
Extension Complexity, MSO Logic, and
Treewidth

Petr Kolman

Joint work with M. Koutecký, H. R. Tiwary

Department of Applied Mathematics
Faculty of Mathematics and Physics

Charles University

SWAT 2016

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Extended Formulation of a Polytope P

Definitions

A polytope Q ⊆ Rd+r is an extended formulation of P ⊆ Rd

if P is a projection of Q onto the first d coordinates.
The size of P is the number of its facet-defining inequalities.
The extension complexity of a polytope P, denoted by xc(P),
is the size of its smallest extended formulation.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Extended Formulations

What is the meaning?

Complexity measure

Selected related results
1986-87 - Swart, attempts to prove P=NP by giving polynomial

size LP for TSP
1988 - Yannakakis, every symmetric EF for TSP has exponential

size
2007 - Sellmann et al., EF for CSP of size O(nτ) for graphs of

treewidth τ using Sherali-Adams hierarchy
2012 - Fiorini et al., no polynomial-size EF for TSP
2014 - Rothvoß, no polynomial-size EF for matching polytope
2015 - K., Koutecký - EF for CSP of size O(Dτn) for graphs of

treewidth τ - includes vertex cover, independent set ...
...

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

MSOL Polytope

Input

a graph G = (V ,E) with n vertices and treewidth τ

an MSOL formula ϕ(~X) with m free set variables X1, . . . ,Xm

MSOL polytope

Pϕ(G) = conv ({y ∈ {0,1}nm | y satisfies ϕ}) .
where y i

v = 1 represents v ∈ Xi and y i
v = 0 represents v 6∈ Xi .

Question

What is the extension complexity of Pϕ(G)?

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Example

Formula and Graph

2COL(X1,X2) = (X1 ∩ X2 = ∅) ∧ ∀x(x ∈ X1 ∨ x ∈ X2)∧
(∀x ∈ X1∀y ∈ X1, x 6= y → ¬E(x , y))∧
(∀x ∈ X2∀y ∈ X2, x 6= y → ¬E(x , y))

G = ({u, v ,w}, {{u, v}})

Variables

(y1
u , y2

u , y1
v , y2

v , y1
w , y2

w)

X1
X2

(1, 0, 0, 1, 1, 0)

u v
w

X2

u v
w

u v
w

u v
wX1

(0, 1, 1, 0, 0, 1)

X1X2X2

(0, 1, 1, 0, 1, 0)

X1

(1, 0, 0, 1, 0, 1)

Pϕ(G) =
conv ({(1,0,0,1,1,0), (0,1,1,0,0,1), (1,0,0,1,0,1), (0,1,1,0,1,0)})

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Main Result

Theorem (K., Koutecký, Tiwary, 2016)

For every graph G on n vertices with tw(G) = τ and for every MSOL
formula ϕ,

xc(Pϕ(G)) = f (|ϕ|, τ) · n
where f is some computable function.

As a corollary, it yields the famous result about LinEMSOL problems:

Theorem (Arnborg, Lagergren, and Seese, 1991)

Every LinEMSOL problem is solvable in polynomial time for graphs
of bounded treewidth.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Remarks

Theorem (Courcelle, 1990)

Every graph property definable in MSOL is decidable in linear time
for graphs of bounded treewidth.

Our theorem: Not a surprising result on the high level

Merging common wisdom from various CS areas
Courcelle’s theorem = dynamic programming
(parameterized complexity)
dynamic programming = compact extended formulation
(polyhedral combinatorics)

Our theorem: Far from obvious when it comes to details
no black-box results for the above knowledge

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Our Tool: Gluing Polytopes

The cartesian product of two polytopes P1 and P2

P1 × P2 = conv {(x , y) | x ∈ vert(P1), y ∈ vert(P2)}

The glued product of P ∈ Rd1+k and Q ∈ Rd2+k ,
with respect to the last k coordinates

P ×k Q = conv
{
(x , y , z) ∈ Rd1+d2+k | (x , z) ∈ vert(P), (y , z) ∈ vert(Q)

}
Lemma (Gluing lemma, Margot 1994, KKT 2016)

Let P and Q be 0/1-polytopes and let the k glued coordinates in P be
labeled z, and the k glued coordinates in Q be labeled w.
If 1ᵀz 6 1 is valid for P and 1ᵀw 6 1 is valid for Q, then
xc(P ×k Q) 6 xc(P) + xc(Q).

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Treewidth

Tree decomposition of G = (V ,E)

a tree T , each node a ∈ T has an assigned set of vertices B(a) ⊆ V ,
called a bag, some properties ...

Nice tree decomposition

Leaf node: a leaf a of T with B(a) = ∅.
Introduce node: an internal node a of T with one child b for
which B(a) = B(b) ∪ {v} for some v ∈ B(a).
Forget node: an internal node a of T with one child b for which
B(a) = B(b) \ {v} for some v ∈ B(b).
Join node: an internal node a with two children b and c with
B(a) = B(b) = B(c).

Subgraph of G induced by a tree node

For a node a ∈ V (T), we denote by Ta the subtree of T rooted in a,
and by Ga the subgraph of G induced by all vertices in bags of Ta.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Rough Sketch of the Proof

Idea
For a formula ϕ, a graph G and a nice tree decomposition T of G

for every node a of T define a small polytope representing
assignments of the bag vertices to the sets (i.e., free variables)
that are extendible to a feasible assignment of all vertices in Ga

process the tree T in a bottom up fashion and glue the small
polytopes by Gluing lemma
as every polytope is small, by Gluing lemma the polytope
in the root of T is of size O(n)
show that Pϕ(G) is a projection of the polytope in the root of T

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Colored and Boundaried Graphs

[m]-colored graph

a pair (G, ~V) where G = (V ,E), ~V = (V1, . . . ,Vm) and Vi ⊆ V

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Colored and Boundaried Graphs

[m]-colored τ -boundaried graph

a triple (G, ~V , ~p) where (G, ~V) is an [m]-colored graph and
~p = (p1, . . . ,pτ) is a τ -tuple of vertices of G

p1
p2

p3

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Compatible Graphs

(G1, ~U, ~p) and (G2, ~W , ~q) are compatible

if subgraphs G1[~p] and G2[~q] are identical and colored the same way.

p1
p2

p3 q1

q2
q3

(G1, ~U, ~p) (G2, ~W, ~q)

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Join of Graphs

Join of compatible graphs (G1, ~U, ~p) and (G2, ~W , ~q)

is [m]-colored τ -boundaried graph ...

p1
p2

p3 q1

q2
q3

(G1, ~U, ~p) (G2, ~W, ~q)

(G1, ~U, ~p)⊕ (G2, ~W, ~q)

(G1, ~U, ~p)⊕ (G2, ~W, ~q)

p1
p2

p3

⊕ =

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Equivalence and Types of Graphs

MSO[k , τ,m]

all MSOL formulae over [m]-colored τ -boundaried graphs with qr ≤ k

Equivalence ≡MSO
k

Two [m]-colored τ -boundaried graphs G[m],τ
1 and G[m],τ

2 are
MSO[k]-equivalent if they satisfy the same MSO[k , τ,m] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)

For any fixed τ, k ,m ∈ N, the equivalence relation ≡MSO
k has a finite

number of equivalence classes.

We denote the equivalence classes by C = {α1 . . . , αw}, fixing an
ordering such that α1 is the class containing the empty graph.

Type of a graph

Given an [m]-colored τ -boundaried graph, its type (w.r.t. ≡MSO
k) is the

class to which it belongs.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Equivalence and Types of Graphs

MSO[k , τ,m]

all MSOL formulae over [m]-colored τ -boundaried graphs with qr ≤ k

Equivalence ≡MSO
k

Two [m]-colored τ -boundaried graphs G[m],τ
1 and G[m],τ

2 are
MSO[k]-equivalent if they satisfy the same MSO[k , τ,m] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)

For any fixed τ, k ,m ∈ N, the equivalence relation ≡MSO
k has a finite

number of equivalence classes.

We denote the equivalence classes by C = {α1 . . . , αw}, fixing an
ordering such that α1 is the class containing the empty graph.

Type of a graph

Given an [m]-colored τ -boundaried graph, its type (w.r.t. ≡MSO
k) is the

class to which it belongs.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Equivalence and Types of Graphs

MSO[k , τ,m]

all MSOL formulae over [m]-colored τ -boundaried graphs with qr ≤ k

Equivalence ≡MSO
k

Two [m]-colored τ -boundaried graphs G[m],τ
1 and G[m],τ

2 are
MSO[k]-equivalent if they satisfy the same MSO[k , τ,m] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)

For any fixed τ, k ,m ∈ N, the equivalence relation ≡MSO
k has a finite

number of equivalence classes.

We denote the equivalence classes by C = {α1 . . . , αw}, fixing an
ordering such that α1 is the class containing the empty graph.

Type of a graph

Given an [m]-colored τ -boundaried graph, its type (w.r.t. ≡MSO
k) is the

class to which it belongs.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Equivalence and Types of Graphs

MSO[k , τ,m]

all MSOL formulae over [m]-colored τ -boundaried graphs with qr ≤ k

Equivalence ≡MSO
k

Two [m]-colored τ -boundaried graphs G[m],τ
1 and G[m],τ

2 are
MSO[k]-equivalent if they satisfy the same MSO[k , τ,m] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)

For any fixed τ, k ,m ∈ N, the equivalence relation ≡MSO
k has a finite

number of equivalence classes.

We denote the equivalence classes by C = {α1 . . . , αw}, fixing an
ordering such that α1 is the class containing the empty graph.

Type of a graph

Given an [m]-colored τ -boundaried graph, its type (w.r.t. ≡MSO
k) is the

class to which it belongs.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Join and Types

Lemma (Libkin, 2004)

If G[m],τ
a ≡MSO

k G[m],τ
a′ and G[m],τ

b ≡MSO
k G[m],τ

b′ , then

(G[m],τ
a ⊕G[m],τ

b) ≡MSO
k (G[m],τ

a′ ⊕G[m],τ
b′) .

Meaning

The type of a join of two [m]-colored τ -boundaried graphs is
determined by only a small amount of information about the two
graphs, namely their types.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Feasible Types of Tree Decomposition Nodes

Feasible type of a node b ∈ V (T)

every α ∈ C such that there exist X1, . . . ,Xm ⊆ V (Gb):
(Gb, ~X ,B(b)) is of type α where ~X = (X1, . . . ,Xm)

Notation: F(b) - the set of feasible types of the node b where
every type is represented by a binary vector tb ∈ {0,1}|C|

Feasible triple of types for a join node c with children a,b

every triple (γ1, γ2, α) such that
α ∈ F(c), γ1 ∈ F(a) and γ2 ∈ F(b), and
γ1, γ2 and α are mutually compatible,

and there exist ~X 1, ~X 2 realizing γ1 and γ2 on a and b, such that
~X = (X 1

1 ∪ X 2
1 , . . . ,X

1
m ∪ X 2

m) realizes α on c.
Notation: Ft(c) - the set of feasible triples of types of the join node c.

Feasible pairs of types for a forget and introduce node c

analogously ... Fp(c)

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Feasible Types of Tree Decomposition Nodes

Feasible type of a node b ∈ V (T)

every α ∈ C such that there exist X1, . . . ,Xm ⊆ V (Gb):
(Gb, ~X ,B(b)) is of type α where ~X = (X1, . . . ,Xm)

Notation: F(b) - the set of feasible types of the node b where
every type is represented by a binary vector tb ∈ {0,1}|C|

Feasible triple of types for a join node c with children a,b

every triple (γ1, γ2, α) such that
α ∈ F(c), γ1 ∈ F(a) and γ2 ∈ F(b), and
γ1, γ2 and α are mutually compatible,

and there exist ~X 1, ~X 2 realizing γ1 and γ2 on a and b, such that
~X = (X 1

1 ∪ X 2
1 , . . . ,X

1
m ∪ X 2

m) realizes α on c.
Notation: Ft(c) - the set of feasible triples of types of the join node c.

Feasible pairs of types for a forget and introduce node c

analogously ... Fp(c)

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Feasible Types of Tree Decomposition Nodes

Feasible type of a node b ∈ V (T)

every α ∈ C such that there exist X1, . . . ,Xm ⊆ V (Gb):
(Gb, ~X ,B(b)) is of type α where ~X = (X1, . . . ,Xm)

Notation: F(b) - the set of feasible types of the node b where
every type is represented by a binary vector tb ∈ {0,1}|C|

Feasible triple of types for a join node c with children a,b

every triple (γ1, γ2, α) such that
α ∈ F(c), γ1 ∈ F(a) and γ2 ∈ F(b), and
γ1, γ2 and α are mutually compatible,

and there exist ~X 1, ~X 2 realizing γ1 and γ2 on a and b, such that
~X = (X 1

1 ∪ X 2
1 , . . . ,X

1
m ∪ X 2

m) realizes α on c.
Notation: Ft(c) - the set of feasible triples of types of the join node c.

Feasible pairs of types for a forget and introduce node c

analogously ... Fp(c)

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

The Construction

The basic polytopes

b is a leaf: Pb = {
|C|︷ ︸︸ ︷

100 . . . 0}
b is an introduce or forget node: Pb = conv (Fp(b))
b is a join node: Pb = conv (Ft(b))

Lemma
Extension complexity of the polytopes Pb ’s is independent on n.

Proof: The sizes of the sets F(a), Fp(a), Ft(a) are independent on n.

Gluing them into larger polytopes

b is a leaf: Qb = Pb.
b is an introduce or forget node. Qb = Qa ×|C| Pb
where a is the child of b and the gluing is done along the
coordinates ta in Qa and db in Pb.
b is a join node. Qb = Qa ×|C| Pb ×|C| Qc where

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

The Construction

The basic polytopes

b is a leaf: Pb = {
|C|︷ ︸︸ ︷

100 . . . 0}
b is an introduce or forget node: Pb = conv (Fp(b))
b is a join node: Pb = conv (Ft(b))

Lemma
Extension complexity of the polytopes Pb ’s is independent on n.

Proof: The sizes of the sets F(a), Fp(a), Ft(a) are independent on n.

Gluing them into larger polytopes

b is a leaf: Qb = Pb.
b is an introduce or forget node. Qb = Qa ×|C| Pb
where a is the child of b and the gluing is done along the
coordinates ta in Qa and db in Pb.
b is a join node. Qb = Qa ×|C| Pb ×|C| Qc where

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Correctness

Lemma

For every node b ∈ V (T) and every vertex y of the polytope Qb there
exist X1, . . . ,Xm ⊆ V (Gb) such that (Gb, (X1, . . . ,Xm), σ(B(b))) is of
the type specified by the vector y.

Proof. By induction and previous Lemma.

Qr

y = (0, 0, . . . , 0, 1, 0, . . . ,)

type α

Applying Lemma to the root of the decomposition tree and a few more
steps completes the proof of the main theorem.

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Final Remarks

Worth noting

the extension complexity linear in the size of G
optimization easy (LinEMSOL)
the constructed polytope almost universal: apart from the last
step (skipped), the construction depends on the quantifier rank
of the formula only, not on the formula itself

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

Thank you!

Petr Kolman Extension Complexity, MSO Logic, and Treewidth

