
Extended Formulation for CSP that is Compact
for Instances of Bounded Treewidth?

Petr Kolman, Martin Koutecký
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Abstract. In this paper we provide an extended formulation for the
class of constraint satisfaction problems and prove that its size is poly-
nomial for instances whose constraint graph has bounded treewidth. This
implies new upper bounds on extension complexity of several important
NP-hard problems on graphs of bounded treewidth.

1 Introduction

Many important combinatorial optimization problems belong to the class of
constraint satisfaction problems (CSP). Naturally, a lot of effort has been given
to design efficient approximation algorithms for CSP, to prove complexity lower
bounds for CSP, and to identify tractable instances of CSP (e.g., from the point
of view of parameterized complexity). It has been shown that CSP is solvable in
polynomial time for instances whose constraint graph has bounded treewidth [7].

In recent years, a lot of attention has been given to study extension com-
plexity of problems [5]: what is the minimum number of inequalities representing
a polytope whose (suitably chosen) linear projection coincides with the convex
hull H of all integral solutions of Q? Such a polytope is called the extended
formulation of H. Note that membership of a problem in the class P of polyno-
mially solvable problems does not necessarily imply the existence of an extended
formulation of polynomial size [16]. In this work, we present an extended formu-
lation for CSP and show that its size is polynomial for instances of CSP whose
constraint graph has bounded treewidth.

1.1 Notation and Terminology

An instance Q = (V,D,H, C) of CSP consists of

– a set of variables zv, one for each v ∈ V ; without loss of generality we assume
that V = {1, . . . , n},

– a set D of finite domains Dv ⊆ R (also denoted D(v)), one for each v ∈ V ,
– a set of hard constraints H ⊆ {CU | U ⊆ V } where each hard constraint
CU ∈ H with U = {i1, i2, . . . , ik} and i1 < i2 < · · · < ik, is a |U |-ary relation
CU ⊆ Di1 ×Di2 × · · · ×Dik ,
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– a set of soft constraints C ⊆ {CU | U ⊆ V } where each soft constraint
CU ∈ C with U = {i1, i2, . . . , ik} and i1 < i2 < · · · < ik, is a |U |-ary relation
CU ⊆ Di1 ×Di2 × · · · ×Dik .

The constraint graph of Q is defined as G = (V,E) where E = {{u, v} | ∃CU ∈
C ∪ H s.t. {u, v} ⊆ U}. We say that a CSP instance Q has bounded treewidth
if the constraint graph of Q has bounded treewidth. In binary CSP, every hard
and soft relation is a unary or binary relation, and in boolean CSP, the domain
of every variable is {0, 1}. We use D to denote the maximal size of all domains,
that is, D = maxu∈V |Du|.

For a vector z = (z1, z2, . . . , zn) and U = {i1, i2, . . . , ik} ⊆ V with i1 < i2 <
· · · < ik, we define the projection of z on U as z |U = (zi1 , zi2 , . . . , zik). A vector
z ∈ Rn satisfies the constraint CU ∈ C∪H if and only if z|U ∈ CU . We say that a
vector z? = (z?1 , . . . , z

?
n) is a feasible assignment for Q if z? ∈ D1×D2× . . .×Dn

and z? satisfies every hard constraint C ∈ H. For a given feasible assignment z?

we define an extended feasible assignment ex(z?) = (z?, h?) ∈ Rn+|C| as follows:
the coordinates of h? are indexed by the soft constraints from C (to be more
precise: by the subsets U of V used as lower indices of the soft constraints)
and for each CU ∈ C, we have h?U = 1 if and only if z?|U ∈ CU , and h?U = 0
otherwise. We denote by F(Q) the set of all feasible assignments for Q, by
Fex(Q) = {ex(z?) | z? ∈ F(Q)} the set of all extended feasible assignments
for Q. For every instance Q we define two polytopes: CSP (Q) is the convex hull
of Fex(Q) and CSP ′(Q) the convex hull of F(Q). We also define three trivial
linear projections:

– projV (z, h) = z, projE(z, h) = h, projid(z, h) = (z, h)

where z ∈ Rn and h ∈ R|C|, and observe that projV (CSP (Q)) = CSP ′(Q).
In the decision version of CSP, the set C of soft constraints is empty and the

task is to decide whether there exists a feasible assignment. In the maximization
(minimization, resp.) version of the problem, the task is to find a feasible as-
signment that maximizes (minimizes, resp.) the number of satisfied (unsatisfied,
resp.) soft constraints. Note that there is no difference between maximization
and minimization versions of the problem with respect to optimal solutions but
the two versions differ significantly from an approximation perspective.

In the weighted version of CSP we are also given a weight function w : C → R
that specifies for each soft constraint C ∈ C its weight w(C). The goal is to
find a feasible assignment that maximizes (minimizes, resp.) the total weight
of satisfied (unsatisfied, resp.) constraints. The unweighted version of CSP is
equivalent to the weighted version with w(C) = 1 for all C ∈ C.

Even more generally, the relations in the soft constraints can be replaced
by bounded real valued payoff functions: a soft constraint CU ∈ C with U =
{i1, i2, . . . , ik} is not a |U |-ary relation but a function w : Di1×Di2× . . .×Dik →
R and the payoff of the soft constraint CU for a feasible assignment z? is w(z?|U );
the objective is to maximize (minimize, resp.) the total payoff. For the sake of
simplicity of the presentation we do not consider the problem in this generality
although the techniques used in this paper apply in the general setting as well.



For notions related to the treewidth of a graph, we stick to the standard
terminology as given in the book by Kloks [10]).

1.2 Related Work

CSP for graphs of bounded treewidth. As CSP captures many NP-hard problems,
it is a natural problem to identify tractable special cases of CSP. Freuder [7]
showed that CSP instances with treewidth bounded by τ can be solved in time
O(Dτn). Later, Grohe et al. [8] proved that, assuming FPT 6= W [1], this is
essentially the only nontrivial class of graphs for which CSP is solvable in poly-
nomial time (cf. Marx [12]).

Describing the polytope of CSP solutions by the means of linear program-
ming, for instances of bounded treewidth, is not a new idea. In 2007, Sellmann
et al. published a paper [18] in which they described a linear program that was
supposed to define the convex hull of all feasible solutions of a binary CSP when
the constraint graph is a tree. They also provided a procedure to convert a given
CSP instance with bounded treewidth into one whose constraint graph is a tree,
at the cost of blowing up the number of variables and constraints by a function
of the treewidth. Unfortunately, there was a substantial bug in their proof and
one of the main theorems in the paper does not even hold [17].

The paper [18] also implicitely includes this folklore result: if the constraint
graph has treewidth at most τ , then CSP can be solved by τ levels of the Sherali-
Adams hierarchy. The resulting formulation is of size O(nτ ) while our approach
yields size O(Dτn).

CSP for general graphs. Chan et al. [4] study the extent to which linear program-
ming relaxation can be used in dealing with approximating CSP. They show that
polynomial-sized LPs are exactly as powerful as LPs obtained from a constant
number of rounds of the Sherali-Adams hierarchy. They also prove integrality
gaps for polynomial-sized LPs for some CSP.

Raghavendra [13] shows that under the Unique Games Conjecture, a certain
simple SDP relaxation achieves the best approximation ratio for every CSP. In
a follow up paper, Raghavendra and Steurer [14] describe an efficient rounding
scheme that achieves the integrality gap of the simple SDP relaxation, and, in
another paper [15], they show unconditionally that the integrality gap of this
SDP relaxation cannot be reduced by Sherali-Adams hierarchies.

Other related results. Buchanan and Butenko [3] provide an extended formula-
tion for the independent set problem, a special case of CSP, that has size O(2τn)
where τ denotes the treewidth of the given graph. Our results can be viewed as
a generalization of this result: the size of our formulation, when applied to the
independent set problem, is also O(2τn).

In a recent work, Bienstock and Munoz [2] define a class of so called general
binary optimization problems which are essentially weighted boolean CSP prob-
lems, and for instances of treewidth τ provide an LP formulation of size O(2τn).
Again, this is a special case of our result in this paper. It is worth mentioning



at this point that every CSP instance can be transformed into a boolean CSP
instance; however, the standard transformation results in a substantial increase
(in some cases even Ω(D)) of the treewidth of the constraint graph.

1.3 New Results

Our main result is summarized as the following theorem.

Theorem 1. For every instance Q = (V,D,H, C) of CSP, there exists an ex-
tended formulation P (Q) of CSP (Q) and CSP ′(Q) of size O(Dτn) where τ is
the treewidth of Q; moreover, the corresponding LP can be constructed in time
O(Dτn).

As a corollary we obtain upper bounds on the extension complexity for several
NP-hard problems on the class of graphs with bounded treewidth; as far as we
know, these results have not been known.

2 CSP Polytope

2.1 Integer Linear Programming Formulation

We start by introducing the terms and notation that we use throughout this
section. We assume that Q = (V,D,H, C) is a given instance of CSP. For every
subset W ⊆ V we define the set of all configurations of W as

K(W ) = {(α1, . . . , αn) | ∀CU ∈ H (U ⊆W → α|U ∈ CU ) and ∀i 6∈W αi = λ}

where λ is a symbol not appearing in any of the domains Du, u ∈ V . For a
configuration K ∈ K(U) and v ∈ V , we use the notation K(v) to refer to the
v-th element of K. Also, for a configuration K ∈ K(U), v ∈ V \ U and α ∈ Dv,
we use the notation K[v ← α] to denote the configuration K ′ ∈ K(U ∪{v}) such
that K ′(v) = α and K ′(u) = K(u) for every u 6= v.

For an n-dimensional vector K = (α1, . . . , αn) and a subset of variables
U ⊆ V we denote by K �U the restriction of K to U that is defined as an
n-dimensional vector with K �U (i) = K(i) for i ∈ U and K �U (i) = λ for
i 6∈ U (i.e., we set to λ all coordinates of K outside of U). We denote by Λ
the configuration (λ, . . . , λ) ∈ K(∅); note that for α ∈ Dv, Λ[v ← α] is the
configuration from K({v}) with exactly one non-λ element, namely the v-th
element, equaling α.

In our linear program, for every index v ∈ V and every i ∈ Dv, we introduce
a binary variable yiv. The task of the variable yiv is to encode the value of the
CSP-variable zv: the variable yiv is set to one if and only if zv = i. Since in
every solution each variable assumes a unique value, we enforce the constraint∑
i∈D(v) y

i
v = 1 for each v ∈ V .

For every configuration K ∈
⋃
U :CU∈C∪HK(U) we introduce a binary variable

g(K). The intended meaning of the variable g(K), for K ∈ K(U) and U ⊆ V ,
is to provide information about the values of the CSP-variables zu for u ∈ U



in the following way: g(K) = 1 if and only if for every u ∈ U , zu = K(u). To
ensure consistency between the y and g variables, for every CU ∈ C ∪H and for
every v ∈ U , we enforce the constraint

∑
K∈K(U):K(v)=i g(K) = yiv. Note that

for binary CSP, the g variables capture the values of CSP-variables z for pairs
of elements from V that correspond to edges of the constraint graph.

Relaxing the integrality constraints we obtain the following initial LP relax-
ation of the CSP problem Q = (V,D,H, C):

∑
i∈D(v)

yiv = 1 ∀v ∈ V (1)

∑
K∈K(U):K(v)=i

g(K) = yiv ∀CU ∈ C ∪ H ∀v ∈ U ∀i ∈ D(v) (2)

0 ≤ y, g ≤ 1 (3)

Note that there is a one to one correspondence between the (extended) feasi-
ble assignments of Q and integral solutions of (1) - (3); from now on we denote
by proj1 the linear projection of the convex hull of integral solutions of (1) - (3)
to CSP (Q). Also observe that the total weight of CSP-constraints satisfied by
an integral vector (y, g) satisfying (1) - (3) is1∑

CU∈C
w(CU )

∑
K∈K(U):K|U∈CU

g(K) .

Unfortunately, even for CSP problems whose constraint graph is series-parallel,
the polytope given by the LP (1) - (3) is not integral (consider, e.g., the instance
of CSP corresponding to the independent set problem on K3). The weakness of
the formulation is that no global consistency among the y variables is guaran-
teed. To strengthen the relaxation, we introduce new variables and constraints
derived from a tree decomposition of the constraint graph of Q.

2.2 Extended Formulation

Here we describe, for every CSP instance Q = (V,D,H, C), a polytope P (Q),
and in the next subsection we prove that P (Q) is an extended formulation of
CSP (Q) and CSP ′(Q). The set of variables in the given LP description of P (Q)
is substantially different from the set of variables used in the LP (1) - (3), and
the set of new constraints is completely different from the the set of constraints
in the LP (1) - (3). Whereas in the previous subsection, there is (roughly) a
variable g(K) for every feasible assignment of every subset of CSP variables
corresponding to a soft or hard constraint, here we have a variable for every
feasible assignment of every subset of CSP variables corresponding to a bag in a
given tree decomposition of the constraint graph. Nevertheless, as we show after

1 In the case of general payoff functions, the total weight is given by∑
CU∈C

∑
K∈K(U):K|U∈CU

w(K|U )g(K)



defining P (Q), there exists a simple linear projection of P (Q) to the convex hull
of all integral points in the polytope given by the LP (1) - (3).

Let T = (VT , ET ) be a fixed nice tree decomposition [10] of the constraint
graph of Q and for every node a ∈ VT , let B(a) ⊆ V denote the corresponding
bag. Let B = {B(a) | a ∈ VT } denote the set of all bags of T . Let KB =⋃
B∈B K(B) be the set of all configurations of all bags in T . We use VI ⊆ VT to

denote the subset of all introduce nodes in T and VF ⊆ VT to denote the subset
of all forget nodes in T .

For every configuration K ∈ KB we introduce a binary variable f(K). As in
the previous subsection, the intended meaning of the variable K ∈ K(B), for
B ∈ B, is to provide information about the values of the CSP-variables zu for
u ∈ B in the following way: f(K) = 1 if and only if for every u ∈ B, zu = K(u).
To ensure consistency among variables indexed by the configurations of the same
bag, namely to ensure that for every B ∈ B there exists exactly one configuration
K ∈ K(B) with f(K) = 1, we introduce for every B ∈ B the LP constraint∑
K∈K(B) f(K) = 1.
For every introduce node c ∈ VT with a child b ∈ VT and for every configura-

tion K ∈ K(B(b)) we have the constraint
∑
K′∈K(B(c)):K′�B(b)=K

f(K ′) = f(K),

and symmetrically, for every forget node c ∈ VT with a child b ∈ VT and for every
configurationK ∈ K(B(c)) we have the constraint

∑
K′∈K(B(b)):K′�B(c)=K

f(K ′) =

f(K).
Relaxing the integrality constraints and putting all these additional con-

straints together, we obtain:∑
K∈K(B)

f(K) = 1 ∀B ∈ B (4)

∑
K′∈K(B(c)):K′�B(b)=K

f(K ′) = f(K) ∀c ∈ VI ,∀K ∈ K(B(b)) where b is (5)

the only child of c∑
K′∈K(B(b)):K′�B(c)=K

f(K ′) = f(K) ∀c ∈ VF ,∀K ∈ K(B(c)) where b is (6)

the only child of c

0 ≤ f ≤ 1 (7)

For the given binary CSP instance Q, we denote the polytope associated with
the LP (4) - (7), as P (Q).

Consider now a vector f ∈ P (Q) and the following set of linear equations:

yiv =
∑

K∈K(B):K(v)=i

f(K) ∀B ∈ B,∀v ∈ B, ∀i ∈ Dv (8)

g(K) =
∑

K′∈K(B):K′�U=K

f(K ′) ∀B ∈ B,∀CU ∈ C ∪ H s.t. U ⊆ B, ∀K ∈ B(U)

(9)

It is just a technical exercise to check that for a given f ∈ P (Q), there
always exists a unique solution (y, g) of this LP and that the unique (y, g) is



a linear projection of f . Moreover, such a vector (y, g) also satisfies the LP
constraints (1) - (3). The point is that there exists a linear projection of P (Q)
into the polytope defined by the LP (1) - (3); moreover, an integral point from
P (Q) is mapped on an integral point. From now on we denote this projection
proj2.

2.3 Proof of Theorem 1

As in the previous subsections, we assume that Q = (V,D,H, C) is a given
instance of CSP, G = (V,E) is the constraint graph of Q and T = (VT , ET ) a
fixed nice tree decomposition of G. We start by introducing several notions that
will help us dealing with tree decompositions and our linear program.

For a node a ∈ VT , let T (a) = (Va, Ea) be the subtree of T rooted in a;
the configurations relevant to T (a) are those in the set R(a) =

⋃
b∈Va

K(B(b)),
and the variables relevant to T (a) are those f(K) for which K ∈ R(a). For
succinctness of notation, we denote the projection f |R(a) of the vector f on the
set of variables relevant to T (a) also by f |a. The constraints relevant to T (a)
are those containing only the variables relevant to T (a). We say that a vector
I ∈ {0, 1}R(a) agrees with the configuration K ∈ R(a) if I(K) = 1.

Let f be a fixed solution of the LP (4) - (7) that corresponds to a vertex of
the polytope P (Q). Our main tool is the following lemma.

Lemma 1. For every node b ∈ VT , there exist a positive integer M and binary
vectors I1, I2, . . . , IM ∈ {0, 1}R(b), some possibly identical, such that

♠ every Ii satisfies the constraints relevant to T (b),

♣ f |b = 1
M

∑M
i=1 Ii.

Proof. By induction. We start in the leaves of T and proceed in a bottom-up
fashion.

Base case. Assume that b ∈ VT is a leaf of the nice decomposition tree T .
By definition of a nice tree decomposition, the bag B(b) consists of a single
vertex, say a vertex v ∈ V . The only variables relevant to T (b) are f(K) for all
K ∈ K(B(b)) =

⋃
j∈D(v) Λ[v ← j], and the only relevant constraints are those of

the type (4) and (7).

Let M ′ ∈ N be such that an M ′-multiple of every relevant variable is integral;
as f is a solution corresponding to a vertex of the polytope P (Q), all the variables
are rational which guarantees that such an M ′ exists. For every j ∈ Dv we define
an integral vector Ij such that Ij(Λ[v ← j]) = 1 and Ij(Λ[v ← i]) = 0 for every
i 6= j.

The vector Ij will appear with multiplicity M ′ · yjv among the integral solu-
tions I1, . . . , IM ′ for G′. Then, obviously, both properties ♠ and ♣ are satisfied.



Inductive step. Consider an internal node c ∈ VT of the nice decomposition
tree T . We distinguish three cases: c is a join node, c is an introduce node and
c is a forget node.

Join node. Assume that the two children of the join node c are a and b. Recall
that B(a) = B(b) = B(c). By the inductive assumption, there exist integers M
and M ′ and integral vectors I1, . . . , IM ∈ {0, 1}R(a), each of them satisfying

the relevant constraints for T (a) and such that f |a = 1
M

∑M
i=1 Ii, and integral

vectors J1, . . . , JM ′ ∈ {0, 1}R(b), each of them satisfying the relevant constraints

for T (b) and such that f |b = 1
M ′

∑M ′

i=1 Ji.
Two vectors Ii and Jj that agree with a given configuration K ∈ K(B(c))

can be easily merged into an integral vector L ∈ {0, 1}R(c) that satisfies L|a = Ii
and L|b = Jj ; as the set of all constraints relevant to T (c) is the union of the
constraints relevant to T (a) and the constraints relevant to T (b), the vector L
satisfies also all the constraints relevant to T (c).

For simplicity we assume, without loss of generality, that M = M ′. Then,
by the property ♣ and since B(a) = B(b) = B(c), for every configuration K ∈
K(B(c)), the number of vectors Ii that agree with K is equal to the number of
vectors Jj that agree with K, namely M ·f(K). Thus, it is possible to match the
vectors Ii and Jj one to one in such a way that both vectors in each pair agree
with the same configuration; let L1, L2, . . . , LM denote the result of their merging
as described above. Then the vectors Li satisfy the property ♠ as explained in
the previous paragraph, and by construction they also satisfy the property ♣.

Introduce node. Assume that the only child of the introduce node c is a node
b and B(c) = B(b) ∪ {v}. By the inductive assumption, there exists integer M
and integral vectors I1, . . . , IM ∈ {0, 1}R(b), each of them satisfying the relevant

constraints for T (b) and such that f |b = 1
M

∑M
i=1 Ii. Without loss of generality

we assume that for every variable relevant to T (c), its M -multiple is integral. We
partition the vectors I1, . . . , IM into several groups indexed by the configurations
from K(B(b)): the group ZK , for K ∈ K(B(b)), consists exactly of those vectors
Ii that agree with K.

Consider a fixed configuration K ∈ K(B(b)) and the corresponding group
ZK . Note that the size of this group is M · f(K). We further partition the
group ZK into at most |Dv| subgroups ZK′ , where K ′ = K[v ← j], for every
j ∈ Dv satisfying K[v ← j] ∈ K(B(c)), in such a way that ZK′ contains exactly
M · f(K ′) vectors (it does not matter which ones); the LP constraint (5) makes
this possible. Then, for every j ∈ Dv, we create from every vector I ∈ ZK[v←j]
a new integral vector JI in the following way:

– for every K̄ ∈ R(b), JI(K̄) = I(K̄); this guarantees JI |b = I,
– JI(K[v ← j]) = 1,
– for every i ∈ Dv, i 6= j, JI(K[v ← i]) = 0.

Obviously, the new vectors JI satisfy all constraints relevant to T (b), and it
is easy to check that they satisfy all constraints relevant to T (c) as well, given
the definitions above. Moreover, the definitions above imply that the vectors JI
satisfy the property ♣.



Forget node. Assume that the only child of the forget node c is a node b,
B(c) = B(b) \ {v}. This case is symmetric to the previous one in that instead
of splitting the groups ZK into smaller groups ZK′ , we merge them into bigger
ZK′ .

By the inductive assumption, there exists an integer M and integral vectors
I1, . . . , IM ∈ {0, 1}R(b), each of them satisfying the relevant constraints for T (b)

and such that f |b = 1
M

∑M
i=1 Ii. Without loss of generality we assume that for

every variable relevant to T (c), its M -multiple is integral. We partition the vec-
tors I1, . . . , IM into several groups indexed by the configurations from K(B(b)):
the group ZK , for K ∈ K(B(b)), consists exactly of those vectors Ii that agree
with K. Note that the size of ZK is M · f(K).

For every K ′ ∈ K(B(c)) we create a bigger group group ZK′ by merging |Dv|
of the groups ZK , namely those satisfying K|B(c) = K ′. By the LP constraint (6),
the new group ZK′ contains exactly M · f(K ′) vectors. For every K ′ ∈ K(B(c)),
we create from every vector I ∈ ZK′ a new integral vector JI in the following
way:

– for every K̄ ∈ R(b), JI(K̄) = I(K̄).

If K(B(c)) ⊆ R(b), there is nothing more to do. Otherwise we further define

– JI(K
′) = 1, and for every K̂ ∈ K(B(c)), K̂ 6= K ′, JI(K̂) = 0.

We have to check that the vectors JI satisfy all constraints relevant to T (c).
The only possibly new constraints are those using variables f(K ′) for K ′ ∈
K(B(c)) and it is easily seen that they are satisfied, given the definitions above.
Also, the definitions above imply that the vectors JK′ satisfy the property ♣. ut

By applying Lemma 1 to the whole tree T , that is, to the subtree rooted in
the root of T , we immediately obtain that f is an integral vector, and, thus, also
the corresponding vertex of P (Q) is integral. As this holds for every vertex of
P (Q), we conclude that P (Q) is an integral polytope.

Considering the notes at the ends of the previous two subsections, we also
conclude that CSP (Q) = proj1(proj2(P (Q)) and CSP ′(Q) = projV (CSP (Q)).

To complete the proof of Theorem 1, we observe that the number of variables
and constraints in the LP (4) - (7) is O(Dτn). ut

3 Applications

The purpose of this section is to make explicit the extension complexity upper
bounds given in Theorem 1 for several well known graph problems. We find
it interesting that the attained extension complexity upper bounds meet the
best possible (assuming Strong ETH) time complexity lower bounds, given by
Lokshtanov et al. [11]; the only exception is the Multiway Cut problem. To
state our results, we use for each problem the following template:

Problem name Projection Extension complexity Time complexity



Instance: . . .
Solution: . . .
CSP formulation: V , D, H, C. CSP version: Decision / Max / Min
where Projection is the name of the linear projection that yields the natural poly-
tope of the problem Q from the CSP (Q) polytope (or from the P (Q) polytope,
in case of the OCT problem). We use the notation [n] = {1, . . . , n}.

Coloring / Chromatic Number [1] projV O(qτn) Θ(qτn)

Instance: Graph G = (V,E), set of colors [q]
Solution: A coloring of G with q colors with no monochromatic edges.
CSP formulation: V = [n], Dv = [q] for every v ∈ V , Huv = {(i, j) | i ∈
Du, j ∈ Dv, i 6= j} for every uv ∈ E, C = ∅. Decision
Comment: Note that Chromatic Number χ(G) of G is always upper bounded
by τ + 1 since graphs of bounded treewidth are τ -degenerate and thus (τ + 1)-
colorable. Thus, if the goal is to determine χ(G), it suffice to find the smallest q
such that CSP (Q) is non-empty.

List-H-Coloring / List Homomorphism [6] projV O(Lτn) Θ(Lτn)

Instance: Graph G = (V,E), graph H = (VH , EH) possibly containing loops,
and for every vertex v ∈ V a set L(v) ⊆ VH . (We denote L = maxv∈V |L(v)|)
Solution: A mapping f : V → VH such that ∀uv ∈ E it holds that f(u)f(v) ∈
EH and f(v) ∈ L(v) for every v ∈ V .
CSP formulation: V = [n], Dv = L(v) for every v ∈ V , Huv = {(i, j) | i ∈
Du, j ∈ Dv, ij ∈ EH} for every uv ∈ E, C = ∅. Decision
Comment: Note that the problems List Coloring, Precoloring Exten-
sion and H-Coloring (or Graph Homomorphism) are all special cases of
this problem. The lower bound given by Lokshtanov et al. [11] applies to all of
them since Coloring is a special case of each of them.

Unique Games [9] projid O(tτn) —

Instance: Graph G = (V,E), an integer t ∈ N, a permutation πe of order t for
every edge e ∈ E.
Solution: A mapping ` : V → [t] such that the number of edges uv ∈ E with
πuv(`(u)) = `(v) is maximized.
CSP formulation: V = [n], Dv = [t] for every v ∈ V , H = ∅, Cuv =
{(i, πuv(i)) | i ∈ Du} for every edge uv ∈ E. Max
Comment: The decision variant of this problem is not interesting as it is trivially
solvable in polynomial time.

Multiway Cut [1] projE O(tτn) O(tτn)

Instance: Graph G = (V,E), an integer t ∈ N and t vertices s1, . . . , st ∈ V
Solution: A partition of V into sets V1, . . . , Vt such that for every i we have
si ∈ Vi and the total number of edges between Vi and Vj for i 6= j is minimized.



CSP formulation: V = [n], Dv = [t] for every v ∈ V ,H = ∅, Cuv = {(i, i) | i ∈
[n]} for every edge uv ∈ E. Min
Comment: Setting zv = i models vertex v belonging to the set Vi. Not satisfying
the constraint Cuv means that the edge uv belongs to the multiway cut.

Max Cut [1] projE O(2τn) Θ(2τn)

Instance: Graph G = (V,E)
Solution: A partition of vertices into two sets V1, V2 such that the number of
edges between V1 and V2 is maximized.
CSP formulation: V = [n], Dv = {0, 1} for every v ∈ V , H = ∅, Cuv =
{(1, 0), (0, 1)} for every edge uv ∈ E. Max
Comment: The values 0, 1 model the vertex belonging to the set V1 or V2. If
we replace maximization by minimization, the problem becomes Edge Bipar-
tization (aka Edge OCT) problem which is a parametric dual of Max Cut.

Vertex Cover [1] projV O(2τn) Θ(2τn)

Instance: Graph G = (V,E)
Solution: A set of vertices C ⊆ V of minimal size such that every edge contains
a vertex v ∈ C as at least one of its endpoints.
CSP formulation: V = [n],Dv = {0, 1} for every v ∈ V ,Huv = {(0, 0), (0, 1), (1, 0)}
for every edge uv ∈ E, Cv = {1}. Min
Comment: The values 0, 1 model the vertex belonging to C or V \ C. If we
replace maximization by minimization, the problem becomes Independent Set
problem which is a parametric dual of Vertex Cover.

Odd Cycle Transversal [11] projOCT ◦ proj2 O(3τn) Θ(3τn)

Instance: Graph G = (V,E)
Solution: A subset of vertices W ⊆ V of minimal size such that G[V \W ] is a
bipartite graph.
CSP formulation: V = [n], Dv = {0, 1, 2} for every v ∈ V , Huv = {0, 1, 2}2 \
{(0, 0), (1, 1)} for every edge uv ∈ E, Cv = {0, 1} for every v ∈ V . Min
Comment: The values 0, 1, 2 model the vertex belonging to either the first or
the second partite of a bipartite graph, or the deletion set W . Satisfying the
constraint Cv corresponds to not putting v in the deletion set W . Also known as
Vertex Bipartization. The projection projOCT : P (Q) → {0, 1}V is defined
as follows: projOCT (y01 , y

1
1 , y

2
1 , y

0
2 , y

1
2 , y

2
2 , . . . , y

0
n, y

1
n, y

2
n, g) = (y21 , y

2
2 , . . . , y

2
n).

4 Open problems

A natural research direction is to examine more closely the extension complexity
for CSP and the specific graph problems on graphs with bounded treewidth, in
particular, what are the best possible upper bounds?
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