
Minimum Common String Partition Problem:
Hardness and Approximations

Avraham Goldstein?, Petr Kolman??, and Jie Zheng? ? ?

Abstract. String comparison is a fundamental problem in computer
science, with applications in areas such as computational biology, text
processing or compression. In this paper we address the minimum com-
mon string partition problem, a string comparison problem with tight
connection to the problem of sorting by reversals with duplicates, a key
problem in genome rearrangement.

A partition of a string A is a sequence P = (P1, P2, . . . , Pm) of strings,
called the blocks, whose concatenation is equal to A. Given a partition
P of a string A and a partition Q of a string B, we say that the pair
〈P,Q〉 is a common partition of A and B if Q is a permutation of P. The
minimum common string partition problem (MCSP) is to find a common
partition of two strings A and B with the minimum number of blocks.
The restricted version of MCSP where each letter occurs at most k times
in each input string, is denoted by k-MCSP.

In this paper, we show that 2-MCSP (and therefore MCSP) is NP-hard
and, moreover, even APX-hard. We describe a 1.1037-approximation for
2-MCSP and a linear time 4-approximation algorithm for 3-MCSP. We
are not aware of any better approximations.

1 Introduction

String comparison is a fundamental problem in computer science, with appli-
cations in areas such as computational biology, text processing or compression.
Typically, a set of string operations is given (e.g., delete, insert and change a
character, move a substring or reverse a substring) and the task is to find the
minimum number of operations needed to convert one string to the other. Edit
distance or permutation sorting by reversals are two well known examples. In
this paper we address, motivated mainly by genome rearrangement applications,
the minimum common string partition problem (MCSP). Though MCSP takes a
static approach to string comparison, it has tight connection to the problem of
sorting by reversals with duplicates, a key problem in genome rearrangement.

? Email: avi goldstein@netzero.net
?? Institute for Theoretical Computer Science, Charles University, Malostranské nám.

25, 118 00 Praha 1, Czech Republic. Email: kolman@kam.mff.cuni.cz. Research done
while visiting University of California at Riverside. Partially supported by project
LN00A056 of MŠMT ČR, and NSF grants CCR-0208856 and ACI-0085910.

? ? ? Department of Computer Science, University of California, Riverside, CA 92521.
Email: zjie@cs.ucr.edu. Supported by NSF grant DBI-0321756.

A partition of a string A is a sequence P = (P1, P2, . . . , Pm) of strings whose
concatenation is equal to A, that is P1P2 . . . Pm = A. The strings Pi are called
the blocks of P. Given a partition P of a string A and a partition Q of a string
B, we say that the pair π = 〈P,Q〉 is a common partition of A and B if Q is a
permutation of P. The minimum common string partition problem is to find a
common partition of A, B with the minimum number of blocks. The restricted
version of MCSP where each letter occurs at most k times in each input string,
is denoted by k-MCSP. We denote by #blocks(π) the number of blocks in a
common partition π. We say that two strings A and B are related if every letter
appears the same number of times in A and B.

In this paper, we show that 2-MCSP (and therefore MCSP) is NP-hard and,
moreover, even APX-hard. We also describe a 1.1037-approximation for 2-MCSP
and a linear time 4-approximation algorithm for 3-MCSP. We are not aware of
any better approximations.

The signed minimum common string partition problem (SMCSP) is a variant
of MCSP in which each letter of the two input strings is given a “+” or “−” sign.
For a string P with signs, let −P denote the reverse of P , with each sign flipped.
A common partition of two signed strings A and B is the pair π = 〈P,Q〉 of
a partition P = (P1, P2, . . . , Pm) of A and a partition Q = (Q1, Q2, . . . , Qm)
of B together with a permutation σ on [m] such that for each i ∈ [m], either
Pi = Qσ(i), or Pi = −Qσ(i). All of our results apply also to signed MCSP.

Related work. 1-MCSP coincides with the breakpoint distance problem of two
permutations [12] which is to count the number of pairs of symbols that are ad-
jacent in the first string but not in the other; this problem is obviously solvable
in polynomial time. Similarly as the breakpoint distance problem does, most of
the rearrangement literature works with the assumption that a genome contains
only one copy of each gene. Under this assumption, a lot of attention was given
to the problem of sorting by reversals which is solvable in polynomial time for
strings with signs [9] but is NP-hard for strings without signs [3]. The assump-
tion about uniqueness of each gene is unwarranted for genomes with multi-gene
families such as the human genome [10]. Chen et al. [4] studied a generalization
of the problem, the problem of signed reversal distance with duplicates (SRDD);
according to them, SRDD is NP-hard even if there are at most two copies of
each gene. They also introduced the signed minimum common partition prob-
lem as a tool for dealing with SRDD. Chen et al. observe that for any two related
signed strings A and B, the size of a minimum common partition and the min-
imum number of reversal operations needed to transform A to B, are within a
multiplicative factor 2 of each other. (In the case of unsigned strings, no sim-
ilar relation holds: the reversal distance of A = 1234 . . . n and B = n . . . 4321
is 1 while the size of minimum common partition is n − 1.) They also give a
1.5-approximation algorithm for 2-MCSP. They reduce the problem to a ver-
tex cover problem (on 6-claw-free graphs) and show that an α-approximation
for minimum vertex cover yields an α-approximation for MCSP. Christie and
Irving [5] consider the problem of (unsigned) reversal distance with duplicates
(RDD) and prove that it is NP-hard even for strings over binary alphabet.

Chrobak et al. [6] analyze a natural heuristic for MCSP, the greedy1 algo-
rithm: iteratively, at each step extract a longest common substring from the
input strings. They show that for 2-MCSP, the approximation ratio is exactly 3,
for 4-MCSP the approximation ratio is Ω(log n); for the general MCSP, the ap-
proximation ratio is between Ω(n0.43) and O(n0.67). The same bounds apply for
SMCSP.

Closely related is the problem of edit distance with moves in which the al-
lowed string operations are the following: insert a character, delete a character,
move a substring. Cormode and Muthukrishnan [7] describe an O(log n log∗ n)-
approximation algorithm for this problem. Shapira and Storer [11] observed that
restriction to move-a-substring operations only (instead of allowing all three op-
erations listed above) does not effect the edit-distance of two strings by more than
a constant multiplicative factor. Since the size of a minimum common partition
of two strings and their distance with respect to move-a-substring operations
differ only by a constant multiplicative factor, the algorithm of Cormode and
Muthukrishnan yields an O(log n log∗ n)-approximation for MCSP.

1.1 Preliminaries

Throughout the paper, we assume that the two strings A,B given as input to
MCSP are related. This is a necessary and sufficient condition for the existence
of a common partition.

Given a string A = a1 . . . an, for the sake of simplicity we will use the symbol
ai to denote two different things. First, ai may denote the specific occurrence of
the letter ai in the string A, namely the occurrence on position i. Alternatively,
ai may denote just the letter itself, without any relation to the string A. Which
alternative we mean will be clear from context.

Common partitions as mappings. Given two strings A = a1 . . . an and B =
b1 . . . bn of length n, a common partition π of A and B can be naturally inter-
preted as a bijective mapping from A to B (that is, if P1, . . . , Pm is the partition
of A and Q1, . . . , Qm is the partition of B in π, then for each j ∈ [m], the letters
from Pj are mapped from left to right to the corresponding Qj′), and this in turn
as a permutation on [n]. With this understanding in mind, we say that a pair
of consecutive positions i, i + 1 ∈ [n] is a break of π in A if π(i + 1) 6= π(i) + 1.
In other words, a break is a pair of letters that are consecutive in A but are
mapped by π to letters that are not consecutive in B. The number of breaks in
π will be denoted by #breaks(π).

Clearly, not every permutation on [n] corresponds to a common partition of
A and B. We say that a permutation ρ on [n] preserves letters of A and B,
if ai = bρ(i), for all i ∈ [n]. Then, every letter-preserving mapping ρ can be
interpreted as a common partition ρ, and #blocks(ρ) = #breaks(ρ) + 1. On the

1 Shapira and Storer [11] also analyzed the greedy algorithm and claimed an O(log n)
bound on its approximation ratio; unfortunately, the analysis was flawed, it applies
only to a special subclass of MCSP problems.

other hand, for a common partition π = 〈P,Q〉 interpreted as a permutation,
#blocks(π) ≥ #breaks(π)+1 (the inequality is due to possible unnecessary breaks
in π). Thus, the MCSP problem is to find a permutation π on [n] that preserves
letters of A and B and has the minimum number of breaks. An alternative
formulation is that the goal is to find a letter-preserving permutation that maps
the maximum number of pairs of consecutive letters in A to pairs of consecutive
letters in B.

Common partitions and independent sets. Let Σ denote the set of all letters that
occur in A. A duo is an ordered pair of letters xy ∈ Σ2 that occur consecutively
in A or B (that is, there exists an i such that x = ai and y = ai+1, or x = bi

and y = bi+1). A specific duo is an occurrence of a duo in A or B. The difference
is that a duo is just a pair of letters whereas a specific duo is a pair of letters
together with its position. A match is a pair (aiai+1, bjbj+1) of specific duos,
one from A and the other one from B, such that ai = bj and ai+1 = bj+1. Two
matches (aiai+1, bjbj+1) and (akak+1, blbl+1), i ≤ k, are in conflict if either i = k
and j 6= l, or i + 1 = k and j + 1 6= l, or i + 1 < k and {j, j + 1} ∩ {l, l + 1} 6= ∅.
Informally, two matches are in conflict if they cannot be realized at the same
time.

abc ab
ab abc

abc ab
ab abc

ab abc
ab c ab

ab ab c
ab c ab

abc ab
ab ab c

Fig. 1. Conflict graph for MCSP instance A = abcab and B = ababc.

We construct a conflict graph G = (V,E) of A and B as follows. The set of
nodes V consists of all matches of A and B and the set of edges E consists of
all pairs of matches that are in conflict. Figure 1 shows an example of a conflict
graph. The number of vertices in G can be much higher than the length of the
strings A and B (and is trivially bounded by n2).

Lemma 1. For A = a1 . . . an and B = b1 . . . bn, let MIS(G) denote the size
of the maximum independent set of the conflict graph G of A and B and m
denote the number of blocks in a minimum common partition of A and B. Then,
n−MIS(G) = m .

Proof. Given an optimal solution for MCSP, let S be the set of all matches
that are used in this solution. Clearly, S is an independent set in G and |S| =
n− 1− (m− 1).

Conversely, given a maximum independent set S, we cut the string A between
ai and ai+1 for every specific duo aiai+1 that does not appear in any match in

S, and similarly for B. In this way, n− 1− |S| duos are cut in A and also in B,
resulting in n− |S| blocks of A and n− |S| blocks of B. Clearly, the blocks from
A can be matched with the blocks from B, and therefore m ≤ n− |S|. 2

Maximum independent set is an NP-hard problem, yet, two approximation
algorithms for MCSP described in this paper make use of this reduction.

MCSP for multisets of strings. Let us consider a slight variant of the MCSP.
Instead of two strings A,B, there are two multisets A,B of strings on in-
put. Similarly as before, a partition of the multiset A = {A1, . . . , Al} is a
sequence of strings A1,1, . . . , A1,k1 , A2,1, . . . , A2,k2 , . . . , Al,1, . . . , Al,kl

, such that
Ai = Ai,1 . . . , Ai,ki for i ∈ [l]. For two multisets of strings, the common partition,
the minimum common partition and the related-relation are defined similarly as
for pairs of strings.

Let A = {A1, . . . , Al} and B = {B1, . . . , Bh} with h ≤ l, be two related
multisets of strings, and let x1, y1, . . . , xl−1, yl−1 be 2l − 2 different letters that
do not appear in A and B. Considering two strings

A = A1x1y1A2x2y2A3 . . . xl−1yl−1Al ,

B = B1y1x1B2y2x2B3 . . . yh−1xh−1Bhyhxh . . . yl−1xl−1 , (1)

it is easy to see that an optimal solution for the classical MCSP instance A,B
yields an optimal solution for the instance A,B of the multiset version, and vice
versa. In particular, if m′ denotes the size of a MCSP of the two multisets of
strings A and B, and m denotes the size of a MCSP of the two strings A and B
defined as above, then

m = m′ + 2(l − 1) . (2)

Thus, if one of the variants of the problems is NP-hard, so is the other.

2 Hardness of approximation

The main result of this section is the following theorem.

Theorem 1. 2-MCSP and 2-SMCSP are APX-hard problems.

We start by proving a weaker result.

Theorem 2. 2-MCSP and 2-SMCSP are NP-hard problems.

Since an instance of MCSP can be interpreted as an instance of SMCSP with
all signs positive, and since a solution of SMCSP with all signs positive can be
interpreted as a solution of the original MCSP and vice versa, it is sufficient to
prove the theorems for MCSP only.

The proof is by reduction from the maximum independent set problem on
cubic graphs (3-MIS) [8]. Given a cubic graph G = (V,E) as an input for 3-MIS,
for each vertex v ∈ V we create a small instance Iv of 2-MCSP. Then we process

the edges of G one after another, and, for each edge (u, v) ∈ E, we locally modify
the two small instances Iu, Iv. The final instance of 2-MCSP, denoted by IG, is
the union of all the small (modified) instances Iv. We will show that a minimum
common partition of IG yields easily a maximum independent set in G.

The small instance Iu = (Xu, Yu) for a vertex u ∈ V is defined as follows (cf.
Figure 2):

Xu = {du, aubu, cudueu, bueufugu, fuhuku, gulu, hu} (3)
Yu = {bu, cudu, aubueu, dueufuhu, fugulu, huku, gu}

where au, bu, . . . , lu, av, bv, . . . , lv are distinct letters in the alphabet. It is easy to
check that Iu has a unique minimum common partition, denoted by Ou, namely:

Ou = 〈(du, aubu, cudu, eu, bu, eufu, gu, fu, huku, gulu, hu)
(bu, cudu, aubu, eu, du, eufu, hu, fu, gulu, huku, gu)〉

We observe that for XG =
⋃

u∈V Xu and YG =
⋃

u∈V Yu, IG = (XG, YG) is
an instance of 2-MCSP, and the superposition of all Ou’s is a minimum common
partition of IG. For the sake of simplicity, we will sometimes abuse the notation
by writing IG =

⋃
u∈V Iu.

The main idea of the construction is to modify the instances Iu, such that
for every edge (u, v) ∈ E, a minimum common partition of IG =

⋃
u∈V Iu

coincides with at most one of the minimum common partitions of Iu and Iv.
This property will make it possible to obtain a close correspondence between
maximum independent sets in G and minimum common partitions of IG: if Ov

denotes a minimum common partition of (the modified) Iv and O′
v denotes the

common partition of (the modified) Iv derived from a given minimum common
partition of IG, then U = {u ∈ V | O′

u = Ou} will be a maximum independent
set of G. To avoid the need to use different indices, we use IG to denote

⋃
u∈V Iu

after any number of the local modifications; it will always be clear from context
to which one are we referring.

For description of the modifications, a few terms will be needed. The letters
au and cu in Xu are called left sockets of Iu and the letters ku and lu in Xu are
right sockets. We observe that all the four letters au, cu, ku, lu appears only once
in XG (and once in YG). Given two small instances Iu and Iv and a socket su of
Iu and a socket sv of Iv, we say that the two sockets su and sv are compatible,

hudu cu du eubu

cu dubu au bu

fu gueu

eu fu hudu

fu hu ku

fu gu hu

gu lu

gueu

bu

lu ku

au

Fig. 2. An instance Iu: the lines represent all matches, with the bold lines corresponding
to the matches in the minimum common partition Ou.

if one of them is a left socket and the other one is a right socket. Initially, all
sockets are free.

For technical reasons, we orient the edges of G in such a way that each vertex
has at most two incoming edges and at most two outgoing edges. This can be
done as follows: find a maximal set (with respect to inclusion) of edge-disjoint
cycles in G, and in each cycle, orient the edges to form a directed cycle. The
remaining edges form a forest. For each tree in the forest, choose one of its nodes
of degree one to be the root, and orient all edges in the tree away from the root.
This orientation will clearly satisfy the desired properties.

We are ready to describe the local modifications. Consider an edge
−−−→
(u, v) ∈ E

and a free right socket su of Iu and a free left socket sv of Iv. That is, Rsu ∈ Xu

and svS ∈ Xv, for some strings R and S. We modify the instances Iu = (Xu, Yu)
and Iv = (Xv, Yv) as follows

Xu ← Xu ∪ {RsuS} − {Rsu} , Xv ← Xv ∪ {su} − {svS} ,
Yu ← Yu , Yv ← Yv with sv renamed by su .

(4)

(the symbols ∪ and − denote multiset operations).
After this operation, we say that the right socket su of Iu and the left socket

sv of Iv are used (not free). Note that in Yv, the letter sv is renamed to su. All
other sockets of Iu and all other sockets of Iv that were free before the operation
remain free. We also note that Iu and Iv are not 2-MCSP instances. However, for
every letter, the number of its occurrences is the same in XG and in YG, namely
at most two. Thus, IG is still a 2-MCSP instance.

The complete reduction from a cubic graph G = (V,E) to a 2-MCSP instance
is done by performing the local modifications (4) for all edges in G.

Reduction of 3-MIS to 2-MCSP
1. ∀u ∈ V , define Iu by the description (3),
2. ∀−−−→(u, v) ∈ E, find a free right socket su of Iu and a free left socket sv of Iv,

modify Iu and Iv by the description (4),
3. set IG =

⋃
u∈V Iu.

Since the in-degree and the out-degree of every node is bounded by two, and
since every instance Iu has initially two right and two left sockets, there will
always be the required free sockets.

It remains to prove that a minimum common partition for the final IG (that
is, when modifications for all edges are done) can be used to find a maximum
independent set in G.

Lemma 2. Let G be a cubic graph on N vertices. Then, there exists an inde-
pendent set I of size l in G if and only if there exists a common partition of IG

of size 12N − l.

Proof. Let GC be the conflict graph of IG; GC has 9N vertices. The crucial
observation is that each small instance Iu can choose independently on all other
small instances four of its nine possible matches in such a way that all these 4N

matches form an independent set in GC (in Figure 2, these four matches are
represented by the thin lines). Let O′

u denote the four matches chosen by u.
Given an independent set I of G, construct a common partition of IG as

follows. For u ∈ I, use the five matches from Ou, and for u 6∈ I, use the four
matches from O′

u. The resulting solution will use 5l + 4(N − l) matches which
corresponds to 9N − (5l + 4(N − l)) = 5N − l new breaks and 7N + 9N − (5l +
4(N − l)) = 12N − l blocks.

Conversely, given a common partition of IG of size m, let I consist of all
vertices u such that Iu contributes 5 matches (i.e., 11 blocks) to the common
partition. Then, l ≥ 12N −m, and the proof is completed. 2

Since the reduction can clearly be done in polynomial time (even in linear),
with respect to n = |V | and m = |E|, the proof of NP-hardness is completed.

Proof. (Theorem 1) Given a cubic graph G on N vertices, let m′ denote the size
of a minimum common partition of the instance IG = (XG, YG) and let m denote
the size of a minimum common partition of the instance (A,B), derived from
the multiset instance (XG, YG) by definition 1. We note that each of XG and YG

consists of 7N − 1 strings. By Lemma 2 and relation (2), the size of a maximum
independent set in G is 5N − m′ = 19N − 2 − m, and an α-approximation
algorithm for MCSP instance (A,B) can be used to derive an independent set
in G of size at least 19N − 2− α ·m.

Berman and Karpinski [2] proved that it is NP-hard to approximate 3-MIS
within 140

139−ε, for every ε. Thus, unless P=NP, for every ε > 0, the approximation
ratio α of any algorithm for MCSP must satisfy

19N − 2−m

19N − 2− α ·m
≥ 140

139
− ε .

Solving for α yields

α ≥ 19N − 2 + 139m

140m
= 1 +

19N − 2−m

140m
.

Using the fact that the maximum independent set in G has always size at lest
N/4 and therefore m ≤ 19N − 2 − N/4, we conclude that it is NP-hard to
approximate MCSP within 1 + 1

75·140 − ε, for every ε > 0. 2

Remark: To prove that only SMCSP is APX-hard, it is possible to start with
smaller instances Iu and thus get the constant larger.

3 Algorithms

3.1 2-MCSP reduces to MIN 2-SAT

Theorem 3. An α-approximation algorithm for MIN 2-SAT yields α-approximations
for both 2-MCSP and 2-SMCSP.

Plugging in a recent 1.1037-approximation algorithm of Avidor and Zwick [1],
we get the following result.

Corollary 1. There exist polynomial 1.1037-approximation algorithms for 2-
MCSP and 2-SMCSP problems.

Proof. (Theorem 3) There are only minor differences between the reductions for
signed and unsigned versions of the problem. We describe in detail the reduction
for 2-MCSP and then briefly point out the differences for 2-SMCSP.

Let A and B be two related strings. We start the proof with two assumptions
that will simplify the presentation:

(1) no duo appears at the same time twice in A and twice in B, and that
(2) every letter appears exactly twice in both strings.

Concerning the first assumption, the point is that in 2-MCSP, the minimum
common partition never has to break such a duo. Thus, if there exists in A and
B such a duo, it is possible to replace it by a new letter, solve the modified
instance and then replace the new letter back by the original duo. Concerning
the other, a letter that appears only once can be replaced by two copies of itself.
A minimum common partition never has to use a break between these two copies,
so they can be easily replaced back to a single letter, when the solution for the
modified instance is found.

The main idea of the reduction is to represent a common partition of A and
B as a truth assignment of a (properly chosen) set of binary variables. With each
letter a ∈ Σ we associate a binary variable Xa. For each letter a ∈ Σ, there are
exactly two ways to map the two occurrences of a in A onto the two occurrences
of a in B: either the first a from A is mapped on the first a in B and the second
a from A on the second a in B, or the other way round. In the first case, we say
that a is mapped straight, and in the other case that a is mapped across. Given
a common partition π of A and B, if a letter a ∈ Σ is mapped straight we set
Xa = 1, and if a is mapped across we set Xa = 0. In this way, every common
partition can be turned into truth assignment of the variables Xa, a ∈ Σ, and
vice versa. Thus, there is one-to-one correspondence between truth-assignments
for the variables Xa, a ∈ Σ, and common partitions (viewed as mappings) of A
and B.

With this correspondence between truth assignments and common partitions,
our next goal is to transform the two input strings A and B into a boolean
formula ϕ such that

– ϕ is a conjunction of disjunctions (OR) and exclusive disjunctions (XOR),
– each clause contains at most two literals, and
– the minimal number of satisfied clauses in ϕ is equal to the number of breaks

in a minimum common partition of A and B.

The formula ϕ consists of n − 1 clauses, with a clause Ci for each specific duo
aiai+1, i ∈ [n − 1]. For i ∈ [n − 1], let si = 1 if ai is the first occurrence of the
letter ai in A (that is, the other copy of the same letter occurs on a position

i′ > i), and let si = 2 otherwise (that is, if ai is the second occurrence of the
letter ai in A). Similarly, let ti = 1 if bi is the first occurrence of the letter bi in
B and let ti = 2 otherwise. We are ready to define ϕ. There will be three types
of clauses in ϕ.

If the duo aiai+1 does not appear in B at all, we define Ci = 1. The meaning
is that in this case, i, i + 1 is a break in A in any common partition of A and
B. We call such a position an inherent break. Let b be the number of clauses of
this type.

If the duo aiai+1 appears once in B, say as bjbj+1, let Y = Xi if si 6= tj , and
let Y = ¬Xi otherwise; similarly, let Z = Xi+1 if si+1 6= tj+1 and let Z = ¬Xi+1

otherwise. We define Ci = Y ∨Z. In this way, the clause Ci is satisfied if and only
if i, i + 1 is a break in a common partition consistent with the truth assignment
of Xi and Xi+1.

Similarly, if the duo aiai+1 appears twice in B, we set Ci = Xi ⊕ Xi+1 if
si = si+1, and we set Ci = ¬Xi⊕Xi+1 otherwise, where ⊕ denotes the exclusive
disjunction. Again, the clause Ci is satisfied if and only if i, i + 1 is a break in a
common partition consistent with the truth assignment of Xi and Xi+1. Let k
denote the number of these clauses.

By the construction, a truth assignment that satisfies the minimum number
of clauses in ϕ = C1 ∧ . . . ∧ Cn−1 corresponds to a minimum common partition
of A and B. In particular, the number of satisfied clauses is equal to the number
of breaks in the common partition which is by one smaller than the number of
blocks in the partition.

The formula ϕ resembles an instance of 2-SAT. However, 2-SAT formulas do
not allow XOR clauses. One way to get around this is to replace every XOR
clause by two OR clauses. This increases the length of the formula which in
turn increases the resulting approximation ratio for 2-MCSP. In the rest of the
section, we describe how to avoid this drawback.

Consider a duo aiai+1 in A for which Ci is a XOR-clause. Then the duo
aiai+1 appears twice in B, and, by our assumption (1), the other occurrence
of the letter ai in A is followed by a letter different from ai+1 (or the other
occurrence of the letter ai is the last letter in A). This implies that k ≤ b + 1.

Let ϕ̄ be the boolean formula derived from ϕ by omitting clauses of the
first type, that is, ϕ̄ =

∧
i:Ci 6=1 Ci. Let ϕ′ be the formula that we get from ϕ̄

by replacing each XOR clause (X ⊕ Y) by (X ∨ Y) ∧ (X̄ ∨ Ȳ) and keeping all
other clauses. Since for any values of boolean variables X and Y , (X ⊕Y)+1 =
(X ∨ Y) + (X̄ ∨ Ȳ), the minimal number of satisfied clauses in ϕ̄ is exactly by k
smaller than the minimal number of satisfied clauses in ϕ′.

Let s be the minimal number of satisfied clauses in the formula ϕ̄. Then,
s+b+1 is the size of a minimum common partition of A and B and the minimal
number of satisfied clauses in the 2-SAT formula ϕ′ is s+k. An α-approximation
for MIN 2-SAT instance ϕ′ satisfies at most α · (s + k) clauses and the same
truth assignment satisfies at most α · (s + k) − k clauses in ϕ̄. Considering the
additional b breaks for clauses of the first type, this truth assignment corresponds
to a common partition with at most α · (s + k) − k + b ≤ α · (s + b + 1) − 1

breaks. Since the size of the minimum common partition s + b + 1, this is an
α-approximation. For unsigned MCSP, the proof is completed.

For signed MCSP, we use the same correspondence between truth assignments
and common partitions; the only difference is in definition of the clauses Ci. We
leave the details to the reader. 2

3.2 Linear time 4-approximation for 3-MCSP

In this section we exploit again the relation of MCSP and MIS in the conflict
graph. The main idea of the algorithm is to cut the strings A and B into few
pieces in such a way that the conflict graph of the modified instance becomes
simple, making it possible to find MIS in polynomial time. More specifically, the
desired property of G is that the size of MIS equals the number of specific duos
in (the modified) A. If this is the case, then MIS corresponds to a solution that
does not need any (additional) breaks.

Similarly as in Section 3.1 we assume, without loss of generality, that no
duo has three occurrences in A and in B at the same time. Again, the point is
that if there exists a duo ab with three occurrences in A and three occurrences in
B, for a 3-MCSP instance A,B, the duo ab never has to be broken in a minimum
common partition of A and B, and therefore can be replaced by a new letter a′

without altering the size of the optimal solution. We augment both strings by
a new character an+1 = bn+1 = $.

A duo ab is good if the number of its occurrences in A equals the number of
its occurrences in B, and is bad otherwise. As before, let m denote the size of a
minimum common partition of a given pair of strings A and B.

Observation 4 In every common partition of A and B, for every bad duo ab
there must be at least one break immediately after some occurrence of a in A and
at least one break immediately after some occurrence of a in B.

In the first phase of the algorithm, for every bad duo ab, we cut both strings
A and B after every occurrence of a. We charge the cuts of ab to the breaks that
appear by Observation 4 in the optimal partition, that is, to the breaks after
letter a. At most three cuts are charged to a single break. Let A and B denote
the two multisets of strings we obtain from A and B after performing all these
cuts.

At this point, every specific duo of A and B has either one or two matches.
In the first case, we talk about a unique duo and a unique match, in the later
case about an ambiguous duo and an ambiguous match. There are four vertices
in the conflict graph corresponding to matches of an ambiguous duo and they
are connected in a 4-cycle. The 4-cycle will be called a square ab; a vertex
corresponding to a match of a unique duo will be called a single. We say that
two duos interfere if a match of the first duo is in a conflict with a match of the
other duo.

Let G1 be the conflict graph of A and B. The edges of G1 can be classified
into three groups: edges between two ambiguous matches, between an ambiguous

match and a unique match, and, between two unique matches. We are going to
have a closer look on these three cases.

Consider two ambiguous duos that interfere, say ab and bc. There are only
two ways how the two occurrences of ab and the two occurrences of bc can appear
in A: either there are two occurrences of a substring abc, or a single occurrence
of each of bc, abc and ab, in any order. There are the same possibilities for B.
Thus, there are only three basic ways how the duos ab and bc can appear in
the strings A and B (up to symmetry of A and B and up to permutation of the
depicted substrings):

A = . . . abc . . . abc . . . , B = . . . abc . . . abc . . . (1.1)
A = . . . bc . . . abc . . . ab . . . , B = . . . bc . . . abc . . . ab . . . (1.2)
A = . . . abc . . . abc . . . , B = . . . bc . . . abc . . . ab . . . (1.3)

The corresponding subgraphs of G1 are depicted in Figure 3. We observe several
things. If we want to keep all occurrences of ab and bc in case (1.1) and it is
already given how to match the ab duos (bc, resp.), then it is uniquely given how
to match the bc duos (ab, resp.). If we want to keep all occurrences of ab and
bc in case (1.2), then there is only one way how to match them all; we say that
the duos have a preference and we call these matches the preferred matches of
ab and bc. Concerning case (1.3), in any common partition of A and B at least
one occurrence of the duos ab and bc must be broken.

Let ab be an ambiguous duo and bc a unique duo. There are two possibilities
how they may interfere (cf. Figure 3):

A = . . . abc . . . ab . . . ,B = . . . abc . . . ab . . . (2.1)
A = . . . ab . . . abc . . . ,B = . . . ab . . . ab . . . bc . . . (2.2)

Similarly as before, there is only one way how to match all duos in case (2.1).
We sat that the duos have a preference and we call these matches the preferred
matches of ab and bc. Concerning (2.2), in any common partition of A and B at
least one of ab and bc must be broken.

Finally, let ab and bc be two unique duos. There is only one way how they
may interfere.

A = . . . abc . . . ,B = . . . ab . . . bc . . . (3.1)

Again, in any common partition of A and B, ab or bc must be a break.
In the second phase of the algorithm, we cut all occurrences of duos ab and

bc that have an interference of type (1.3), (2.2) or (3.1). We charge these cuts to
the breaks that appear, by the above observations, in the optimal solution. At
most four cuts are charged to a single break.

Let A2 and B2 denote the two sets of strings after performing all cuts of
phase two, and let G2 be the corresponding conflict graph. Note that a duo
might have more than one preferred match. The problem we are facing now is
to decide which preferences to obey and which not since the more preferences

bc ab c ab bc abc abbc abc ab
bc abc abbc ab c abbc ab c ab bc abc ab
bc abc ab

bc abc ab
bc abc ab

bc abc ab
bc abc ab

bc abc ab
bc ab c ab bc abc ab

bc abc ab

bc abc abbc ab c ab
1.3

1.2

bc ab c ab

bc abc ab

bc abc ab

ab c abc ab c abc abc abc

abc ab c abc abc

ab c abc abc ab c

abc ab c
abc ab c

abc ab c
ab c abc

ab c abc

1.1
abc abc
abc abc

ab c abc abc abc
abc abc

abc abc

abc abc
abc abc

abc abc
bc abc ab

bc abc ab
abc abc

bc abc ab
abc ab c

abc abc

Fig. 3. Subgraphs of G1 corresponding to matches of two interfering duos of types
(1.1), (1.2) and (1.3). Each node represents a match, e.g., the leftmost upper node in
all three subgraphs represents the match between the left occurrence of ab in A with
the left occurrence of ab in B. Bold edges only highlight which conflicts appear between
matches of the same duo. Observe that the order of the substrings ab, bc and abc does
not affect the structure of these conflict subgraphs.

we obey the less breaks we need. A graph H of inconsistent preferences will help
us.

By definition, a duo ab without preference has interferences of type (1.1)
only, and therefore interferes with at most two other duos. We already observed
that if a duo ab has an interference of type (1.1), say with a duo bc, and two
matches of the duo bc are already fixed, and no new breaks are allowed, then the
matches of the duo ab are uniquely given. In this way, a duo without preference
transmits a fixed preference of a neighboring duo on one side to a neighboring
duo on its other side, etc. A difficulty arises when a preference of one duo, say
bc, is transmitted by a sequence of duos without preferences to another duo with
a preference, say xy, and the preference transmitted to xy is different from the
preference of xy. Then, in every common partition, at least on specific duo bc, or
xy, or one of the transmitting duos, must be a break. We say that the preferences
of bc and xy are inconsistent. Similarly, if bc has two different preferences, we
also say that bc is inconsistent with bc.

We define the graph H = (VH , EH) of inconsistent preferences. The vertex
set VH consists of all duos with a preference and the set of edges EH consists
of all pairs of duos with inconsistent preferences (which includes loops for duos
inconsistent by themselves). By the above discussion, the graph H can be con-
structed in time linear in the number of duos.

Lemma 3. The size of a minimum vertex cover for H is a lower bound for the
number of breaks in a minimum common partition of A2 and B2.

Proof. Consider a minimum common partition π of A2 and B2. By Lemma 1, π
corresponds to a maximum independent set of G2, and thus, also to a minimum
vertex cover of G2. Let C2 ⊆ V2 denote nodes in this vertex cover. We observe
that for every square ab in G2, at least two of its vertices must be in C2 and for
every square ab with three or four vertices in C2, there must be a break between
some a and b in π. Similarly, for every single cd in C2, there must be a break
between c and d in π.

We are going to derive a vertex cover C for H from the vertex cover C2 for
G2. The nodes in C will come from three different sources:
– For every square ab with preference in G2, if the square ab has three or four

vertices in C2, we put the vertex ab ∈ VH to C.
– For every single ab ∈ C2, we put ab ∈ VH to C.
– For every square ab without preference in G2, if the square ab has three or

four vertices in C2, we add its closest duo with preference to C (ties broken
arbitrarily).

In this way, for every pair of duos with inconsistent preferences, at least one of
them will be in C, and each vertex in C can be charged to a different break in
π. Thus, C is indeed a vertex cover of size at most equal the number of breaks
of the common partition π. 2

In phase three, the algorithm cuts all duos corresponding to a minimum
vertex cover of H (resp., to 2-approximation of a minimum vertex cover). And

we charge these cuts to the breaks in the minimum vertex cover, by the above
Lemma. Let A3 and B3 denote the two sets of substrings we are left with, and
let G3 be the corresponding conflict graph.

Lemma 4. The pair A3, B3 is a common partition of A and B.

Proof. We are going to construct a maximum independent set in G3, corre-
sponding to a common partition of A3 and B3 with no additional breaks. The
procedure is based on the the observations in proof of Lemma 3. All we have to
do is to note that there are no inconsistent duos in G3. Thus, by following the
preferences for matches, we will never run into a conflict. If there is a component
in G3 without any preference, we choose arbitrarily a match for some duo and
consider it as a preference.

More specifically, we take to our independent set

– all singles, and,
– from every duo with preference, the two vertices corresponding to the pre-

ferred matches, and,
– from every duo without preference the two vertices corresponding to the

matches that are forced by a neighboring duo.

In this way, every single from G3 appears in the independent set, and for
every duo with four possible matches, two of them are in the independent set.
This is a maximum independent set corresponding to a common partition with
no additional breaks. 2

The complete algorithm can be schematically summarized as follows.

Algorithm
Phase 1: Cut all bad duos.
Phase 2: Cut all duos involved in conflicts of type (1.3), (2.1) and (3.1).
Phase 3: Cut all duos corresponding to (approximated) minimum

vertex cover in the graph H of inconsistent preferences.

Since the cuts of the algorithm are charged in every phase to different breaks in
the optimal solution, at most 4m breaks were used in all three phases, resulting
in a 4-approximation.

Using a hash table, Phases 1 and 2 can be implemented in time O(n). We
already noted that the graph H can be constructed in linear time. Since the
number of edges in H is O(n), a 2-approximation of the vertex cover can be
computed in time O(n), yielding a total time O(n).

For signed MCSP, the algorithm goes along the same lines, it only has to
consider +a + b and −b− a as the occurrences of the same duo.

Theorem 5. There exist linear time 4-approximation algorithms for both un-
signed and signed 3-MCSP.

Acknowledgment

We thank Xin Chen for introducing us the MCSP; this motivated our work. We
wish to thank Tao Jiang, Marek Chrobak, Neal Young and Stefano Lonardi for
many useful discussions. We also gratefully acknowledge comments given to us
by Jǐŕı Sgall on early version of the paper.

References

1. A. Avidor and U. Zwick. Approximating MIN k-SAT. In Proceedings of 13th
International Symposium on Algorithms and Computation (ISAAC), volume 2518
of Lecture Notes in Computer Science, pages 465–475, 2002.

2. P. Berman and M. Karpinski. On some tighter inapproximability results. In
Proceedings of the of 26th International Colloquium on Automata, Languages and
Programming, volume 1644 of Lecture Notes in Computer Science, pages 200–209,
1999.

3. A. Caprara. Sorting by reversals is difficult. In Proceedings of the First Interna-
tional Conference on Computational Molecular Biology, pages 75–83, 1997.

4. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment
of orthologous genes via genome rearrangement. Submitted, 2004.

5. D. A. Christie and R. W. Irving. Sorting strings by reversals and by transpositions.
SIAM Journal on Discrete Mathematics, 14(2):193–206, 2001.

6. M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the minimum com-
mon string partition problem. In Proceedings of the 7th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
2004.

7. G. Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. In Proceedings of the 13th Annual ACM-SIAM Symposium On Discrete
Mathematics (SODA), pages 667–676, 2002.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman & Company, San Francisco, 1978.

9. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: polyno-
mial algorithm for sorting signed permutations by reversals. Journal of the ACM,
46(1):1–27, Jan. 1999.

10. D. Sankoff and N. El-Mabrouk. Genome rearrangement. In T. Jiang, Y. Xu, and
M. Q. Zhang, editors, Current Topics in Computational Molecular Biology. The
MIT Press, 2002.

11. D. Shapira and J. A. Storer. Edit distance with move operations. In 13th Sympo-
sium on Combinatorial Pattern Matching (CPM), 2002.

12. G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome
inversion problem. Journal of Theoretical Biology, 99:1–7, 1982.

