Extension Complexity, MSO Logic, and Treewidth

Petr Kolman

Joint work with M. Koutecký, H. R. Tiwary

Department of Applied Mathematics Faculty of Mathematics and Physics Charles University

SWAT 2016

• • • • • • • • • • • •

Extended Formulation of a Polytope P

Definitions

- A polytope Q ⊆ ℝ^{d+r} is an extended formulation of P ⊆ ℝ^d if P is a projection of Q onto the first d coordinates.
- The size of *P* is the number of its facet-defining inequalities.
- The extension complexity of a polytope *P*, denoted by xc(*P*), is the size of its smallest extended formulation.

Extended Formulations

What is the meaning?

Complexity measure

Selected related results

o ...

- 1986-87 Swart, attempts to prove P=NP by giving polynomial size LP for TSP
- 1988 Yannakakis, every symmetric EF for TSP has exponential size
- 2007 Sellmann et al., EF for CSP of size O(n^τ) for graphs of treewidth τ using Sherali-Adams hierarchy
- 2012 Fiorini et al., no polynomial-size EF for TSP
- 2014 Rothvoß, no polynomial-size EF for matching polytope
- 2015 K., Koutecký EF for CSP of size O(D^τ n) for graphs of treewidth τ - includes vertex cover, independent set ...

Input

- a graph G = (V, E) with *n* vertices and treewidth τ
- an MSOL formula $\varphi(\vec{X})$ with *m* free set variables X_1, \ldots, X_m

MSOL polytope

$$P_{\varphi}(G) = \operatorname{conv}\left(\{y \in \{0,1\}^{nm} \mid y \text{ satisfies } \varphi\}\right)$$
.

where $y_v^i = 1$ represents $v \in X_i$ and $y_v^i = 0$ represents $v \notin X_i$.

Question

What is the extension complexity of P_φ(G)?

< ロ > < 同 > < 三 > < 三 > -

Example

Formula and Graph

•
$$2\text{COL}(X_1, X_2) = (X_1 \cap X_2 = \emptyset) \land \forall x (x \in X_1 \lor x \in X_2) \land (\forall x \in X_1 \lor y \in X_1, x \neq y \to \neg E(x, y)) \land (\forall x \in X_2 \lor y \in X_2, x \neq y \to \neg E(x, y))$$

• $G = (\{u, v, w\}, \{\{u, v\}\})$

Variables

• $(y_{\mu}^{1}, y_{\mu}^{2}, y_{\nu}^{1}, y_{\nu}^{2}, y_{\mu}^{1}, y_{\mu}^{2})$

(1,0,0,1,1,0) (0,1,1,0,0,1) (1,0,0,1,0,1) (0,1,1,0,1,0)

 $\begin{array}{l} \textbf{P}_{\varphi}(\textbf{G}) = \\ \mathrm{conv}\left(\{(1,0,0,1,1,0),(0,1,1,0,0,1),(1,0,0,1,0,1),(0,1,1,0,1,0)\}\right) \end{array}$

Theorem (K., Koutecký, Tiwary, 2016)

For every graph G on n vertices with $tw(G) = \tau$ and for every MSOL formula φ ,

 $\operatorname{xc}(P_{\varphi}(G)) = f(|\varphi|, \tau) \cdot n$

where f is some computable function.

As a corollary, it yields the famous result about LinEMSOL problems:

Theorem (Arnborg, Lagergren, and Seese, 1991)

Every LinEMSOL problem is solvable in polynomial time for graphs of bounded treewidth.

A (1) > A (2) > A

Theorem (Courcelle, 1990)

Every graph property definable in MSOL is decidable in linear time for graphs of bounded treewidth.

Our theorem: Not a surprising result

on the high level

Merging common wisdom from various CS areas

 Courcelle's theorem = dynamic programming (parameterized complexity)

 dynamic programming = compact extended formulation (polyhedral combinatorics)

Our theorem: Far from obvious

when it comes to details

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

no black-box results for the above knowledge

The cartesian product of two polytopes P_1 and P_2

 $P_1 \times P_2 = \operatorname{conv} \{ (x, y) \mid x \in \operatorname{vert}(P_1), y \in \operatorname{vert}(P_2) \}$

The glued product of $P \in \mathbb{R}^{d_1+k}$ and $Q \in \mathbb{R}^{d_2+k}$, with respect to the last *k* coordinates

 $P \times_k Q = \operatorname{conv} \left\{ (x, y, z) \in \mathbb{R}^{d_1 + d_2 + k} \mid (x, z) \in \operatorname{vert}(P), (y, z) \in \operatorname{vert}(Q) \right\}$

Lemma (Gluing lemma, Margot 1994, KKT 2016)

Let *P* and *Q* be 0/1-polytopes and let the *k* glued coordinates in *P* be labeled *z*, and the *k* glued coordinates in *Q* be labeled *w*. If $1^{T}z \leq 1$ is valid for *P* and $1^{T}w \leq 1$ is valid for *Q*, then $\operatorname{xc}(P \times_k Q) \leq \operatorname{xc}(P) + \operatorname{xc}(Q)$.

Tree decomposition of G = (V, E)

a tree *T*, each node $a \in T$ has an assigned set of vertices $B(a) \subseteq V$, called a bag, some properties ...

Nice tree decomposition

- Leaf node: a leaf *a* of *T* with $B(a) = \emptyset$.
- Introduce node: an internal node *a* of *T* with one child *b* for which B(a) = B(b) ∪ {v} for some v ∈ B(a).
- Forget node: an internal node *a* of *T* with one child *b* for which $B(a) = B(b) \setminus \{v\}$ for some $v \in B(b)$.
- Join node: an internal node *a* with two children *b* and *c* with B(a) = B(b) = B(c).

Subgraph of G induced by a tree node

For a node $a \in V(T)$, we denote by T_a the subtree of T rooted in a, and by G_a the subgraph of G induced by all vertices in bags of T_a .

Idea

For a formula φ , a graph *G* and a nice tree decomposition *T* of *G*

- for every node a of T define a small polytope representing assignments of the bag vertices to the sets (i.e., free variables) that are extendible to a feasible assignment of all vertices in G_a
- process the tree *T* in a bottom up fashion and glue the small polytopes by Gluing lemma
- as every polytope is small, by Gluing lemma the polytope in the root of T is of size O(n)
- show that P_φ(G) is a projection of the polytope in the root of T

A □ > A □ > A

Colored and Boundaried Graphs

[m]-colored graph

a pair (G, \vec{V}) where G = (V, E), $\vec{V} = (V_1, \dots, V_m)$ and $V_i \subseteq V$

[m]-colored τ -boundaried graph

a triple (G, \vec{V}, \vec{p}) where (G, \vec{V}) is an [m]-colored graph and $\vec{p} = (p_1, \dots, p_{\tau})$ is a τ -tuple of vertices of G

(G_1, \vec{U}, \vec{p}) and (G_2, \vec{W}, \vec{q}) are compatible

if subgraphs $G_1[\vec{p}]$ and $G_2[\vec{q}]$ are identical and colored the same way.

Join of Graphs

Join of compatible graphs (G_1, \vec{U}, \vec{p}) and (G_2, \vec{W}, \vec{q})

is [m]-colored τ -boundaried graph ...

$MSO[k, \tau, m]$

all MSOL formulae over [m]-colored τ -boundaried graphs with $qr \leq k$

Equivalence \equiv_k^{MSC}

Two [*m*]-colored τ -boundaried graphs $G_1^{[m],\tau}$ and $G_2^{[m],\tau}$ are MSO[*k*]-equivalent if they satisfy the same MSO[*k*, τ , *m*] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)

For any fixed τ , $k, m \in \mathbb{N}$, the equivalence relation \equiv_k^{MSO} has a finite number of equivalence classes.

We denote the equivalence classes by $C = \{\alpha_1 \dots, \alpha_w\}$, fixing an ordering such that α_1 is the class containing the empty graph.

Type of a graph

$MSO[k, \tau, m]$

all MSOL formulae over [*m*]-colored τ -boundaried graphs with $qr \leq k$

Equivalence \equiv_{k}^{MSO}

Two [*m*]-colored τ -boundaried graphs $G_1^{[m],\tau}$ and $G_2^{[m],\tau}$ are MSO[*k*]-equivalent if they satisfy the same MSO[*k*, τ , *m*] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)

For any fixed τ , k, $m \in \mathbb{N}$, the equivalence relation \equiv_k^{MSO} has a finite number of equivalence classes.

We denote the equivalence classes by $C = \{\alpha_1 \dots, \alpha_w\}$, fixing an ordering such that α_1 is the class containing the empty graph.

Type of a graph

$MSO[k, \tau, m]$

all MSOL formulae over [m]-colored τ -boundaried graphs with $qr \leq k$

Equivalence \equiv_{k}^{MSO}

Two [*m*]-colored τ -boundaried graphs $G_1^{[m],\tau}$ and $G_2^{[m],\tau}$ are MSO[*k*]-equivalent if they satisfy the same MSO[*k*, τ , *m*] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)

For any fixed τ , $k, m \in \mathbb{N}$, the equivalence relation \equiv_k^{MSO} has a finite number of equivalence classes.

We denote the equivalence classes by $C = \{\alpha_1 \dots, \alpha_w\}$, fixing an ordering such that α_1 is the class containing the empty graph.

Type of a graph

$MSO[k, \tau, m]$

all MSOL formulae over [m]-colored τ -boundaried graphs with $qr \leq k$

Equivalence \equiv_{k}^{MSO}

Two [*m*]-colored τ -boundaried graphs $G_1^{[m],\tau}$ and $G_2^{[m],\tau}$ are MSO[*k*]-equivalent if they satisfy the same MSO[*k*, τ , *m*] formulae.

Theorem (Libkin, 2004, implicitly in Courcelle, 1990)

For any fixed τ , $k, m \in \mathbb{N}$, the equivalence relation \equiv_k^{MSO} has a finite number of equivalence classes.

We denote the equivalence classes by $C = \{\alpha_1 \dots, \alpha_w\}$, fixing an ordering such that α_1 is the class containing the empty graph.

Type of a graph

Lemma (Libkin, 2004)

If
$$G_a^{[m],\tau} \equiv_k^{MSO} G_{a'}^{[m],\tau}$$
 and $G_b^{[m],\tau} \equiv_k^{MSO} G_{b'}^{[m],\tau}$, then

$$(G_a^{[m], au}\oplus G_b^{[m], au})\equiv^{MSO}_k(G_{a'}^{[m], au}\oplus G_{b'}^{[m], au})$$

Meaning

The type of a join of two [m]-colored τ -boundaried graphs is determined by only a small amount of information about the two graphs, namely their types.

Feasible Types of Tree Decomposition Nodes

Feasible type of a node $b \in V(T)$

- every $\alpha \in C$ such that there exist $X_1, \ldots, X_m \subseteq V(G_b)$: $(G_b, \vec{X}, B(b))$ is of type α where $\vec{X} = (X_1, \ldots, X_m)$
- Notation: *F*(*b*) the set of feasible types of the node *b* where every type is represented by a binary vector *t_b* ∈ {0,1}^{|C|}

Feasible triple of types for a join node *c* with children *a*, *b*

every triple $(\gamma_1, \gamma_2, \alpha)$ such that

- $\alpha \in \mathcal{F}(c), \gamma_1 \in \mathcal{F}(a)$ and $\gamma_2 \in \mathcal{F}(b)$, and
- γ_1 , γ_2 and α are mutually compatible,
- and there exist \vec{X}^1, \vec{X}^2 realizing γ_1 and γ_2 on *a* and *b*, such that $\vec{X} = (X_1^1 \cup X_1^2, \dots, X_m^1 \cup X_m^2)$ realizes α on *c*.

Notation: $\mathcal{F}_t(c)$ - the set of feasible triples of types of the join node *c*.

Feasible pairs of types for a forget and introduce node c

analogously ... $\mathcal{F}_{p}(c)$

Feasible Types of Tree Decomposition Nodes

Feasible type of a node $b \in V(T)$

- every $\alpha \in C$ such that there exist $X_1, \ldots, X_m \subseteq V(G_b)$: $(G_b, \vec{X}, B(b))$ is of type α where $\vec{X} = (X_1, \ldots, X_m)$
- Notation: *F*(*b*) the set of feasible types of the node *b* where every type is represented by a binary vector *t_b* ∈ {0,1}^{|C|}

Feasible triple of types for a join node *c* with children *a*, *b*

every triple $(\gamma_1, \gamma_2, \alpha)$ such that

- $\alpha \in \mathcal{F}(c), \gamma_1 \in \mathcal{F}(a)$ and $\gamma_2 \in \mathcal{F}(b)$, and
- γ_1 , γ_2 and α are mutually compatible,
- and there exist \vec{X}^1, \vec{X}^2 realizing γ_1 and γ_2 on *a* and *b*, such that $\vec{X} = (X_1^1 \cup X_1^2, \dots, X_m^1 \cup X_m^2)$ realizes α on *c*.

Notation: $\mathcal{F}_t(c)$ - the set of feasible triples of types of the join node *c*.

Feasible pairs of types for a forget and introduce node *c*

analogously ... $\mathcal{F}_p(c)$

Feasible Types of Tree Decomposition Nodes

Feasible type of a node $b \in V(T)$

- every $\alpha \in C$ such that there exist $X_1, \ldots, X_m \subseteq V(G_b)$: $(G_b, \vec{X}, B(b))$ is of type α where $\vec{X} = (X_1, \ldots, X_m)$
- Notation: *F*(*b*) the set of feasible types of the node *b* where every type is represented by a binary vector *t_b* ∈ {0,1}^{|C|}

Feasible triple of types for a join node *c* with children *a*, *b*

every triple $(\gamma_1, \gamma_2, \alpha)$ such that

- $\alpha \in \mathcal{F}(c), \gamma_1 \in \mathcal{F}(a)$ and $\gamma_2 \in \mathcal{F}(b)$, and
- γ_1 , γ_2 and α are mutually compatible,
- and there exist \vec{X}^1, \vec{X}^2 realizing γ_1 and γ_2 on *a* and *b*, such that $\vec{X} = (X_1^1 \cup X_1^2, \dots, X_m^1 \cup X_m^2)$ realizes α on *c*.

Notation: $\mathcal{F}_t(c)$ - the set of feasible triples of types of the join node *c*.

Feasible pairs of types for a forget and introduce node c

analogously ... $\mathcal{F}_p(c)$

The Construction

The basic polytopes

- *b* is a *leaf*:
- *b* is an *introduce* or *forget* node:
- b is a join node:

 $P_b = \{ \overbrace{100...0}^{|\mathcal{C}|} \}$ $P_b = \operatorname{conv} (\mathcal{F}_p(b))$ $P_b = \operatorname{conv} (\mathcal{F}_t(b))$

Lemma

Extension complexity of the polytopes P_b 's is independent on n.

Proof: The sizes of the sets $\mathcal{F}(a)$, $\mathcal{F}_{\rho}(a)$, $\mathcal{F}_{t}(a)$ are independent on *n*.

Gluing them into larger polytopes

- *b* is a *leaf*:
- *b* is an *introduce* or *forget* node. $Q_b = Q_a \times_{|c|} Q_b$ where *a* is the child of *b* and the gluing is done along the coordinates t_a in Q_a and d_b in P_b .
- *b* is a *join* node.

The Construction

The basic polytopes

- *b* is a *leaf*:
- *b* is an *introduce* or *forget* node:
- b is a join node:

$P_b = \{ \overbrace{100...0}^{|\mathcal{C}|} \}$ $P_b = \operatorname{conv} (\mathcal{F}_p(b))$ $P_b = \operatorname{conv} (\mathcal{F}_t(b))$

 $Q_b = P_b$.

Lng @

Lemma

Extension complexity of the polytopes P_b 's is independent on n.

Proof: The sizes of the sets $\mathcal{F}(a)$, $\mathcal{F}_{\rho}(a)$, $\mathcal{F}_{t}(a)$ are independent on *n*.

Gluing them into larger polytopes

- b is a leaf:
- *b* is an *introduce* or *forget* node. $Q_b = Q_a \times_{|C|} P_b$ where *a* is the child of *b* and the gluing is done along the coordinates t_a in Q_a and d_b in P_b .
- b is a join node.

 $Q_b = Q_a imes_{|\mathcal{C}|} P_b imes_{|\mathcal{C}|} Q_c$ where

Lemma

For every node $b \in V(T)$ and every vertex y of the polytope Q_b there exist $X_1, \ldots, X_m \subseteq V(G_b)$ such that $(G_b, (X_1, \ldots, X_m), \sigma(B(b)))$ is of the type specified by the vector y.

Proof. By induction and previous Lemma.

Applying Lemma to the root of the decomposition tree and a few more steps completes the proof of the main theorem.

Worth noting

- the extension complexity linear in the size of G
- optimization easy (LinEMSOL)
- the constructed polytope almost universal: apart from the last step (skipped), the construction depends on the *quantifier rank* of the formula only, not on the *formula* itself

Thank you!

伺 ト イヨ ト イヨ ト

크