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118 00 Praha, Czech Republic

Abstract

We construct a bijection proving that the following two sets have
the same cardinality: (i) the set of words over {−1, 0, 1} of length m−2
which have every initial sum nonnegative, and (ii) the set of partitions
of {1, 2, . . . ,m} such that no two consecutive numbers lie in the same
block and for no four numbers the middle two are in one block and the
end two are in another block. The words were considered by Gouyou-
Beauchamps and Viennot who enumerated by means of them certain
animals. The identity connecting (i) and (ii) was observed by Klazar
who proved it by generating functions.
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Let us denote, for m > 0, [m] = {1, 2, . . . ,m}. A sequence a = a1a2 . . . ak is a
nonnegative word if ai ∈ {−1, 0, 1} for each i and for each initial segment of
a the sum of its elements is nonnegative. Recall that A = {A1, A2, . . . , An}
is a partition of [m] if the Ais (called blocks) are nonempty disjoint subsets
of [m] and their union is [m]. We say that A is sparse if for every i ∈
[m − 1] the elements i and i + 1 lie in two distinct blocks. A is called
abba-free if it does not happen for any four elements i < j < k < l of
[m] that i, l lie in a common block and j, k in another common block. For
example, {{1, 5, 7}, {2, 4}, {3, 6}} is a sparse partition that is not abba-free.
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The partition {{1, 2, 5, 7}, {4}, {3}, {6, 8}} is abba-free but it is not sparse.
We give a direct proof, without using generating functions, for the following
theorem originally due to Klazar [2].

Theorem. For every m ≥ 3 there exists a bijection G between the set of
sparse abba-free partitions of [m] and the set of nonnegative words of length
m− 2.

Gouyou-Beauchamps and Viennot [1] were interested in counting certain
animals (certain sets of plane lattice points) and showed that their animal
problem is equivalent to enumeration of nonnegative words (they use slightly
different terminology). Klazar [2] was interested in counting set partitions
subject to structural restrictions and obtained as a byproduct the above
identity. His derivation uses substantially generating functions. Indeed, if
rm is the number of sparse abba-free partitions of [m], then ([2])

∞∑
m=0

rmxm = 1 +
x

2

√
1 + x

1− 3x
.

Analogous formula for nonnegative words was derived before in [1]. The
sequence

(rm)m≥2 = (1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046, 17303, 49721, . . .)

is sequence A005773 of Sloane [3]. Stanley [4, Problem 6.46] and [3] give
further information and references on these numbers. Our aim is to avoid
the use of generating functions and to give a bijection proving the identity.

We need few more definitions. A nonnegative word is a correct word if
the first letter is 1, the last letter is −1, the sum of all letters is zero, and each
proper initial segment has a positive sum. We say that the letter aj in a word
over {−1, 0, 1} is dominant if aj = 1 and the sum of letters in every interval
beginning in aj is positive. For a a correct word of length at least three, a′

is obtained from a by deleting the first and the last letter. Obviously, a′ is
a nonnegative word. For a partition A = {A1, A2, . . . , An} of [m] we denote
|A| = m. Similarly, for a sequence a we denote |a| its length. We say that
j ∈ [m] is covered in A if there exist i, k ∈ [m] and Ar ∈ A so that i < j < k,
i, k ∈ Ar, and j 6∈ Ar. If every element of {2, . . . ,m − 1} is covered in A,
we say that A is a connected partition. Any partition A, |A| = m, can be
written in a sequential form. This is a sequence b = b1b2 . . . bm of length m
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over some alphabet such that bi = bj if and only if i, j lie in the same block
of A. A partition has many sequential forms. One of them is the canonical
sequential form in which the alphabet is [n] (n is the number of blocks in
A) and the first occurrence of every i ∈ [n], i > 1, in b is preceded by the
first occurrence of i− 1. In particular, b starts with 1. Each partition has a
unique canonical sequential form. It is convenient to write specific partitions
in (canonical) sequential form. For example, the canonical sequential form
of

{{1, 5, 7}, {2, 4}, {3, 6}} is 1232131

(we will omit commas in the sequential forms of partitions).

Lemma 1. Each block of a connected sparse abba-free partition of [m],
m ≥ 3, has at most two elements. Moreover, the block containing 1 and the
block containing m have exactly two elements.

Proof. Suppose that j < k < l belong to the same block, say B, of A. Since
k is covered, there exist s and t, s < k < t, belonging to the same block A
that is different from B. It is easy to check that each of the four positions of
s, j and t, l leads to the forbidden pattern abba. For example, if j < s and
t < l then j < s < t < l form the abba pattern. If {1} were a block, 2 would
not be covered. Similarly {m} cannot be a block. 2

We consider the following mapping F from the set of partitions of [m]
with no block with more than two elements to words over {−1, 0, 1} with
length m. F (A) = a1a2 . . . am where ai = 0 if {i} ∈ A, ai = 1 if i is the first
element of the two-element block containing i, and ai = −1 if i is the second
element. For example, F (1234153) = 1, 0, 1, 0,−1, 0,−1.

Lemma 2. For every m ≥ 3, F is a bijection between the set of connected
sparse abba-free partitions of [m] and the set of correct words of length m.

Proof. By the previous lemma, if A is a connected sparse abba-free partition,
F (A) is defined and is a word beginning with 1 and ending with −1. Every
initial sum of F (A) is nonnegative for else we would have in the corresponding
initial segment of A more second elements of two-element blocks than the
first elements, which is impossible. Moreover, for no i, 1 < i < m, the sum
of the first i letters is zero because then i would not be covered. Thus F (A)
is a correct word.

We define the inverse mapping F−1. Let a = a1a2 . . . am be a correct
word and let the partition F−1(a) = A be defined in the following way. If
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ai = 0 then {i} is a (singleton) block of A and if ai is the kth occurrence of
1 in a and aj is the kth occurrence of −1, then {i, j} is a block of A. Note
that always i < j and that the second elements of two-element blocks come
in the same order as the first elements. Thus A is abba-free. A is connected
because if an inner element i were not covered, then the sum of the first i−1
letters of a would be zero. A is sparse because {i, i + 1} ∈ A implies that
a1 + a2 + · · · + ai−1 = 0 and a1 + a2 + · · · + ai+1 = 0. Finally, it is easy to
check that F and F−1 are inverses of one another and thus F is a bijection.
2

For a sparse abba-free partition A of [m], m ≥ 3, consider the collection
A∗ of maximal subintervals I ⊂ [m] of length at least three for which the
induced partition A|I is connected.

Lemma 3. Every two distinct intervals I1, I2 ∈ A∗ are disjoint or they
overlap in one element only.

Proof. Any other position of I1 and I2 means that every inner element of
I = I1∪ I2 is inner in I1 or in I2 and thus A|I is connected. This contradicts
the maximality of I1 or of I2. 2

Thus we can order A∗ as A∗ = {I1, I2, . . . , In}< where Ii = [ui, vi] and
1 ≤ u1 < v1 ≤ u2 < v2 ≤ u3 < . . . ≤ un < vn ≤ m. We define the numbers
ai, 0 ≤ i ≤ n, by ai = ui+1 − vi − 1 where we set v0 = 0 and un+1 = m + 1.
Clearly, ai ≥ −1 and ai is the number of elements strictly between Ii and Ii+1,
where ai = −1 means that the intervals overlap. Note that every element
between Ii and Ii+1 forms a singleton block.

Now we can define the desired bijection G:

G(A) = 1a0F (A1)
′1a1+2F (A2)

′1a2+2 . . . 1an−1+2F (An)′1an .

Here A is a sparse abba-free partition of [m], m ≥ 3, 1i abbreviates the
sequence 1, 1, . . . , 1 of i 1s, ai are the above defined numbers, Ai is the
restriction of A to Ii (where A∗ = {I1, I2, . . . , In}<) normalized so that the
ground set equals [|Ii|] = [vi − ui + 1], F is the mapping of Lemma 2, and ′

means the deletion of the first and last letter. If n = 0, that is if A∗ = ∅ and
A has only singleton blocks, we set

G(A) = 1a0−2 = 1m−2.
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We prove that G is indeed a bijection between all sparse abba-free parti-
tions of [m] and all nonnegative words of length m− 2. By Lemma 2, F (Ai)
is a correct word. Hence F (Ai)

′ is a nonnegative word and the whole G(A)
is a nonnegative word. Its length is m− 2 if A∗ = ∅ and

n∑
i=1

(ai−1 + |F (Ai)| − 2) + an + 2(n− 1) =
n∑

i=1

(ai−1 + |Ii|) + an − 2 = m− 2

if A∗ 6= ∅.
We define the inverse mapping G−1. Let b = b1b2 . . . bm−2, m ≥ 3, be a

nonnegative word. There is a unique decomposition of b into intervals

b = c0d1c1d2 . . . cn−1dncn

such that c0 is the longest initial interval in which every element is dominant,
d1 is the longest interval starting immediately after c0 whose elements sum
up to zero, c1 is the longest interval starting immediately after d1 in which
every element is dominant and so on. Note that c0 and cn may be empty
but the other intervals are nonempty, ci = 1ei where ei is a nonnegative
integer, and every di is a nonnegative word. If b = c0, b consists only of 1s,
and we set G−1(b) to be the partition of [m] having just the singleton blocks
{1}, {2}, . . . , {m}. If n > 0, we define Ai = F−1(1, di,−1) where F−1 is the
inverse mapping to F of Lemma 2, defined in its proof. The word 1, di,−1 is
a correct word and Ai is a connected sparse abba-free partition of some initial
interval of positive integers. We define the numbers ai as a0 = e0, an = en,
and ai = ei − 2 for 0 < i < n. Finally, we set

G−1(b) = B0A1B1A2 . . .Bn−1AnBn

where Bi is, for ai > 0, a partition consisting of ai singleton blocks. If ai = 0,
Bi = ∅ and Ai and Ai+1 are neighbours. If ai = −1, Bi = ∅ and Ai and Ai+1

are made to overlap in the last element of Ai and the first element of Ai+1.
The two blocks which now intersect merge into one block. We have

|G−1(b)| =
n∑

i=0

ai +
n∑

i=1

|Ai| =
n∑

i=0

|ci| − 2(n− 1) +
n∑

i=1

|di|+ 2n = |b|+ 2 = m.

The operation of concatenation includes, of course, the appropriate shifting of
the ground sets of Ai and Bi so that the ground set of the resulting partition
G−1(b) equals [m].
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It is easy to check that the resulting partition G−1(b) is a sparse abba-free
partition of [m] and that for every A and b we have G−1(G(A)) = A and
G(G−1(b)) = b. Thus G and G−1 are bijections. The theorem is proved.

As an example, we list in the lexicographical order all 13 sparse abba-
free partitions of [5] in their canonical sequential form and the corresponding
nonnegative words with length 3:

G(12123) = F (1212)′, 1 = (1, 1,−1,−1)′, 1 = 1,−1, 1.

G(12131) = F (121)′, 1, F (131)′ = (1, 0,−1)′, 1, (1, 0,−1)′ = 0, 1, 0.

G(12132) = F (12132)′ = (1, 1,−1, 0,−1)′ = 1,−1, 0.

G(12134) = F (121)′, 12 = (1, 0,−1)′, 1, 1 = 0, 1, 1.

G(12312) = F (12312)′ = (1, 1, 0,−1,−1)′ = 1, 0,−1.

G(12313) = F (12313)′ = (1, 0, 1,−1,−1)′ = 0, 1,−1.

G(12314) = F (1231)′, 1 = (1, 0, 0,−1)′, 1 = 0, 0, 1.

G(12323) = 1, F (2323)′ = 1, (1, 1,−1,−1)′ = 1, 1,−1.

G(12324) = 1, F (232)′, 1 = 1, (1, 0,−1)′, 1 = 1, 0, 1.

G(12341) = F (12341)′ = (1, 0, 0, 0,−1)′ = 0, 0, 0.

G(12342) = 1, F (2342)′ = 1, (1, 0, 0,−1)′ = 1, 0, 0.

G(12343) = 12, F (343)′ = 1, 1, (1, 0,−1)′ = 1, 1, 0.

G(12345) = 13 = 1, 1, 1.
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