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Basic topological notions and examples

I went through the beginning of Chapter 5 “Topologie” of the lecture notes

• A. Pultr, Matematické struktury, 2005, 155 pp., available at
http://kam.mff.cuni.cz/~pultr/

up to definition 3.1 of continuous maps, pp. 95–101. I left as an exercise the
following (solution is available in the lecture notes):

Exercise. Show that introducing topology via neighborhoods and via open sets
is equivalent in the sense that if we define

(X, {U(x) | x ∈ X}) ; (X, τ) ; (X, {V(x) | x ∈ X})

then V(x) = U(x) for every x ∈ X, and if we define

(X, τ) ; (X, {U(x) | x ∈ X}) ; (X,σ)

then σ = τ .

Also, I mentioned one thing that is not in the lecture notes, characterization of
set systems that are bases of topologies. Every set system on X is a subbase of
a topology on X but this is not true for bases.

Exercise. Suppose X is a set and B ⊆ exp(X) is a set system on X. Prove
that B is a base of a topology on X (namely one whose open sets are exactly all
unions of elements of B) if and only if

1.
⋃
B = X and
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2. for every a ∈ U ∩ V , U, V ∈ B, there is a W ∈ B with a ∈W ⊆ U ∩ V .

In other words, we can express X and every intersection of two members of B
as a union of elements of B.

Thus in example 2.8 “Intervalová topologie” it is not quite true that for every
linearly ordered set (X,≤) the set system B = {(a, b) | a, b ∈ X, a < b} (with
(a, b) = {x ∈ X | a < x < b}) is a base of a topology on X — this holds
if (and only if) X has neither minimum nor maximum. Or we do get base of
a topology for every linear order (X,≤) if we add to B the sets (−∞, a) and
(a,+∞), a ∈ X, with obvious definition, this is called the order topology on X.

Kleene’s first recursion theorem

This is an application of Bourbaki’s fixed point theorem, see pp. 41/42 of the
lecture notes. I naturally mentioned Kleene’s second recursion theorem, more
precisely its special case called Rogers’ fixed point theorem. Suppose ϕe, e ∈ N, is
an admissible enumeration of all partial computable (recursive) functions, i.e. an
effective enumeration of all computer programs (Turing machines) that compute
functions from Nk to N, which may not halt on some inputs and thus the domains
of definition are subsets of Nk. Clearly, there is a tremendous redundancy in
the list ϕe, e ∈ N, in the sense that a particular partial computable function
is computed by ϕe for many different indices e. Is it true that ϕn = ϕn+1 (as
partial functions) for some n ∈ N? Yes, it is and much more holds.

Theorem 1 (Rogers’ fixed point theorem) For every total (i.e. everywhere
defined) computable function f : N→ N there is an n ∈ N such that

ϕn = ϕf(n) (as partial functions, not as programs, of course) .

Exercise. Strengthen this to: for every total computable function f : N → N
and every m ∈ N there is an n ∈ N such that

ϕn = ϕf(n) and n > m .

See for example the Wikipedia entry for the proof of the theorem. For more
information on Kleene’s second recursion theorem see the article

• Y. N. Moschovakis, Kleene’s amazing second recursion theorem. Extended
abstract, 16 pp., available on the web,

or the full version Y. N. Moschovakis, Kleene’s amazing second recursion theo-
rem, Bull. Symbolic Logic 16 (2010), 189–239, which is not so easily available.
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