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Abstract. The number conn counts matchings X on {1, 2, . . . , 2n}, which are partitions into

n two-element blocks, such that the crossing graph of X is connected. Similarly, cron counts
matchings whose crossing graph has no isolated vertex. (If it has no edge, Catalan numbers arise.)

We apply generating functions techniques and prove, using a more generally applicable criterion,

that the sequences (conn) and (cron) are not P-recursive. On the other hand, we show that
the residues of conn and cron modulo any fixed power of 2 can be determined P-recursively. We

consider also the numbers scon of symmetric connected matchings. Unfortunately, their generating
function satisfies a complicated differential equation which we cannot handle.

Matchings on the vertex set [2n] = {1, 2, . . . , 2n} consist of n mutually disjoint two-element edges.
One finds easily that their number matn equals (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1). Another classical
result tells us that the number ncrn of noncrossing matchings on [2n] (no two edges {a, b} and {c, d}
satisfy a < c < b < d) is the nth Catalan number: ncrn = 1

n+1

(
2n
n

)
. How many matchings are there

if their crossings are restricted in a more complicated way? In the present article we investigate
numbers of such matchings, namely the numbers conn of connected matchings in which each two
edges can be connected by a chain of consecutivly crossing edges, the numbers scon of symmetric
connected matchings which, in addition, are mirror symmetric, and the numbers cron of crossing
matchings in which each edge crosses another edge. We concentrate only on P-recursiveness of these
numbers. Also, we touch upon some modular properties. The sequences (matn) and (ncrn) are
trivially P-recursive but, as we prove, the sequences (conn) and (cron) are not.

First we remind the definition of P-recursiveness and D-finiteness. Then we introduce DA-
finiteness and review some facts on power series. In Theorem 1 we prove that if a sequence of
numbers has an OGF (ordinary generating function) that has zero convergence radius and satisfies
a certain differential equation, then the sequence is far from being P-recursive. In Theorem 2 we
apply this criterion to the sequences (conn) and (cron). In Theorem 3 a more complicated differential
equation is derived for the OGF of the sequence (scon). Finally, in Theorem 4 we show that modulo
2l the sequences (conn) and (cron) coincide with certain P-recursive, in fact algebraic, sequences.

Symbols Z and N denote the sets of integers {. . . ,−1, 0, 1, . . .} and {1, 2, . . .}. C denotes the set
of complex numbers. A sequence of complex numbers (an)n≥0 is called P-recursive if there exist
polynomials P0, P1, . . . , Pj ∈ C[x], P0 6= 0, such that

P0(n)an + P1(n)an−1 + · · ·+ Pj(n)an−j = 0

holds for each integer n, n ≥ j. Many combinatorial counting sequences are P-recursive, for instance
(matn), (ncrn), Schröder numbers, and numbers of labelled k-regular graphs (Gessel [7]). But some
are not, for instance Bell numbers and numbers of integer partitions.

We write C[[x1, . . . , xk]] for the ring of power series with complex coefficients and variables
x1, . . . , xk. A power series F ∈ C[[x]] is D-finite if F solves the linear differential equation

R0F
(m) +R1F

(m−1) + · · ·+Rm−1F
′ +RmF +Rm+1 = 0
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with polynomial coefficients Ri ∈ C[x], R0 6= 0. A sequence is P-recursive if and only if its OGF
is D-finite. For the (easy) proof of this equivalence and further information and references on P-
recursiveness and D-finiteness we refer the reader to Stanley [22, chapter 6]. At first these concepts
were systematicly investigated in Stanley [21].

The ring C[[x1, . . . , xk]] is contained in the ring of Laurent series C((x1, . . . , xk)) whose elements
are formal sums

F =
∑

i1,...,ik∈Z
ai1,...,ik

xi1
1 . . . xik

k

with ai1,...,ik
∈ C and such that, for some p ∈ N (depending on F ), (x1 . . . xk)pF ∈ C[[x1, . . . , xk]].

For k = 1 the ring C((x1, . . . , xk)) is a field (but not for k > 1). We use notation

[xi1
1 . . . xik

k ]F = ai1,...,ik
and

ordxj
(F ) = min{ij ∈ Z : ai1,...,ik

6= 0 for some i1, . . . , ij−1, ij+1, . . . , ik ∈ Z}.
By the definition, for every j and nonzero F ∈ C((x1, . . . , xk)) we have ordxj

(F ) > −∞. We set
ordxj

(0) = ∞.
A power series F ∈ C[[x1, . . . , xk]] is analytic if there is a real constant δ > 0 such that the

series F (α1, . . . , αk) absolutely converges for all αi ∈ C, |αi| < δ. Analytic power series form a ring
denoted C{x1, . . . , xk}. This ring is closed also on division (if defined) and derivatives. For more
information see Fischer [5] or Ruiz [19]. A Laurent series F ∈ C((x1, . . . , xk)) is analytic if, for some
p ∈ N, (x1 . . . xk)pF ∈ C{x1, . . . , xk}. Analytic Laurent series form again a ring closed on division
and derivatives. We say that F ∈ C[[x]] is DA-finite if F solves the linear differential equation

R0F
(m) +R1F

(m−1) + · · ·+Rm−1F
′ +RmF +Rm+1 = 0

with analytic coefficients Ri ∈ C{x}, R0 6= 0.

Fact. If G ∈ C[[x, y]], G(0, 0) = 0, is nonzero and analytic, then every solution F ∈ C[[x]], F (0) = 0,
of the equation

G(x, F ) = 0
is analytic.

It is easy to see that the condition G(0, 0) = 0, F (0) = 0 can be replaced by “the substitution of
F (x) for y in G(x, y) makes formal sense”. Also, C[[x, y]] can be replaced by C((x, y)). With the
condition ∂G

∂y (0, 0) 6= 0 this is the implicit function theorem for analytic functions (power series) and
F is unique; see, for example, Hille [8] or Markushevich [14]. Without it one proceeds as follows. By
the analytic version of the Weierstrass preparation theorem, see [5, p. 107] or [19, p. 14], G(x, F ) = 0
is equivalent to a polynomial equation P (x, F ) = 0 where P ∈ C{x}[y] is monic. By the standard
results of algebraic geometry on local parametrizations (Puiseux series), all solutions of P (x, F ) = 0
are again analytic. A very readable account on these matters is Fischer [5, chapters 6 and 7].

Theorem 1. Let F ∈ C[[x]] satisfy the differential equation

(1) F ′ = G(x, F )

where G ∈ C((x, y)). Suppose that (i) F is not analytic, (ii) G is analytic, and (iii) ordy(G) < 0.
Then F is not DA-finite, the less D-finite.

Proof. Differentiating repeatedly (1) and substituting G(x, F ) for F ′, we express the derivatives of
F as

F (k) = Gk(x, F ) where Gk+1(x, y) =
∂Gk

∂x
+G · ∂Gk

∂y
(and G1 = G).

By condition (iii), p = ordy(G) < 0. Using condition (ii) and induction on k, we see that each
Gk ∈ C((x, y)) is analytic and

ordy(Gk) = k(p− 1) + 1 < 0.
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We suppose for the contradiction that F is DA-finite and satisfies an equation

R0F
(m) +R1F

(m−1) + · · ·+RmF +Rm+1 = 0

with Ri ∈ C{x}, R0 6= 0. We may assume that m > 0 because m = 0 implies F = −R1/R0 ∈ C{x}
and this contradicts condition (i). Replacing each F (k) by Gk(x, F ), we obtain equation

H(x, F ) = 0 where H(x, y) = R0(x)Gm(x, y) + · · ·+Rm(x)y +Rm+1(x).

The analyticity of the Gks and Ris implies the analyticity of H. It is clear that H 6= 0 because
ordy(H) = ordy(R0Gm) = m(p−1)+1 < 0. Thus, by the above Fact, F ∈ C{x}, in the contradiction
with condition (i). �

We have introduced the class of DA-finite power series primarily to put our arguments in a natural
setting — why to restrict to polynomials when the key lies in the analytic×nonanalytic dichotomy —
but one could investigate the closure properties of the class as well. Clearly, DA-finite power series
are closed to addition and multiplication, the proof being the same as for D-finite power series, see
[22, chapter 6]. D-finite power series are closed also to the Hadamard product that is defined as the
coefficientwise multiplication. Are DA-finite power series closed to the Hadamard product?

To the “non-Catalan” aspect of matching enumeration (many crossings, nonanalytic OGFs) are
relevant articles (listed in chronological order) by Touchard [28, 29, 30], Kleitman [12], Hsieh [9],
Riordan [18], Stein [23], Stein and Everett [24], Nijenhuis and Wilf [15], Read [17], Ismail, Stanton
and Viennot [10], Penaud [16], Li and Sun [13], Cori and Marcus [4], Flajolet and Noy [6], Stoimenow
[27], Broadhurst and Kreimer [3], Sawada [20], and Klazar [11]. We attempted to make this list of
references complete or nearly complete.

Matchings are also called complete pairings or linear(ized) chord diagrams. In about 1993, their
close relatives (circular) chord diagrams started to play, together with chord diagram algebras, an
important role in studying knot invariants, especially Vassiliev knot invariants. By now more than
30 articles applying chord diagrams in knot theory have been published, of which we mention only
Bar-Natan [1] and Stoimenow [25, 26]. This lower bound could be probably improved because Bar-
Natan’s bibliography on Vassiliev invariants, see [2], contains more than 400 items. Chord diagrams
are orbits of the 2n-element cyclic group acting on matchings by cyclically reordering vertices in [2n].
They appear in knot theory as follows. Suppose K is a singular knot, which is a smooth embedding
of the circle S1 in R3 with n transversal self-intersections (double points). Fix an orientation of S1

and associate with K a chord diagram X: mark on S1 the 2n preimages of the self-intersections of
K and connect by chord each two of them that correspond to one self-intersection. In fact, in these
applications only those chord diagrams are important in which each chord crosses another chord (cf.
cron). We refer to [1] for further information.

Recall that conn and cron are numbers of connected and crossing matchings with n edges. We
can rephrase their definition in terms of crossing graphs. For a matching X, this is a graph G(X) =
(X,E) with the vertex set X and the edge set E = {{A,B} : A,B ∈ X cross }. Connected
(crossing) matchings are matchings X for which G(X) is connected (has no isolated vertex).

Theorem 2. The power series

E =
∑
n≥1

connx
n = x+ x2 + 4x3 + 27x4 + · · ·

and
F =

∑
n≥0

cronx
n = 1 + x2 + 4x3 + 31x4 + · · ·

satisfy the differential equations

(2) E′ =
E2 + E − x

2xE
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and

(3) F ′ =
−x2F 3 + F − 1
2x3F 2 + 2x2F

.

By Theorem 1, E and F are not DA-finite. In particular, the sequences (conn) and (cron) are not
P-recursive.

Proof. By the spaces in a matching X on [2n] we mean the 2n − 1 inner spaces between the
consecutive elements of [2n] and the two spaces before and after [2n]. Alltogether X has 2n + 1
spaces. Let X be a connected matching on [2n] with the first edge {1, a} ∈ X. Deleting it from X,
the graph G(X) falls apart into k components to which correspond nonempty connected matchings
X1, . . . , Xk. Xi has ni > 0 edges and X1, . . . , Xk are nested , which means that Xi+1 lies in one of
the 2ni − 1 inner spaces of Xi. Also, a lies in one of the 2nk − 1 inner spaces of Xk. There are no
other restrictions on the Xis and a. In terms of E,

E = x
∑
k≥0

(2xE′ − E)k.

Summing the geometric series and solving the result for E′, we obtain equation (2).
Let X be a generic crossing matching on [2n]. We shall construct X by considering the edges

which cross only the first edge {1, a} ∈ X. Suppose there are k such edges: {bi, ci} ∈ X, 1 < b1 <
b2 < · · · < bk < a < ck < · · · < c2 < c1 ≤ 2n. The remaining edges of X lie either inside or
outside each {bi, ci} and the ni ≥ 0 edges sandwiched between {bi−1, ci−1} and {bi, ci} form, for
i = 1, 2, . . . , k + 1, a (possibly empty) crossing matching Xi. We distinguish the cases k > 0 and
k = 0.

Let k > 0. X arises by choosing a crossing matching X1 with n1 ≥ 0 edges, inserting {b1, c1} in
one of the 2n1 + 1 spaces of X1, inserting a crossing matching X2 inside {b1, c1}, inserting {b2, c2}
in one of the 2n2 + 1 spaces of X2 (inside {b1, c1}), inserting a crossing matching X3 inside {b2, c2},
and so on. In the end Xk+1 is inserted inside {bk, ck}, 1 is put in the beginning, and a is inserted in
one of the 2nk+1 + 1 spaces of Xk+1 (and inside {bk, ck}, of course).

If k = 0, just {1, a} is added to X1. However, now the difference is that a cannot be inserted
in each of the 2n1 + 1 spaces of X1. Since {1, a} must cross an edge, allowed are only spaces not
separating X1 into two crossing matchings.

In terms of F ,
F = 1 +

∑
k≥0

(x(2xF ′ + F ))k+1 − xF 2.

Term xF 2 subtracts the number of spaces forbidden for a if k = 0. Summing the geometric series
and solving the result for F ′, we obtain equation (3).

The conditions of Theorem 1 are easy to check. The right hand sides G of (2) and (3) are
(2xy)−1(−x+ y+ y2) and (2x2y)−1(−1 + y− x2y3)(1 + xy)−1, respectively. Thus both G belong to
C(x, y)∩C((x, y)) (are rational Laurent series) and for both ordy(G) = −1. Conditions (ii) and (iii)
are satisfied. Clearly, conn, cron ≥ (n − 1)! for every n ∈ N; just intersect one edge by the others.
Condition (i) is satisfied too and Theorem 1 applies. �

Writing (2) as E = E · (2xE′ − E) + x, we obtain the recurrence

conn =
n−1∑
k=1

(2k − 1) · conk · conn−k

= (n− 1)
n−1∑
k=1

conk · conn−k (n ≥ 2 and con1 = 1)

found in [23]. It was derived first by Stein and Riordan and then a simple bijective proof was
provided in [15].
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We give an alternative derivation for (2). Every matching X with n > 0 edges decomposes
uniquely into a connected matching Y (the component of G(X) containing the vertex corresponding
to the first edge of X) with m > 0 edges and 2m matchings Zi, i = 1 . . . 2m, which have li edges
each and are inserted in the 2m + 1 spaces of Y except the first one. Each Zi may be empty,
no Zi lies before Y , and m + l1 + · · · + l2m = n. Thus, if E is the above OGF of (conn) and
M =

∑
n≥0 matnx

n = 1 + x+ 3x2 + 15x3 + · · · ,

(4) E(xM2) = M − 1.

Formula matn = (2n− 1)!! implies

(5) M ′ =
(1− x)M − 1

2x2
.

Here ordy(G) is nonnegative, of course.
We write E0 for E(xM2) and E1 for E′(xM2). Thus (4) reads as M = E0 + 1. Differentiating

(4), solving the result for M ′, and replacing M by E0 + 1, we obtain the equation M ′ = E1(E0 +
1)2/(1− 2xE1(E0 + 1)). Substituting in (5) for M ′ the latter expression and for M the expression
E0 +1, we obtain a polynomial equation P (x,E0, E1) = 0. Rewriting it as Q(x(E0 +1)2, E0, E1) = 0
and substituting for x the power series inverse of xM2 = x(E0 + 1)2, we get a polynomial equation
Q(x,E(x), E(x)′) = 0. It turns out to be (2).

This method may look complicated but its advantage is that it applies without much change to
the natural generalization of the problem to r-matchings. These are partitions, for a fixed r ≥ 2, of
{1, 2, . . . , rn} into r-element sets. Generalization of (non)crossing for r > 2 is easy (viz. noncrossing
partitions). The formula for the number matr

n of all r-matchings and the analogue of (5) are
straightforward. So is the analogue of (4). A differential equation for the OGF Er of numbers conr

n

of connected r-matchings then can be derived by the method we have just indicated for r = 2. The
equation involves derivatives of Er to the order r − 1. The more combinatorial argument from the
first part of the proof of Theorem 2 is still possible but for r > 2 becomes quite cumbersome.

From (4) also a relation between the numbers matn and conn can be derived that, though stan-
dard, seems not to appear in the literature. Namely, writing M0 for xM2, (4) can be restated as
x(1+E(M0))2 = M0 and the Lagrange inversion formula gives [xn]M0(x) = n−1[xn−1](1+E(x))2n.
In terms of the coefficients,

(n+ 1)
n∑

i=0

(2i− 1)!! · (2n− 2i− 1)!! =
∑

cona1 · cona2 · . . . · cona2n+2 .

Here (−1)!! = con0 = 1 and the latter summation goes over all 2n + 2-tuples such that ai ≥ 0 and
a1 + a2 + · · ·+ a2n+2 = n.

Restating equation (3) as F · (1 + xF ) · (1 − xF − 2x2F ′) = 1 leads, after rearrangements and
shifts of the indices, to the recurrence

cron =
∑

(2m+ 1) · crok · crol · crom (n ≥ 1 and cro−1 = cro0 = 1)

where we sum over −1 ≤ k, l,m ≤ n − 1 & k 6= −1 & k + l + m = n − 2. This is a more explicit
relation than the formulas in Stoimenow [27, p. 217] where cron is denoted ψ̄n. The first few values
of these numbers are:

(conn)n≥2 = (1, 4, 27, 248, 2830, 38232, 593859, 10401712, . . .)
(cron)n≥2 = (1, 4, 31, 288, 3272, 43580, 666143, 11491696, . . .).

The matchings X on [2n] such that the graph G(X) is connected and X does not change when the
linear order of [2n] is reversed were investigated first in [23]. Stein calls them irreducible symmetric
diagrams and denotes their number, scon in our notation, by σ2n.
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Theorem 3. The power series

F =
∑
n≥1

sconx
n = x+ x2 + 2x3 + 7x4 + · · ·

is related to the power series E of Theorem 2 by

(6) F 2 − (1 + x)F + E(x2) · (2xF ′ − F + 1) + x = 0

and satisfies the second order differential equation

(7) F ′′A0 + (F ′)3A1 + (F ′)2A2 + F ′A3 +A4 = 0

where Ai ∈ C[x, F ], namely A0 = −2x2F 4+(4x2+4x3)F 3−(2x2+8x3+2x4)F 2+(4x3+4x4)F−2x4,
A1 = 8x5, A2 = 4x2F 3 − (2x2 + 6x3)F 2 − (2x2 − 4x3 + 10x4)F + 2x3 + 10x4, A3 = −5xF 4 + (7x+
7x2)F 3 + (x − 11x2 + 4x3)F 2 + (−3x + x2 − 8x3)F − x + 3x2 + 4x3, and A4 = F 5 − (2 + x)F 4 +
(2x− x2)F 3 + (2 + 3x2)F 2 − (1 + 2x+ 3x2)F + x+ x2.

Proof. We say that a matching X is a chain if the connected matchings corresponding to the
components of G(X) are nested as in the proof of Theorem 2. If X is in addition symmetric, we say
that X is a symmetric chain. Now let X be a generic symmetric connected matching on [2n] with
the first edge α = {1, a} and the last edge β = {2n− a+ 1, 2n}. Note that for n > 1 always α 6= β.
We delete α and β from X and see what happens. After a while we see (since X\{α, β} must be
symmetric) that the connected matchings corresponding to the components of G(X)\{α, β} have
the following structure.

• On the top there is a (possibly empty) symmetric chain consisting of k ≥ 0 nonempty
symmetric connected matchings X1, X2, . . . , Xk where Xk is the innermost one.

• Then there are two (possibly empty) chains Y and Z such that Y precedes Z, Y and Z lie
in a centrally symmetric pair of (not necessarily distinct) inner spaces of Xk, and Y and Z
are reflections of one another.

• The endvertex of α lies in an inner space of the innermost component of Y and the first
vertex of β lies in an inner space of the innermost component of Z, or vice versa, and these
spaces move one on the other upon reflection.

• If α and β do not cross then k ≥ 1 (for X to be connected) else k ≥ 0.
This is a complete description of the structure of X, that is to say, arranging α, β, Xi, Y , and Z
in any way meeting the above conditions, we get a symmetric connected matching. After another
while we see that the conditions translate into the OGFs F and E as

F = 2E(x2) · xF ′ ·
∑
k≥1

F k−1 + E(x2) + x.

Factor 2 accounts for the crossing and noncrossing of α and β, the first E(x2) counts Y ∪Z ∪{α, β},
the term xF ′ counts the positions of Y and Z in Xk, F k−1 and xF ′ count the nonempty top
symmetric chains, the second E(x2) accounts for the case k = 0, and the last x accounts for n = 1.
Summing the geometric series and rearranging the result, we obtain equation (6).

Equation (7) arises by solving (6) for E(x2), differentiating the result, and substituting in (2) for
E(x2) and E′(x2) the expressions obtained. �

Equating the coefficient at xn in (6) to zero leads to the formula

scon =
n−2∑
i=1

scoi · scon−i +
bn/2c∑
i=1

(2n− 4i− 1) · coni · scon−2i

where n ≥ 2, sco0 = −1, and sco1 = 1.

This recurrence is simpler and more transparent than the one in the end of [23]. We have

(scon)n≥2 = (1, 2, 7, 22, 96, 380, 1853, 8510, 44940, . . .),
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in agreement with the table in [23]. A much more complicated recurrence but only in terms of the
numbers scon themselves can be obtained from (7).

We say that a sequence (an) of integers is P-recursive modulo m ∈ N if there is a P-recursive
sequence of integers (bn) such that, for each n, an ≡ bn mod m.

Theorem 4. The sequences (conn) and (cron) are P-recursive modulo 2k for each k ∈ N.

Proof. We rewrite equation (2) for E =
∑

n≥1 connx
n as E2 + E − x = 2xEE′. Differentiating it,

replacing E′ on the left by (E2 + E − x)/(2xE), and multiplying all by 2xE, we obtain equation
2E3 + 3E2 + (1 − 4x)E − x = P2 where P2 ∈ 4Z[x,E,E′, E′′]. Continuing this way, we derive for
each k ∈ N an equation

Qk(x,E) = Pk(x,E,E′, . . . , E(k))
where Qk and Pk are integral polynomials and Pk vanishes identically modulo 2k. It is easy to check
that the polynomials [y1]Qk ∈ Z[x] and [y0]Qk ∈ Z[x] have constant terms 1 and 0, respectively.
Thus the equation

Qk(x,Ak) = 0
has a unique power series solution Ak ∈ Z[[x]] with Ak(0) = 0. It follows by the induction on n
that conn = [xn]E ≡ [xn]Ak mod 2k for each n. Ak is algebraic over Z(x) and thus D-finite ([22,
Theorem 6.4.6]). Hence the coefficients of Ak form a P-recursive sequence and (conn) is P-recursive
modulo 2k.

The proof for the sequence (cron) is similar and we omit it. �

The Lagrange inversion formula yields some explicit congruences. We give one example. Reducing
(3) modulo 2 we obtain equation x2F 3−F +1 = 0. With G = xF it becomes G = x(1−G2)−1 and
the Lagrange inversion shows that cro2n+1 is always even and

cro2n ≡ 1
2n+ 1

(
3n
n

)
≡

(
3n
n

)
mod 2.

The well known result saying that the highest power of a prime p dividing n! has the exponent
bn/pc + bn/p2c + bn/p3c + · · · gives a more explicit criterion: cro2n is even if and only if there is
an r ∈ N such that the residue of n on division by 2r is greater than 2r+1/3. For example, cro304 is
even (set r = 5) but cro296 is odd.

Conclusion. As we have indicated, the problem of enumeration of matchings with restricted
crossings can be generalized to set partitions with r-element blocks (or even to set partitions without
any restriction on block sizes). However, then differential equations of more complicated types than
(1) arise, such as (7). Probably, these generalizations require less amateur approach with some
techniques from the differential algebra. Or maybe from the geometry, as suggested by an anonymous
referee. We conjecture that neither the sequence (scon) is P-recursive. Another research direction
is to investigate the behaviour of conn and cron with respect to other moduli. We conjecture that
these numbers are P-recursive modulo m only if m = 2k.
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