On well quasiordering of finite languages

Martin Klazar

Department of Applied Mathematics of Charles University
Malostranské namesti 25
11800 Praha 1
Czech Republic

klazar@kam.ms.mff.cuni.cz

Abstract

We investigate here the quasiordering < of finite sets of finite strings over an infinite set of
symbols S. We set K < L iff it is possible to rename symbols occurring in the strings of £ so
that any string of KC is a subsequence of a string of the renamed £. We prove that < is a wqo
which answers the question raised by J. Gustedt in [3]. We prove also a stronger version with

injective correspondence between strings.

1 Introduction

Strings are finite sequences over S where S is an infinite countable set of symbols. Languages
are finite sets of strings, babels are sets of languages. If A C S then A* stands for the set of all
strings over A. By S** we denote the babel consisting of all languages. We define, for a string
U= 0apai ...am, S(u) =Uito{a;}. Similarly S(£) = U,ec, S(u) for any language L.

The notation u C v means, for any two sequences u = apaq . .. a, and v = bgby . .. b,, that
u is a subsequence of v: ag = bj,,a1 = bj,,...,a, = bj,, for some m indices 0 < jo < j1 <

.. < jm < n. We define, for two languages £ and K, that £ < I (via f) iff u C f(u) for



any u € L for some mapping f : £L — K. A mapping ¢ : S — S transforms a language L to

the language ¢(L) = {p(u) | u € L} where p(u) = @(apar ... am) = p(ag)p(al)...p(an). We

shall investigate the following quasiordering.
Definition 1.1 £ <X K, £ and K are languages, iff L < o(K) for some ¢ : S — S.

The above quasiordering was introduced in [7] to generalize chain minor ordering of finite
posets. We say, in accordance with [7] and with [3], that P is a chain minor of @ (P and @ are
finite posets) iff there is a mapping p : @ — P such that any chain in P is isomorphic via p to
a chain in @ (thus p must be onto). Chain minor ordering was introduced in connection with
scheduling stochastic project networks [7]. Clearly P is a chain minor of @ iff L(P) <X L(Q)
where £(P) and £(Q) are languages consisting of chains in corresponding posets.

By means of that equivalence it has been proven in [3], see also [4], that chain minor is a
wqo of finite posets. The proof uses substantially the fact that any ”poset language” L(P)
consists of strings without repetitions. The problem whether < is a wqo for languages in

general was posed [3]. Generalizing the approach in [3] we answer this question affirmatively.
Theorem 1.2 (S5**, <) is a wqo.

One can define a stronger quasiordering <* if the mapping f in the definition of < is

injective in addition. We prove that <* is a wqo as well.
Theorem 1.3 (S**, <*) is a wqo.

In Section 2 we give some preliminaries and demonstrate in a simple case our method.
Theorems 1.2 and 1.3 are proven in Sections 3 and 4, respectively. In Section 5 we give

counterexamples showing that requiring an injective ¢ in Definition 1.1 destroyss the wqo

property.

2 Absolute minimum about wqo

Any transitive and reflexive binary relation is called a quasiordering or, shortly, go. If (Q, <g)

is a go then x <@ y means that x <g y and y £g =. A cone determined by the element z € @
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is the set K = {y € Q | y >¢ z}. A qo (Q,<q) is a well quasiordering or, shortly, wqo if
it possesses the property characterized by the following lemma. For the proof and for more

background we refer to [6].

Lemma 2.1 Suppose (Q,<q) is a qo. The following conditions are equivalent.
1. For any infinite sequence (¢;);2, C Q there are indices i < j such that ¢; <g g;.

2. For any infinite sequence (¢;)72, C Q there are indices 0 < ig < i1 < ... such that
Qo <Q i =Q ---

3. No infinitely many elements xg,x1,... of Q create an antichain or a strictly descending
chain

Ty >Q T1>Q ---

Sequences satisfying 1. are called good, other sequences are called bad. The infinite mono-
tonic subsequence in 2. is called perfect. We recall two folcloric but useful statements.

Cone deleting argument. Suppose (Q,<g) is a wqo and Qo, @1,... are defined by
Qo = Q, Qiy1 = Q\Ky, ¢ € Q;. Then this sequence is finite, Q; = @) for some j (otherwise
(¢i)2y € @ would be a bad sequence).

Product argument. Suppose (Q;, <@, )i—o are wqo’s, Q@ = Qo X Q1 X ... Q, and (Q, <p)
is defined by (2;)i—q <pr (¥i)j—g iff z; <@, ys for i =0,...,r. Then (Q, <) is a wqo as well
(apply Lemma 2.1 r 4 1 times).

Let (@, <q) be a qo. The Higman ordering (SEQ(Q), <) on the set
SEQ(Q) ={(I,¢) | I is a finite linear ordering and ¢ : I — Q}

of all finite sequences over @ is defined by (1o, £o) <g (I1,¢1) iff there is an increasing mapping
F : Iy — I such that {y(z) <g ¢1(F(x)) for any x € Iy. We will use the following classical

result of the wqo theory [5].

Theorem 2.2 (Higman) (SEQ(Q),<m) is a wqgo for any wqo (Q,<g).



To demonstrate our method in a simple case we prove as an example a weaker version of
Higman theorem which deals with the structure (SET(Q), <g) consisting of finite subsets of
@ with the qo A <g B iff there is an injective mapping F' : A — B such that x <g F(z) for

any © € A.
Lemma 2.3 (SET(Q),<g) is a wqo for any wqo (@, <q).

Proof. We prove by a direct argument that any sequence A = (4;)52, € SET(Q) is good to
<g. We say that X = (B;,C;)2, is a friend of A if (B;)2, is a subsequence of A, C; C B; for
any 4, and (|C;j])52, is bounded. Set R(X) = ;2 (B;\C;) and G(i,z) = | K, N (B;\C;)| where
x € Q. We say that X is a good friend of A if in addition lim; ., G(i,x) = oo (i.e., for any m
there is an n such that ¢ > n implies G(i,z) > m) for any fixed x € R(X).

To prove that any A has a good friend we define a (finite) sequence Xy, X1, ... of friends
of A and iniciate it by Xo = (4;,0)2,. Suppose that X = (B;, Ci)2, is a friend of A which
fails to be a good friend: G(ig,x),G(i1,2),... < N < oo for some indices 0 < ig < i1 < ...

and some = € R(Xy). Let D;; = C;; U (K; N (B;;\Cy;)). Then

X1 = (Bij, Di;)j20
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is a friend of A and moreover R(Xy+1) C R(Xy)\K,. According to the cone deleting argument
(X0, X1,...) terminates in a good friend of A. Notice that when (] A4;])$2, is bounded then the
good friend of A obtained is (4;;, A;;)720.

Solet X = (B;, C;)2, be a good friend of A. We may assume that (|C;])52, is constant and
that Cp <g C; <g ... because by the product argument (C;):2, contains a perfect subsequence.
Take j sufficiently large such that G(j,z) > |Bo\Cy| for any x € By\Cy. As Cy <g C; and
any x € By\Cy is majorized (in <g) by sufficiently many elements in B;\C}; we conclude that
By <s Bj — A'is good. O

Recall that A* is the set of all strings over A and that C here is the subsequence relation.

The following result is an easy and well known consequence of Higman theorem.

Corollary 2.4 Let A be a finite alphabet. Then (A*, C) is a wqo.



3 Proof of Theorem 1.2

Any finite collection G = (E,I) = (E(G),I1(G)) = ({e; | i € I},I) of finite sets is called a set
system, elements of F are called edges. We permit repetition of edges and for simplicity we
omit the indices of edges when possible. If H = (F,J) is another set system such that FF C E
(and J C I) then H is said to be a subsystem of G. If E consists of mutually disjoint edges
then G is said to be a disjoint system.

The matching number M(G) of G = (E,I) is defined as the maximum number of edges in
a disjoint subsystem of G. A Q-system is a couple (G,¥) where ¢ : E(G) — @ gives to the
edges of G labels from the set Q.

Suppose A = (G, ;)2 is a sequence of @Q-systems where (Q, <g) is a qo. We say that

X = (H’La Eia H'L,)'(L)io

is a friend of A if (H;,¢;)$°, is a subsequence of A, H] is a subsystem of H;, and (M (H]))$2,,
is bounded.

We define further
R(X) = U, G(E(H)\E(HY) € Q and G(i,x) = M(H(x))
where x €  and H/'(z) is a subsystem of H; consisting of the edges
{e € B(H)\E(H;) | li(e) € Ky}
We say that X is a good friend of A if in addition
zliglo G(i,z) = 0

for any =z € R(X).

Lemma 3.1 Any sequence A = (G;,4;)52, of Q-systems labelled by a wqo (Q, <qg) has a good
friend X.

Proof. We define again a sequence X, X1, ... of friends of A starting with Xy = (G, £;,0)$2,
and show that it terminates in a good friend of A. Suppose Xy = (H;,¢;, H):2, fails to be a



good friend of A: G(ig,y),G(i1,y),... < N < oo for some indices 0 < ig < i1 < ... and some
y € R(Xy). Then

Xk+1 = (Hij,fij,H{j U Hz/; (¥))720
is clearly a new friend of A and moreover R(Xjy1) C R(Xy)\K,. According to the cone

deleting argument after finitely many steps a good friend of A arises. O

Definition 3.2 A (k,1)-babel where k,l are positive integers is any pair (B, A) satisfying:
1. B is a babel,
2. AC S, |A| <],

3. |S(u)\A| < k whenever u € L,L € B.

Definition 3.3 We denote by Si, A C S, the set of all mappings ¢ : S — S such that
©|A =ida and ¢ 1(A) = A. For two languages K and L the notation K <4 L means that
K < @(L) for some ¢ € S5.

Definition 3.4 Let L = (£;)52, C B be a sequence of languages of a (k,l)-babel (B, A).
Let R be a set of k symbols disjoint to A and let x € Sf{ be fized such that it maps any
S(u)\A,u € L;,i > 0, injectively to R. We introduce the following sequence of Q-systems
P(L) = (G, i)y

I(Gi) = Li, B(Gi) ={S)\A | v € L}, (Q, <) = (RUA)", ),
li(ew) = x(u) = x(apay . ..am) = x(ag)x(a1) ... x(am).

Observation 3.5 To prove Theorem 1.2. it suffices to prove that ((B,A),=<4) is a wqo for
any (k,1)-babel (B, A).

Proof. If £ = (£;)2, is a sequence of languages and |S(u)|,u € £;, i > 0, is not universally
bounded then |S(ug)|, for some g in some L;, is at least as big as the sum of lengths of the
strings in L£y. Then it is easy to embed the whole Ly in this single string ug and £ is good.

Otherwise |S(u)| < ¢ for all u € £; and all 7 > 0 and hence L is a (¢, 0)-babel. O



Lemma 3.6 ((B,A),=4) is a wqo for any (k,1)-babel (B, A).

Proof. We proceed by double induction on &k and [ and start with £ = 0. Then ((B,A),=<4)
is a wqo because even (SET(A*),<g) is a wqo by Lemma 2.3. and Corollary 2.4.

Suppose now that (B, A) is a (k,l)-babel, k£ > 0, and £ = (£;)2, C B is a sequence of
languages. We prove that £ is good. We may suppose, renaming appropriately symbols, that
S(L;) are mutually disjoint up to A and that S\ ;> S(L;) is infinite. Let P(L) = (G, £;)§2,
be the sequence defined in Definition 3.4. The labels form a wqo by Corollary 2.4. Thus there
is, by Lemma 3.1, a good friend (H;, ¢;, H!)2, of P(L).

Let F; be a maximum disjoint subsystem of H; and let U; = |J E(F;). Clearly |U;| < ck
for some constant ¢ (the bound on matching numbers) for any i > 0. We introduce a set
T,|T| = ck, of completely new symbols which is disjoint to A and to all |J E(H;). Let p € S5
be such that p is an identity on S\ U;>o U; and maps any U; injectively to T'.

Consider now the babel C = (p(K;))$2, where (K;)$°, is defined by K; = I(H]). We see
that, crucially, (C,TU A) is a (k — 1, ck + [)-babel because any edge of H; must intersect U;.
We may suppose, according to the induction hypothesis, that p(Ko) 2aur p(K1) Saur - -

We compare the first term to the others: there are mappings ; € Sfqu and f; : Ky —
Ki,i > 1, such that p(u) C i(p(fi(u))) for any u € Ky. Let j be such a large number that
there are |E(Hy)\E(H))| mutually disjoint edges

F = {he | e € E(Ho)\E(Hy)} C E(H;)\E(Hj)

satisfying £;(he) D £o(e) for any e € E(Hy)\E(H))) and moreover any edge of F is disjoint to
S(f;(Ko))-
We take a mapping ¢ € S5 as follows.
o If z € S(fj(Ko)) NUj then p(y) = p(x) for at most one y € Up. If it exists we put
plr) =y.
o If x € S(f;(Ko))\U; then we put p(x) = ¢;(z).
o If & € he for e € E(Hy)\E(H|)) then x(y) = x(z) for at most one y € e. If it exists we

put p(x) = y.



Otherwise ¢ is defined arbitrarily. Clearly I(Hp) < ¢(I(H;)) and we conclude that the se-

quence L is good. O

Lemma 3.6 and Observation 3.5 prove Theorem 1.2.

4 Proof of Theorem 1.3

An easy check shows that only in Observation 3.5. we used the fact that the mapping f of
the definition of < had not to be injective. In Lemma 3.6. it has been proven actually that
((B,A),=<%) is a wqo for any (k,1)-babel (B, A). Now we make the whole proof injective by
replacing Observation 3.5. by a finer consideration.

Suppose £ = (£;)2, C S** is a sequence of languages. We say that X = (K;, K})2, is a
friend of L if (1C;)$2, is a subsequence of £, K C IC;, (|K}])52, is constant, and min{|S(u)| | u €
K} — oo for i — co. If moreover (max{|S(u)| | u € IC;\K}})52, is bounded then X is said to
be a good friend of L.

Consider the following property.

(*) For any c there are in some language £; ¢ strings u such that for each of them |S(u)| > c.

Lemma 4.1 Suppose L = (L£;)52, is a sequence of languages not having property (*). Then

L has a good friend.

Proof. We define then by induction a sequence Xy, X1,... of friends of £ starting with
Xo = (Li,0)2y. If X = (Ki, K})§2 fails to be a good friend of £ then [S(u;;)| — oo for

j — oo for some strings ui; € ICij \IC;J, and some indices 0 < ig < 71 < ... Then
X1 = (’Cip]c;j U {ulj})ﬁﬂ

is a new friend of £. As (*) is violated the growth of || can’t proceed arbitrarily long and

after finitely many steps a good friend of £ is obtained. O

Proof of Theorem 1.3.  Suppose £ = (£;)72, C S** is a sequence of languages. If £

has property (*) then Ly embeds injectively in some £;. If not then consider a good friend



X = (Ki,K}))$2, of L. The sequence (K;\K})52, is a (¢, 0)-babel for some ¢ and by Lemma
3.6 we may suppose it forms a perfect sequence (ICo\K{) <* (K1\K]) <* ...
So there are mappings ¢; : S — S and injective mappings f; : (Co\K() — (Ki\K}),i > 1,
such that u C ¢;(fi(u)) for any u € Ko\Kj. Now we take such a large j that
%}%ls(u)\ > ) ,|S(fj(v))|+ Z length(v).
v \K veky
It is easy to extend the injective covering Ko\Kqy =* K;\K} to the injective covering Ko <* ;.

We conclude that £ is good. O

5 Concluding remarks

Now we show that the fact we did not require an injective ¢ was crucial to obtain wqo. Let
K =4 L, for two languages £ and K, iff there is an injective ¢ : S — S such that K < ¢(L).

Consider this example.
Example 5.1 The infinite babels

By = {{132132}, {14213243}, {1521324354}, {162132435465}, ...}
and

Bi = {{ab, be, ca}, {ab,bec, cd, da}, {ab, bc, cd, de, ea}, . ..}

are antichains to <. Thus =<, is not a wqo.
Note that both babels are antichains also in the ordering obtained by replacing in Definition
1.1. K< o(L) by p(K) < L.

Problem 5.2 Suppose now that a language £ = uguy...ug s a finite sequence of strings
rather than just a set and put L = uguy . .. u = K = vgvy ... v iff there is a mapping p : S — S
and an increasing injection f : {0,1,...,k} — {0,1,...,1} such that u; C p(vyq)) for all

1=0,1,...,k. Is this < stil a wqo ?
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