Matematické struktury lecture and tutorial 7 on April 3, 2017: basic topological notions and examples and Kleene's first recursion theorem

Martin Klazar*

April 3, 2017

Basic topological notions and examples

I went through the beginning of Chapter 5 "Topologie" of the lecture notes

• A. Pultr, *Matematické struktury*, 2005, 155 pp., available at http://kam.mff.cuni.cz/~pultr/

up to definition 3.1 of continuous maps, pp. 95–101. I left as an exercise the following (solution is available in the lecture notes):

Exercise. Show that introducing topology via neighborhoods and via open sets is equivalent in the sense that if we define

$$(X, \{\mathcal{U}(x) \mid x \in X\}) \rightsquigarrow (X, \tau) \rightsquigarrow (X, \{\mathcal{V}(x) \mid x \in X\})$$

then $\mathcal{V}(x) = \mathcal{U}(x)$ for every $x \in X$, and if we define

$$(X, \tau) \rightsquigarrow (X, \{\mathcal{U}(x) \mid x \in X\}) \rightsquigarrow (X, \sigma)$$

then $\sigma = \tau$.

Also, I mentioned one thing that is not in the lecture notes, characterization of set systems that are bases of topologies. Every set system on X is a subbase of a topology on X but this is not true for bases.

Exercise. Suppose X is a set and $\mathcal{B} \subseteq \exp(X)$ is a set system on X. Prove that \mathcal{B} is a base of a topology on X (namely one whose open sets are exactly all unions of elements of \mathcal{B}) if and only if

1. $\bigcup \mathcal{B} = X$ and

^{*}klazar@kam.mff.cuni.cz

2. for every $a \in U \cap V$, $U, V \in \mathcal{B}$, there is a $W \in \mathcal{B}$ with $a \in W \subseteq U \cap V$.

In other words, we can express X and every intersection of two members of \mathcal{B} as a union of elements of \mathcal{B} .

Thus in example 2.8 "Intervalová topologie" it is not quite true that for every linearly ordered set (X, \leq) the set system $\mathcal{B} = \{(a, b) \mid a, b \in X, a < b\}$ (with $(a, b) = \{x \in X \mid a < x < b\}$) is a base of a topology on X — this holds if (and only if) X has neither minimum nor maximum. Or we do get base of a topology for every linear order (X, \leq) if we add to \mathcal{B} the sets $(-\infty, a)$ and $(a, +\infty), a \in X$, with obvious definition, this is called the *order topology on* X.

Kleene's first recursion theorem

This is an application of Bourbaki's fixed point theorem, see pp. 41/42 of the lecture notes. I naturally mentioned *Kleene's second recursion theorem*, more precisely its special case called *Rogers' fixed point theorem*. Suppose $\varphi_e, e \in \mathbb{N}$, is an admissible enumeration of all partial computable (recursive) functions, i.e. an effective enumeration of all computer programs (Turing machines) that compute functions from \mathbb{N}^k to \mathbb{N} , which may not halt on some inputs and thus the domains of definition are subsets of \mathbb{N}^k . Clearly, there is a tremendous redundancy in the list $\varphi_e, e \in \mathbb{N}$, in the sense that a particular partial computable function is computed by φ_e for many different indices e. Is it true that $\varphi_n = \varphi_{n+1}$ (as partial functions) for some $n \in \mathbb{N}$? Yes, it is and much more holds.

Theorem 1 (Rogers' fixed point theorem) For every total (i.e. everywhere defined) computable function $f : \mathbb{N} \to \mathbb{N}$ there is an $n \in \mathbb{N}$ such that

 $\varphi_n = \varphi_{f(n)}$ (as partial functions, not as programs, of course).

Exercise. Strengthen this to: for every total computable function $f : \mathbb{N} \to \mathbb{N}$ and every $m \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that

$$\varphi_n = \varphi_{f(n)}$$
 and $n > m$.

See for example the Wikipedia entry for the proof of the theorem. For more information on Kleene's second recursion theorem see the article

• Y. N. Moschovakis, Kleene's amazing second recursion theorem. Extended abstract, 16 pp., available on the web,

or the full version Y. N. Moschovakis, Kleene's amazing second recursion theorem, *Bull. Symbolic Logic* **16** (2010), 189–239, which is not so easily available.