA, cases (a.1) and (b) from
the proof of Theorem 4.5 go through as before. The only problematic case is
(a.2), i.e. 1/2 ≤ d(r) ≤ 1, namely the situation when the minimum weight
of paths that have to be canceled in order to be able to route the request r
along the path p, exceeds half of the weight of p while the weight of p is still
at most W . Recall that the weight of a path q is w(q) =

∑
e∈q w(e). Let v(e)

denote the total weight of the paths passing through an edge e ∈ p that would
have had to be canceled in order to accept r along p. Since r was rejected,
it must hold that w(p) ≤ 2

∑
e∈p v(e). Hence, there must exist an e ∈ p with

v(e) ≥ w(e)/2. Let Q be the set of paths corresponding to v(e). Since d(r) ≤ 1,
all paths q ∈ Q must have a normalized weight of at least d(q) · f(c(e) − 1).
Hence, all paths q ∈ Q together must have a normalized weight of at least
v(e) ·f(c(e)−1) ≥ (w(e)/2) ·f(c(e)−1) ≥ f(c(e)−1)/4 (recall that w(e) ≥ 1/2).
This allows to show in a similar way to (a).2 that the total normalized weight of
all paths in e is at least F−1

4(F 1/c(e)−1)
. Thus, the analysis goes through as before.

ut

24

6 Open Problems

In this paper we have made a significant advance in proving better bounds on
the approximation ratio and the competitive ratio of algorithms for the UFP.
However, many problems remain open. For instance, are there lower bounds on
the approximation ratio for undirected graphs that are close to those for directed
graphs? Is the Shortening Lemma essentially best possible in a sense that any
rearrangement to short paths does cause a decrease in the flow value? Can
constant factor approximation schemes also be found for cmin = o(log F)? Also,
although the presented algorithms substantially improve the previous upper
bounds, they still do not make use of the fact that all the paths in the optimal
solution for the UFP have to be unsplittable. In fact, they only compare the
offline or online solution with an optimal fractional solution (and the fractional
solution may be significantly larger - by a

√
m factor on the brick wall). Can

the unsplittability be exploited in the analysis to obtain better bounds?

Acknowledgements. We would like to thank the anonymous referees for
valuable comments and suggestions.

References

[1] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line
routing. In Proceedings of the 34th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 32–40, 1993.

[2] Y. Azar and O. Regev. Strongly polynomial algorithms for the unsplittable
flow problem. In Proceedings of the 8th Conference on Integer Programming
and Combinatorial Optimization, 2001.

[3] A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths
and related routing and packing problems. Mathematics of Operations
Research, 25, 2000.

[4] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation
algorithms for the unsplittable flow problem. In Proceedings of the 5th
International Workshop on Approximation Algorithms for Combinatorial
Optimization, 2002.

[5] C. Chekuri and S. Khanna. Edge disjoint paths revisited. In Proceedings
of the 14th ACM-SIAM Symposium on Discrete Algorithms, 2003.

[6] Y. Dinitz, N. Garg, and M. Goemans. On the single source unsplittable flow
problem. In Proceedings of the 39th Annual Symposium on Foundations of
Computer Science, pages 290–299, 1998.

[7] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yan-
nakakis. Near-optimal hardness results and approximation algorithms for

25

edge-disjoint paths and related problems. In Proceedings of the 31st ACM
Symposium on Theory of Computing, pages 19–28, 1999.

[8] M. Hajiaghayi and F. T. Leighton. On the max-flow min-cut ratio for di-
rected multicommodity flows. Technical Report MIT-LCS-TR-910, MIT
Laboratory for Computer Science, 2003. Submitted to Theoretical Com-
puter science.

[9] J. Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD
thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1996.

[10] J. Kleinberg and R. Rubinfeld. Short paths in expander graphs. In Proceed-
ings of the 37th Annual Symposium on Foundations of Computer Science,
pages 86–95, 1996.

[11] S. G. Kolliopoulos and C. Stein. Improved approximation algorithms for
unsplittable flow problems. In Proceedings of the 38th Annual Symposium
on Foundations of Computer Science, pages 426–435, 1997.

[12] S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems
using greedy algorithms and packing integer programs. In Proceedings of
the 6th Integer Programming and Combinatorial Optimization Conference,
volume 1412 of Lecture Notes in Computer Science, pages 153–162, 1998.

[13] P. Kolman. A note on the greedy algorithm for the unsplittable flow prob-
lem. Information Processing Letters, 88(3):101–105, 2003.

[14] P. Kolman and C. Scheideler. Simple, routing-based on-line algorithms for
maximum disjoint paths problem. In Proceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 38–47, 2001.

[15] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays - Trees - Hypercubes. Morgan Kaufmann, San Mateo, 1992.

[16] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. Journal of the ACM,
46(6):787–832, Nov. 1999.

[17] C. Scheideler. Universal Routing Strategies for Interconnection Networks.
Lecture Notes in Computer Science 1390, Springer Verlag, 1998.

[18] A. Srinivasan. Improved approximations for edge-disjoint paths, unsplit-
table flow, and related routing problems. In 38th Annual Symposium on
Foundations of Computer Science, pages 416–425, 20–22 Oct. 1997.

26

