Extension Complexity, MSO Logic, and Treewidth

Petr Kolman
Joint work with M. Koutecký, H. R. Tiwary

Department of Applied Mathematics
Faculty of Mathematics and Physics
Charles University

SWAT 2016

Extended Formulation of a Polytope P

Definitions

- A polytope $Q \subseteq \mathbb{R}^{d+r}$ is an extended formulation of $P \subseteq \mathbb{R}^{d}$ if P is a projection of Q onto the first d coordinates.
- The size of P is the number of its facet-defining inequalities.
- The extension complexity of a polytope P, denoted by xc (P), is the size of its smallest extended formulation.

Extended Formulations

What is the meaning?

- Complexity measure

Selected related results

- 1986-87 - Swart, attempts to prove $\mathrm{P}=$ NP by giving polynomial size LP for TSP
- 1988 - Yannakakis, every symmetric EF for TSP has exponential size
- 2007-Sellmann et al., EF for CSP of size $O\left(n^{\tau}\right)$ for graphs of treewidth τ using Sherali-Adams hierarchy
- 2012 - Fiorini et al., no polynomial-size EF for TSP
- 2014 - Rothvoß, no polynomial-size EF for matching polytope
- 2015 - K., Koutecký - EF for CSP of size $O\left(D^{\tau} n\right)$ for graphs of treewidth τ - includes vertex cover, independent set ...

MSOL Polytope

Input

- a graph $G=(V, E)$ with n vertices and treewidth τ
- an MSOL formula $\varphi(\vec{X})$ with m free set variables X_{1}, \ldots, X_{m}

MSOL polytope

$$
P_{\varphi}(G)=\operatorname{conv}\left(\left\{y \in\{0,1\}^{n m} \mid y \text { satisfies } \varphi\right\}\right) .
$$

where $y_{v}^{i}=1$ represents $v \in X_{i}$ and $y_{v}^{i}=0$ represents $v \notin X_{i}$.

Question

- What is the extension complexity of $P_{\varphi}(G)$?

Example

Formula and Graph

$$
\begin{aligned}
-2 \mathrm{COL}\left(X_{1}, X_{2}\right)= & \left(X_{1} \cap X_{2}=\emptyset\right) \wedge \forall x\left(x \in X_{1} \vee x \in X_{2}\right) \wedge \\
& \left(\forall x \in X_{1} \forall y \in X_{1}, x \neq y \rightarrow \neg E(x, y)\right) \wedge \\
& \left(\forall x \in X_{2} \forall y \in X_{2}, x \neq y \rightarrow \neg E(x, y)\right)
\end{aligned}
$$

- $G=(\{u, v, w\},\{\{u, v\}\})$

Variables

```
- (y_
```


$(1,0,0,1,1,0)(0,1,1,0,0,1)(1,0,0,1,0,1)(0,1,1,0,1,0)$
$P_{\varphi}(G)=$
$\operatorname{conv}(\{(1,0,0,1,1,0),(0,1,1,0,0,1),(1,0,0,1,0,1),(0,1,1,0,1,0)\})$

Main Result

Theorem (K., Koutecký, Tiwary, 2016)

For every graph G on n vertices with $t w(G)=\tau$ and for every MSOL formula φ,

$$
\operatorname{xc}\left(P_{\varphi}(G)\right)=f(|\varphi|, \tau) \cdot n
$$

where f is some computable function.
As a corollary, it yields the famous result about LinEMSOL problems:

Theorem (Arnborg, Lagergren, and Seese, 1991)

Every LinEMSOL problem is solvable in polynomial time for graphs of bounded treewidth.

Remarks

Theorem (Courcelle, 1990)

Every graph property definable in MSOL is decidable in linear time for graphs of bounded treewidth.

Our theorem: Not a surprising result
on the high level
Merging common wisdom from various CS areas

- Courcelle's theorem = dynamic programming (parameterized complexity)
- dynamic programming = compact extended formulation (polyhedral combinatorics)

Our theorem: Far from obvious when it comes to details

- no black-box results for the above knowledge

Our Tool: Gluing Polytopes

The cartesian product of two polytopes P_{1} and P_{2}

$$
P_{1} \times P_{2}=\operatorname{conv}\left\{(x, y) \mid x \in \operatorname{vert}\left(P_{1}\right), y \in \operatorname{vert}\left(P_{2}\right)\right\}
$$

The glued product of $P \in \mathbb{R}^{d_{1}+k}$ and $Q \in \mathbb{R}^{d_{2}+k}$,
with respect to the last k coordinates
$P \times{ }_{k} Q=\operatorname{conv}\left\{(x, y, z) \in \mathbb{R}^{d_{1}+d_{2}+k} \mid(x, z) \in \operatorname{vert}(P),(y, z) \in \operatorname{vert}(Q)\right\}$
Lemma (Gluing lemma, Margot 1994, KKT 2016)
Let P and Q be 0/1-polytopes and let the k glued coordinates in P be labeled z, and the k glued coordinates in Q be labeled w. If $1^{\top} z \leqslant 1$ is valid for P and $1^{\top} w \leqslant 1$ is valid for Q, then $\mathrm{xc}\left(P \times{ }_{k} Q\right) \leqslant \mathrm{xc}(P)+\mathrm{xc}(Q)$.

Treewidth

Tree decomposition of $G=(V, E)$

a tree T, each node $a \in T$ has an assigned set of vertices $B(a) \subseteq V$, called a bag, some properties ...

Nice tree decomposition

- Leaf node: a leaf a of T with $B(a)=\emptyset$.
- Introduce node: an internal node a of T with one child b for which $B(a)=B(b) \cup\{v\}$ for some $v \in B(a)$.
- Forget node: an internal node a of T with one child b for which $B(a)=B(b) \backslash\{v\}$ for some $v \in B(b)$.
- Join node: an internal node a with two children b and c with $B(a)=B(b)=B(c)$.

Subgraph of G induced by a tree node

For a node $a \in V(T)$, we denote by T_{a} the subtree of T rooted in a, and by G_{a} the subgraph of G induced by all vertices in bags of T_{a}.

Rough Sketch of the Proof

Idea

For a formula φ, a graph G and a nice tree decomposition T of G

- for every node a of T define a small polytope representing assignments of the bag vertices to the sets (i.e., free variables) that are extendible to a feasible assignment of all vertices in G_{a}
- process the tree T in a bottom up fashion and glue the small polytopes by Gluing lemma
- as every polytope is small, by Gluing lemma the polytope in the root of T is of size $O(n)$
- show that $P_{\varphi}(G)$ is a projection of the polytope in the root of T

Colored and Boundaried Graphs

[m]-colored graph

a pair (G, \vec{V}) where $G=(V, E), \vec{V}=\left(V_{1}, \ldots, V_{m}\right)$ and $V_{i} \subseteq V$

Colored and Boundaried Graphs

[m]-colored τ-boundaried graph

a triple (G, \vec{V}, \vec{p}) where (G, \vec{V}) is an $[m]$-colored graph and $\vec{p}=\left(p_{1}, \ldots, p_{\tau}\right)$ is a τ-tuple of vertices of G

Compatible Graphs

$\left(G_{1}, \vec{U}, \vec{p}\right)$ and $\left(G_{2}, \vec{W}, \vec{q}\right)$ are compatible

if subgraphs $G_{1}[\vec{p}]$ and $G_{2}[\vec{q}]$ are identical and colored the same way.

Join of Graphs

Join of compatible graphs $\left(G_{1}, \vec{U}, \vec{p}\right)$ and $\left(G_{2}, \vec{W}, \vec{q}\right)$

is [m]-colored τ-boundaried graph ...

Equivalence and Types of Graphs

MSO[$k, \tau, m]$
all MSOL formulae over [m]-colored τ-boundaried graphs with $q r \leq k$
Equivalence $=_{k}^{\text {MSO }}$
Two $[m]$-colored τ-boundaried graphs $G_{1}^{[m], \tau}$ and $G_{2}^{[m], \tau}$ are MSO[k]-equivalent if they satisfy the same $\operatorname{MSO}[k, \tau, m]$ formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)
For any fixed $\tau, k, m \in \mathbb{N}$, the equivalence relation $\equiv_{k}^{M S O}$ has a finite number of equivalence classes.

We denote the equivalence classes by $\mathcal{C}=\left\{\alpha_{1} \ldots, \alpha_{w}\right\}$, fixing an
ordering such that α_{1} is the class containing the empty graph.
Type of a graph
Given an $[m]$-colored τ-boundaried graph, its type (w.r.t. $\equiv_{k}^{M S O}$) is the class to which it belongs.

Equivalence and Types of Graphs

MSO[$k, \tau, m]$
all MSOL formulae over [m]-colored τ-boundaried graphs with $q r \leq k$
Equivalence $=_{k}^{M S O}$
Two [m]-colored τ-boundaried graphs $G_{1}^{[m], \tau}$ and $G_{2}^{[m], \tau}$ are MSO[k]-equivalent if they satisfy the same MSO[$k, \tau, m]$ formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)
For any fixed $\tau, k, m \in \mathbb{N}$, the equivalence relation $\equiv_{k}^{M S O}$ has a finite number of equivalence classes.

We denote the equivalence classes by $\mathcal{C}=\left\{\alpha_{1} \ldots, \alpha_{w}\right\}$, fixing an
ordering such that α_{1} is the class containing the empty graph.
Type of a graph
Given an $[m]$-colored τ-boundaried graph, its type (w.r.t. $\equiv_{k}^{M S O}$) is the class to which it belongs.

Equivalence and Types of Graphs

MSO[$k, \tau, m]$

all MSOL formulae over [m]-colored τ-boundaried graphs with $q r \leq k$

Equivalence $\equiv_{k}^{M S O}$

Two $[m]$-colored τ-boundaried graphs $G_{1}^{[m], \tau}$ and $G_{2}^{[m], \tau}$ are MSO[k]-equivalent if they satisfy the same $\operatorname{MSO}[k, \tau, m]$ formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)
For any fixed $\tau, k, m \in \mathbb{N}$, the equivalence relation $\equiv_{k}^{M S O}$ has a finite number of equivalence classes.

We denote the equivalence classes by $\mathcal{C}=\left\{\alpha_{1} \ldots, \alpha_{w}\right\}$, fixing an ordering such that α_{1} is the class containing the empty graph.

[^0]
Equivalence and Types of Graphs

MSO[$k, \tau, m]$

all MSOL formulae over [m]-colored τ-boundaried graphs with $q r \leq k$

Equivalence $\equiv_{k}^{M S O}$

Two $[m]$-colored τ-boundaried graphs $G_{1}^{[m], \tau}$ and $G_{2}^{[m], \tau}$ are MSO[k]-equivalent if they satisfy the same MSO[k, τ, m] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)
For any fixed $\tau, k, m \in \mathbb{N}$, the equivalence relation $\equiv_{k}^{M S O}$ has a finite number of equivalence classes.

We denote the equivalence classes by $\mathcal{C}=\left\{\alpha_{1} \ldots, \alpha_{w}\right\}$, fixing an ordering such that α_{1} is the class containing the empty graph.

Type of a graph

Given an $[m]$-colored τ-boundaried graph, its type (w.r.t. $\equiv_{k}^{M S O}$) is the class to which it belongs.

Join and Types

Lemma (Libkin, 2004)

$$
\begin{aligned}
& \text { If } G_{a}^{[m], \tau} \equiv \equiv_{k}^{M S O} G_{a^{\prime}}^{[m], \tau} \text { and } G_{b}^{[m], \tau} \equiv_{k}^{M S O} G_{b^{\prime}}^{[m], \tau} \text {, then } \\
& \left(G_{a}^{[m], \tau} \oplus G_{b}^{[m], \tau}\right) \equiv_{k}^{M S O}\left(G_{a^{\prime}}^{[m], \tau} \oplus G_{b^{\prime}}^{[m], \tau}\right) .
\end{aligned}
$$

Meaning

The type of a join of two [m]-colored τ-boundaried graphs is determined by only a small amount of information about the two graphs, namely their types.

Feasible Types of Tree Decomposition Nodes

Feasible type of a node $b \in V(T)$

- every $\alpha \in \mathcal{C}$ such that there exist $X_{1}, \ldots, X_{m} \subseteq V\left(G_{b}\right)$: $\left(G_{b}, \vec{X}, B(b)\right)$ is of type α where $\vec{X}=\left(X_{1}, \ldots, X_{m}\right)$
- Notation: $\mathcal{F}(b)$ - the set of feasible types of the node b where every type is represented by a binary vector $t_{b} \in\{0,1\}^{|\mathcal{C}|}$

Feasible triple of types for a join node c with children a, b
 every triple $\left(\gamma_{1}, \gamma_{2}, \alpha\right)$ such that
 - $\alpha \in \mathcal{F}(c), \gamma_{1} \in \mathcal{F}(a)$ and $\gamma_{2} \in \mathcal{F}(b)$, and
 - γ_{1}, γ_{2} and α are mutually compatible,
 - and there exist \vec{X}^{1}, \vec{X}^{2} realizing γ_{1} and γ_{2} on a and b, such that X_{m}^{2}) realizes α on c.
 Notation: $\mathcal{F}_{t}(c)$ - the set of feasible triples of types of the join node c.

Feasible pairs of types for a forget and introduce node c

analogously

Feasible Types of Tree Decomposition Nodes

Feasible type of a node $b \in V(T)$

- every $\alpha \in \mathcal{C}$ such that there exist $X_{1}, \ldots, X_{m} \subseteq V\left(G_{b}\right)$: $\left(G_{b}, \vec{X}, B(b)\right)$ is of type α where $\vec{X}=\left(X_{1}, \ldots, X_{m}\right)$
- Notation: $\mathcal{F}(b)$ - the set of feasible types of the node b where every type is represented by a binary vector $t_{b} \in\{0,1\}^{|\mathcal{C}|}$

Feasible triple of types for a join node c with children a, b
every triple $\left(\gamma_{1}, \gamma_{2}, \alpha\right)$ such that

- $\alpha \in \mathcal{F}(c), \gamma_{1} \in \mathcal{F}(a)$ and $\gamma_{2} \in \mathcal{F}(b)$, and
- γ_{1}, γ_{2} and α are mutually compatible,
- and there exist \vec{X}^{1}, \vec{X}^{2} realizing γ_{1} and γ_{2} on a and b, such that $\vec{X}=\left(X_{1}^{1} \cup X_{1}^{2}, \ldots, X_{m}^{1} \cup X_{m}^{2}\right)$ realizes α on c.
Notation: $\mathcal{F}_{t}(c)$ - the set of feasible triples of types of the join node c.
Feasible pairs of types for a forget and introduce node c analogously

Feasible Types of Tree Decomposition Nodes

Feasible type of a node $b \in V(T)$

- every $\alpha \in \mathcal{C}$ such that there exist $X_{1}, \ldots, X_{m} \subseteq V\left(G_{b}\right)$: $\left(G_{b}, \vec{X}, B(b)\right)$ is of type α where $\vec{X}=\left(X_{1}, \ldots, X_{m}\right)$
- Notation: $\mathcal{F}(b)$ - the set of feasible types of the node b where every type is represented by a binary vector $t_{b} \in\{0,1\}^{|\mathcal{C}|}$

Feasible triple of types for a join node c with children a, b
every triple $\left(\gamma_{1}, \gamma_{2}, \alpha\right)$ such that

- $\alpha \in \mathcal{F}(c), \gamma_{1} \in \mathcal{F}(a)$ and $\gamma_{2} \in \mathcal{F}(b)$, and
- γ_{1}, γ_{2} and α are mutually compatible,
- and there exist \vec{X}^{1}, \vec{X}^{2} realizing γ_{1} and γ_{2} on a and b, such that $\vec{X}=\left(X_{1}^{1} \cup X_{1}^{2}, \ldots, X_{m}^{1} \cup X_{m}^{2}\right)$ realizes α on c.
Notation: $\mathcal{F}_{t}(c)$ - the set of feasible triples of types of the join node c.
Feasible pairs of types for a forget and introduce node c analogously ... $\mathcal{F}_{p}(c)$

The Construction

The basic polytopes

- b is a leaf:
- b is an introduce or forget node:
- b is a join node:

$$
\begin{array}{r}
P_{b}=\{\overbrace{100 \ldots 0}^{|\mathcal{C}|}\} \\
P_{b}=\operatorname{conv}\left(\mathcal{F}_{p}(b)\right) \\
P_{b}=\operatorname{conv}\left(\mathcal{F}_{t}(b)\right)
\end{array}
$$

Lemma

Extension complexity of the polytopes P_{b} 's is independent on n.
Proof: The sizes of the sets $\mathcal{F}(a), \mathcal{F}_{p}(a), \mathcal{F}_{t}(a)$ are independent on n.

```
Gluing them into larger polytopes
    - b is a leaf:
    - }b\mathrm{ is an introduce or forget node
    where }a\mathrm{ is the child of }b\mathrm{ and the gluing is done along the
    coordinates }\mp@subsup{t}{a}{}\mathrm{ in }\mp@subsup{Q}{a}{}\mathrm{ and }\mp@subsup{d}{b}{}\mathrm{ in }\mp@subsup{P}{b}{}\mathrm{ .
    - b is a ioin node
        Qa}\times\mp@subsup{}{cc}{}\mp@subsup{P}{b}{}\times\mp@subsup{}{|c}{
```


The Construction

The basic polytopes

- b is a leaf:
- b is an introduce or forget node:
- b is a join node:

$$
P_{b}=\{\overbrace{100 \ldots 0}^{|\mathcal{C}|}\}
$$

$$
P_{b}=\operatorname{conv}\left(\mathcal{F}_{p}(b)\right)
$$

$$
P_{b}=\operatorname{conv}\left(\mathcal{F}_{t}(b)\right)
$$

Lemma

Extension complexity of the polytopes P_{b} 's is independent on n.
Proof: The sizes of the sets $\mathcal{F}(a), \mathcal{F}_{p}(a), \mathcal{F}_{t}(a)$ are independent on n.

Gluing them into larger polytopes

- b is a leaf:

$$
Q_{b}=P_{b} .
$$

- b is an introduce or forget node. $Q_{b}=Q_{a} \times{ }_{|\mathcal{C}|} P_{b}$ where a is the child of b and the gluing is done along the coordinates t_{a} in Q_{a} and d_{b} in P_{b}.
- b is a join node.

$$
Q_{b}=Q_{a} \times_{|\mathcal{C}|} P_{b} \times_{|\mathcal{C}|} Q_{c} \text { where } \ldots
$$

Correctness

Lemma

For every node $b \in V(T)$ and every vertex y of the polytope Q_{b} there exist $X_{1}, \ldots, X_{m} \subseteq V\left(G_{b}\right)$ such that $\left(G_{b},\left(X_{1}, \ldots, X_{m}\right), \sigma(B(b))\right)$ is of the type specified by the vector y.

Proof. By induction and previous Lemma.

Applying Lemma to the root of the decomposition tree and a few more steps completes the proof of the main theorem.

Final Remarks

Worth noting

- the extension complexity linear in the size of G
- optimization easy (LinEMSOL)
- the constructed polytope almost universal: apart from the last step (skipped), the construction depends on the quantifier rank of the formula only, not on the formula itself

Thank you!

[^0]: Type of a graph
 Given an $[m]$-colored τ-boundaried graph, its type (w.r.t. $\equiv_{k}^{M S O}$) is the class to which it belongs.

