
Størmer’s solution of the unit equation x− y = 1

Martin Klazar

August 25, 2010

S-numbers, for a given finite set of primes S = {p1, p2, . . . , pr}, are the
numbers pa1

1 pa2
2 . . . par

r , ai ∈ N0 = {0, 1, . . . }, built only from the primes in S.
For example, the {2, 3}-numbers smaller than 100 are

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96.

Gaps in this sequence apparently have tendency to grow. How would you prove
that for any finite S and any c ∈ N = {1, 2, . . . } only finitely many pairs of
S-numbers are c apart? That is, the equation

x− y = c

has only finitely many solutions x, y in S-numbers. For example, for S = {2, 3}
and c = 1 the only solutions are 21 − 1 = 1, 31 − 21 = 1, 22 − 31 = 1 and
32 − 23 = 1. How do we know that? Why there could not be some other,
perhaps gigantic, exponents such that 2a3b−2c3d = 1? Shortly we will see why.

Finiteness of solutions to x − y = c in S-numbers follows from the deep
theorem on Diophantine equations proved by A. Thue in 1908 [5], which in
particular says that any equation

ax3 − by3 = c, a, b, c ∈ N,

has only finitely many integral solutions x, y ∈ Z. Writing the exponents in pai
i

as ai = 3bi+εi with εi = 0, 1, 2 we see that all solutions to x−y = c in S-numbers
are contained among integral solutions to 9r Thue equations ax3− by3 = c with
a, b of the form pε1

1 . . . pεr
r , and so there are only finitely many of them. This

was observed by G. Pólya [2].
But already one decade before Thue’s epoch-making theorem his compatriot

Carl Størmer (1874–1957), Norwegian mathematician and physicist famous for
investigations, observations and theory of aurora Borealis, could prove ([4])
finiteness of solutions to x−y = c in S-numbers for c = 1 and 2. Moreover, unlike
the argument using Thue’s theorem, Størmer’s method is completely effective
and gives an algorithm determining for any S all solutions. How Størmer did it
without Thue? He used the Pell equation

x2 − dy2 = 1
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where d ∈ N and is not a square. Crazy idea, it seems—already in 1770 J. L.
Lagrange proved that each such equation has infinitely many integral solutions,
not good for obtaining finiteness results! However, simple algebraic structure
of this infinite solution set enables one to prove for Pell equations a finiteness
result, discovered by Størmer (Theorem 2 below).

The purpose of this expository note is to review Størmer’s argument, a
beautiful application of the theory of Pell equation. We follow the book of
Ribenboim [3, chapter C.9] which discusses generalizations of Størmer’s result.
For further information on the unit equation see the book of Bombieri and
Gubler [1].

***

Theorem 1 (Størmer, 1897) Let S = {p1, p2, . . . , pr} be r distinct prime
numbers. Each of the two equations

x− y = 1 and x− y = 2

has at most 3r solutions in S-numbers x, y.

For d, n ∈ N we say that n is a d-number if every prime factor of n divides d,
that is, n is an S-number for S the set of prime divisors of d. The fundamental
solution of a Pell equation is the positive solution with the smallest x-coordinate
(or, equivalently, y-coordinate). Note that if d = e2 is a square then x2− dy2 =
(x− ey)(x + ey) = 1 has just the trivial integral solution ±1, 0.

Theorem 2 (Størmer, 1897) Each equation

x2 − dy2 = 1, d ∈ N,

has at most one solution x, y ∈ N where y is a d-number. In fact, if such solution
exists it equals the fundamental solution of the given Pell equation.

Let us see how Theorem 1 follows from Theorem 2. If y and y + 1 are
both S-numbers, then 2 ∈ S and 4y(y + 1) = (2y + 1)2 − 1 is an S-number.
Similarly, if y and y + 2 are both S-numbers, then y(y + 2) = (y + 1)2 − 1 is an
S-number. It suffices to show that at most 3r S-numbers have form a2− 1. Let
a2 − 1 = pa1

1 . . . par
r where a ∈ N and ai ∈ N0. We define bi ∈ N0 by bi = ai − 1

if ai is odd, bi = 0 if ai = 0, 2 and bi = ai − 2 if ai ≥ 4 and is even, and we set
d = pa1−b1

1 . . . par−br
r and b = p

b1/2
1 . . . p

br/2
r . Then

a2 − db2 = 1 and b is a d-number.

We have at most 3r choices for d because d = pε1
1 . . . pεr

r with εi = 0, 1, 2 and get
at most 3r equations x2−dy2 = 1. Each of them has by Theorem 2 at most one
positive solution a, b where b is a d-number. Thus only at most 3r S-numbers
are by one less than a square, which proves Theorem 1.

We prove Theorem 2. From the theory of Pell equation we will not need
Lagrange’s theorem but only the following easier result whose proof we omit.
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Proposition 3 Suppose that d ∈ N and x2 − dy2 = 1 has at least one positive
integral solution. Then d is not a square and all positive solutions form an
infinite sequence of pairs an, bn ∈ N, n = 1, 2, . . . , given by

an + bn

√
d = (a1 + b1

√
d)n

where a1, b1 ∈ N is the fundamental (i.e., smallest positive) solution.

Proof of Theorem 2. Suppose that x2 − dy2 = 1 has a solution a, b ∈ N
where b is a d-number. Since by Proposition 3 all positive solutions are of the
form

an + bn

√
d = (a1 + b1

√
d)n, n = 1, 2, . . . ,

where a1, b1 ∈ N is the fundamental solution, a = am, b = bm for some m ∈ N.
We show that m = 1.

First note that a1 > 1 and (a1, d) = 1 since a2
n − db2

n = 1. For n = kl,
k, l ∈ N, we get

akl + bkl

√
d = (ak + bk

√
d)l and bkl =

(
l

1

)
al−1

k bk +
(

l

3

)
al−3

k b3
kd + . . .

It follows that bk divides bkl and in particular for every l ∈ N we have

bl = b1cl, cl ∈ N.

Setting k = 1 and cancelling b1 in the last but one displayed equality we get the
identity

cl =
(

l

1

)
al−1
1 +

(
l

3

)
al−3
1 b2

1d +
(

l

5

)
al−5
1 b4

1d
2 + . . .

Suppose that m > 1 and consider the prime divisors p of the index m of the
d-number bm; we show that there is none. If p = 2 then c2 divides bm and thus
c2 is a d-number and, by the identity, c2 = 2a1. Since a1 is coprime with d, we
see that c2 = 2r and a1 = 2r−1. If r ≥ 2 then 2 divides both d and a1, which
is impossible. Thus r = 1 and a1 = 1, which is impossible either. If p ≥ 5 then
again cp divides bm, is a d-number and each prime factor of cp divides pap−1

1 .
From (a1, d) = 1 it follows that cp has the only prime factor p and cp = pr,
r ∈ N. Since p > 3, the second summand in the identity (with l = p) is divisible
by p2 (as p divides

(
p
3

)
and d) and the following ones are clearly divisible by p2 as

well. Thus if r ≥ 2 then p2 divides also the first summand pap−1
1 and p divides

a1 and d, which is impossible. Hence r = 1. But then p = cp = pap−1
1 + . . .

which is impossible either as a1 > 1.
It remains the possibility that p = 3 and m = 3r with r ∈ N. Then c3

divides bm and is a d-number. By the identity,

c3 = 3a2
1 + b2

1d = 4a2
1 − 1 = (2a1 − 1)(2a1 + 1).

Again, by (a1, d) = 1 the only prime factor of c3 may be 3 and c3 = 3s with
s ∈ N. Thus 2a1 − 1 and 2a1 + 1 are powers of 3 differing by 2, which are only
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1 and 3, and a1 = 1. But this is impossible as a1 > 1. The assumption m > 1
leads to contradiction in all cases and we see that m = 1. 2

To close let us find all solutions to x−y = 1 and x−y = 2 in {2, 3}-numbers.
The 9 = 32 corresponding equations x2−dy2 = 1 have d = 1, 2, 3, 4, 6, 9, 12, 18, 36.
Squares d = 1, 4, 9, 36 give no solution and in the remaining five cases we have
fundamental solutions (3, 2) for d = 2, (2, 1) for d = 3, (5, 2) for d = 6, (7, 2) for
d = 12 and (17, 4) for d = 18. In each of them the y-component is d-number and
we get that x2 − 1 is {2, 3}-number iff x = 2, 3, 5, 7, 17. This gives the solutions
3− 1 = 2, 4− 2 = 2, 6− 4 = 2, 8− 6 = 2, 18− 16 = 2 and (for odd x) 2− 1 = 1,
3− 2 = 1, 4− 3 = 1, 9− 8 = 1.
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