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It is worth to note that in Theorem 2 in the last lecture the set X ⊂ R
of exceptions where oracle errs is not only at most countable but also (unlike,
say, Q) nowhere dense — for every nonempty open interval (a, b) ⊂ R there is
a nonempty open interval (c, d) ⊂ (a, b) such that (c, d) ∩X = ∅. This was in
fact proven by the proof because every well-ordered subset Y of R is nowhere
dense: if (a, b) ∩ Y = ∅ we take (c, d) = (a, b), and else if y ∈ (a, b) ∩ Y we take
(c, d) = (y, z) where z is the successor of y in Y if it exists and lies in (a, b) and
z = b else.

Theorem 2 is due to Hardin and Taylor in

• Ch. S. Hardin and A. D. Taylor, A peculiar connection between the axiom
of choice and predicting the future, Amer. Math. Monthly 115 (2008),
91–96.

They wrote on the topic a book

• Ch. S. Hardin and A. D. Taylor, The mathematics of coordinated inference.
A study of generalized hat problems, Developments in Mathematics, 33.
Springer, Cham, 2013

(a preliminary version is available on-line). What is a “hat problem”? We
borrow one from the book introduction:

Two prisoners are brought to the prison director, are seated and
each is put red or green hat on his head. No prisoner can see his
hat but can see the hat of his prison-mate. They have to guess
simultaneously what is the color of the hat they have on head. They
will be released if and only if at least one their two guesses is correct.
During the session they of course cannot communicate but they can
meet before and agree on a common strategy. Is there a strategy
ensuring that the prisoners will be always released?
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Exercise. Solve the previous hat problem.
Solution: neo esassum atth het wot rscolo rea alequ nda het eroth atth eyth
erdiff (to decode, shift each word cyclicly two letters back).

Could you prove Proposition 3 from the last lecture that one can break the
unit circle C ⊂ R2 into countably many pieces in such a way that they can be
reassembled into two disjoint copies C ∪D of C?

Proof. We prove Proposition 3. Using the notation from the proof of Theorem
1 we enumerate R as R = {α1, α2, . . . }, for n ∈ N set Xn = ϕαn

(X) and denote
by ψ the translation by vector (3, 0) that moves C to D and by ϕm,n the rotation
of C around the origin that moves Xm to Xn. Then we have partitions

C =

∞⋃
n=1

ϕ2n,n(X2n) and D =

∞⋃
n=1

ψ(ϕ2n−1,n(X2n−1)) .

Hence the decomposition works with the pieces An = Xn and the rigid motions
(isometries) ψn = ϕn,n/2 for even n and ψn = ψ ◦ ϕn,(n+1)/2 for odd n. 2

The idea behind the decomposition is simple: if N = E ∪ O is a partition into
even numbers E and odd numbers O, then E/2 = (O + 1)/2 = N.

Could one have Proposition 3 with only finitely many pieces? S. Banach
proved that in one or two dimensions this is impossible (finitely equidecompos-
able and measurable subsets of R and R2 must have equal measures). But in
three dimensions it turns out to be possible! We have the famous Banach–Tarski
paradox.

Theorem 1 (Banach and Tarski, 1924) Let

B1 = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1} and

B2 = {(x, y, z) ∈ R3 | (x− 3)2 + y2 + z2 ≤ 1}

be two (disjoint) copies of the closed unit ball in three dimensions. Then there
exist five sets X1, . . . , X5 ⊂ R3 and five isometries (translations combined with
rotations around some axes) ψ1, . . . , ψ5 : R3 → R3 such that

B1 =

5⋃
i=1

Xi and B1 ∪B2 =

5⋃
i=1

ψi(Xi)

are partitions (the sets in the two unions are pairwise disjoint).

Their definition of the sets Xi uses the axiom of choice and non-measurable sets
appear. What is the difference between R2 and R3 that allows such paradoxical
decomposition in the latter space but not in the former? The group of isometries
is commutative for R2 but not for R3. In the plane, in any combination of
translations and rotations around some points order does not matter: the result
is the same if we perform them in any order. Not so in three dimensions! Lay a
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book in front of you on the table and rotate it by π/4 (a quarter turn counter-
clockwise) first around the vertical axis and then around the horizontal axis
going away from you, and then do the same (with the book in the identical
starting position, of course) in the opposite order. The two actions bring the
book to two different positions. And exactly this non-commutativity of motions
in R3 lies behind the possibility of the B.–T. paradox. For details how to prove
Theorem 1 (and many other paradoxes and jokes) google the very nice and
thorough article

• L. Pick, Hrášek a sluńıčko, PMFA 55 č. 3 (2010), 190–214.

Exercise. Prove the following proposition.

Proposition 2 (Banach–Tarski for babies) Let A,B ⊂ Rd be two bounded
sets with nonempty interiors (i.e. each contains a ball with positive radius)
in the Euclidean space of any dimension. Then there exist finitely many sets
X1, X2, . . . , Xn ⊂ Rd and translations ψ1, ψ2, . . . , ψn : Rd → Rd such that

A =

n⋃
i=1

Xi and B =

n⋃
i=1

ψi(Xi)

— the sets in the two unions now may intersect.

Exercise. Prove that this is not possible if A is bounded but B is unbounded.
Investigate other examples of impossibility of such equicovering of A and B when
the assumptions of boundedness and nonemptyness of interiors are dropped.

It is well known that circle-squaring is impossible: no construction using
compass and ruler exists that could transform a square in R2 into a circle with
the same area. In 1925, A. Tarski asked the following question.

Problem 3 (Tarski’s circle-squaring problem) Suppose that S and D are
a square and a disc (circle) in the plane with equal areas. Do there exist finitely
many sets X1, X2, . . . , Xn ⊂ R2 and isometries ψ1, ψ2, . . . , ψn : R2 → R2 such
that

S =

n⋃
i=1

Xi and D =

n⋃
i=1

ψi(Xi)

are partitions?

In other words, is there a puzzle with finitely many plane pieces Xi that can be
in one way assembled in a square S and in another way in a circle D? Since S
and D have equal area, the earlier mentioned result of Banach does not preclude
possibility of such “circle-squaring”.

In 1963, Dubins, Hirsch and Karush proved in

• L. Dubins, M. W. Hirsch and J. Karush, Scissor congruence, Israel J.
Math. 1 (1963), 239–247
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that Tarski’s circle-squaring is impossible with pieces Xi that are topological
discs. We say that A ⊂ R2 is a topological disc if A = F (D) where F : R2 → R2

is a bijection such that F and F−1 are continuous maps and

D = {(x, y) ∈ R2 | x2 + y2 ≤ 1}

is the closed unit disc in the plane. The result of Dubins, Hirsch and Karush
is actually a little stronger than just negating Tarski’s circle-squaring: there
do not exist two partitions as above even if we require only the interiors of Xi

and ψi(Xi) be disjoint and their boundaries may intersect. We allow it also in
the next two exercises — technical term for this kind of equidecomposability is
“scissor congruence”.

Exercise. Show that Tarski’s circle-squaring is impossible with pieces Xi that
are (possibly non-convex) polygons.

Too trivial? Then try the following harder problem.

Exercise. Show that Tarski’s circle-squaring is impossible with pieces Xi that
are topological discs whose boundaries are closed piecewise smooth curves (this
means that continuously varying tangent line exists at every point of each bound-
ary, possibly with the exception of finitely many points).
For solution see the beginning of the article of Dubins, Hirsch and Karush.

It was a big surprise when in 1990 Hungarian mathematician M. Laczkovich
showed in

• M. Laczkovich, Equidecomposability and discrepancy; a solution of Tarski’s
circle-squaring problem, J. Reine Angew. Math. 404 (1990), 77–117

that Tarski’s circle-squaring in fact is possible. The number of pieces, which
are defined by AC, is astronomical but all ψ1, . . . , ψn are just translations.
Laczkovich’s “puzzle” that finitely equidecomposes circle and square of the same
area by translations was recently much improved in

•  L. Grabowski, A. Máthé and O. Pikhurko, Measurable circle squaring,
ArXiv:1501.06122, 40 pages, 2015 (4th version in 2016) and

• A. S. Marks and S. T. Unger, Borel Circle Squaring, ArXiv:1612.05833, 20
pages, 2016.

The former preprint shows that Tarski’s circle-squaring can be done with mea-
surable pieces and the latter that even Borel pieces suffice (again, all ψi are
translations). Borel sets in Rd is the smallest family of subsets that contains all
open balls and is closed under countable unions and complements to Rd.
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