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Chapter 1

Diophantine approximation

This discipline of number theory investigates to what extent real numbers can
be approximated by fractions. We prove Dirichlet’s theorem which says that
every irrational number can be approximated by infinitely many fractions p/q
with precision better than q−2. A nice application is that every prime number
of the form 4n + 1 is a sum of two squares. We introduce Farey fractions
and prove by means of them a result of Hurwitz that gives a best possible
strengthening of Dirichlet’s theorem. An important tool in approximation
(of not only numbers) is continued fractions. We develop some of their basic
properties in section 1.3. We present the argument of Liouville producing
transcendental (i.e., non-algebraic) numbers and give Hilbert’s proof of the
transcendence of Euler’s number e.

1.1 Dirichlet’s theorem

Let us review some notation. N = {1, 2, . . .} are natural numbers, N0 =
{0, 1, 2, . . .}, Z = {. . . ,−2,−1, 0, 1, 2, . . .} are integers, Q = {a/b : a ∈
Z, b ∈ N} are rational numbers (fractions), R are real numbers, and C =
{a + bi : a, b ∈ R} are complex numbers (i =

√
−1). For α ∈ R, the integer

part of α and the fractional part of α are, respectively,

bαc = max{m ∈ Z : m ≤ α} and {α} = α− bαc ∈ [0, 1).

Another notation is dαe = min{m ∈ Z : m ≥ α} and ‖α‖ = min({α}, 1 −
{α}) (distance to the nearest integer).
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The following fundamental theorem in diophantine approximation is due
to Peter Dirichlet (1805–1859).

Theorem (Dirichlet, 1842).
1. For every α ∈ R and Q ∈ N, Q ≥ 2, there exist numbers p, q ∈ Z such

that 1 ≤ q < Q and ∣∣∣∣∣α− p

q

∣∣∣∣∣ ≤ 1

qQ
.

2. For every irrational α ∈ R the inequality∣∣∣∣∣α− p

q

∣∣∣∣∣ < 1

q2

has infinitely many rational solutions p/q.

Proof. 1. We split [0, 1] in Q subintervals [(i − 1)/Q, i/Q], i = 1, 2, . . . , Q,
each with length 1/Q, and consider Q + 1 numbers 0, 1, {α}, {2α}, . . . {(Q−
1)α}. They lie in [0, 1] and each of them has form sα − r for some r, s ∈ Z
with 0 ≤ s < Q (0 = 0α − 0, 1 = 0α − (−1), and {iα} = iα − biαc for
i = 1, 2, . . . , Q − 1). By the pigeonhole principle, two numbers must fall in
the same subinterval. Note that these two numbers cannot be 0 and 1. Hence

|(s1α− r1)− (s2α− r2)| ≤
1

Q

for some ri, si ∈ Z with 0 ≤ s2 < s1 < Q. Setting q = s1−s2 and p = r1−r2,
we get the desired fraction p/q because 1 ≤ q < Q and

|qα− p| = |(s1 − s2)α− (r1 − r2)| = |(s1α− r1)− (s2α− r2)| ≤
1

Q
.

2. Suppose we have already solutions p1/q1, . . . , pr/qr. We select Q ∈ N
so big that

1

Q
< ∆ = min

i=1...r

∣∣∣∣∣α− pi

qi

∣∣∣∣∣ .
(If we have no solution yet, we select Q arbitrarily. Since α is irrational,
certainly ∆ > 0.) By part 1 there is a fraction p/q ∈ Q such that 1 ≤ q < Q
and ∣∣∣∣∣α− p

q

∣∣∣∣∣ ≤ 1

qQ
<

1

q2
.
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Also, 1/qQ ≤ 1/Q < ∆. Thus p/q 6= pi/qi for every i = 1, 2, . . . , r and p/q is
a new solution. This way we obtain infinitely many solutions. 2

As an application of Dirichlet’s theorem we prove a nice result that was
stated first by Pierre de Fermat (1601–1665) and proved later by Leonhard
Euler (1707–1783).

Theorem (Euler, 1747). Every prime number p of the form 4n + 1 is a
sum of two squares, p = a2 + b2 for some a, b ∈ N.

For example, we have representations 5 = 22 +12, 13 = 32 +22, 17 = 42 +12,
29 = 52 + 22, 37 = 62 + 12, and 41 = 52 + 42. The primes of the form 4n + 3
are never sum of two squares because squares give modulo 4 only residues 0
and 1. We need a lemma which belongs to the theory of quadratic residues
(see chapter 5).

Lemma. For every prime p of the form 4n + 1 there is a c ∈ N such that
c2 ≡ −1 (mod p).

Proof of the theorem. For a given prime p = 4n + 1 we take a c ∈ N
satisfying c2 ≡ −1 (mod p) and set α = c/p, Q = d√pe. By part 1 of
Dirichlet’s theorem, there are numbers a, b ∈ Z satisfying 1 ≤ b <

√
p and∣∣∣∣∣ cp − a

b

∣∣∣∣∣ < 1

b
√

p
.

Thus 0 ≤ |cb − pa| <
√

p and 0 < (cb − pa)2 + b2 < 2p. But the number
(cb − pa)2 + b2 = (c2 + 1)b2 + p(pa2 − 2cba) is divisible by p (due to the
selection of c) and therefore (cb− pa)2 + b2 = p. 2

Proof of the lemma. We consider the finite field Zp of residues modulo p
and its subsets

Mx = {x,−x, x−1,−x−1} where x ∈ Z∗
p = Zp\{0}.

They form a set partition of Z∗
p because x ∈ Mx, 0 ∈ Mx for no x, and

Mx ∩ My 6= ∅ implies that Mx = My. For example, Z∗
13 = {1, 2, . . . , 12} is

partitioned in the sets {2, 11, 7, 6}, {3, 10, 9, 4}, {1, 12}, and {5, 8}. Since
x 6= −x (p > 2), we have |Mx| = 4 or |Mx| = 2. The latter happens only if
x = x−1 or x = −x−1. Because x = x−1 is equivalent with (x+1)(x−1) = 0,
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x = x−1 produces the set M1 = M−1 = {1,−1}. The second case x = −x−1

is equivalent with x2 = −1. But |Z∗
p| = p− 1 = 4n and therefore Z∗

p cannot
be partitioned in four-element sets and one two-element set. There must be
another two-element set Mx, which means that there is an element x in the
field Zp satisfying x2 = −1. 2

1.2 Farey fractions and a theorem of Hurwitz

Another way how to prove Dirichlet’s theorem is via Farey fractions. For a
given n ∈ N, these are the fractions p/q ∈ [0, 1] in lowest terms which have
denominator q ≤ n. Sorted by size, they form the list Fn of Farey fractions
of order n. For example,

F5 =
(

0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

)
.

For any two distinct fractions a/b < c/d we have c/d − a/b ≥ 1/bd. If
equality occurs, we say that a/b and c/d are as close as possible. Interestingly,
two consecutive Farey fractions in Fn are always as close as possible! This
was stated as a problem by geologist John Farey (1766–1826) in 1816 and
proved immediately afterwards by Augustin Cauchy (1789–1857). (In fact,
Farey stated that if a1/b1 < a2/b2 < a3/b3 are three consecutive members of
Fn, then a2/b2 = (a1 + a3)/(b1 + b3). This is equivalent to the property that
two consecutive members are as close as possible.)

Theorem (Farey–Cauchy, 1816). If a/b < c/d are two consecutive mem-
bers of Fn then bc − ad = 1, which means that a/b and c/d are as close as
possible.

Proof. We consider the diophantine equation

bx− ay = 1

with unknowns x, y ∈ Z. Since a and b are coprime, it has at least one
solution. (Division algorithm shows that the ideal {bx + ay : x, y ∈ Z} in
the ring of integers is generated by the greatest common divisor of a and b,
which is 1. So 1 is an integral linear combination of a and b.) Our aim is to
show that c, d is a solution.
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If x, y is a solution, so is x − ra, y − rb for any r ∈ Z. Hence there is a
solution x1, y1 ∈ Z such that

n− b < y1 ≤ n.

Rearranging bx1 − ay1 = 1, we express x1/y1 as

x1

y1

=
1

by1

+
a

b
.

We have x1/y1 ∈ Fn. (Numbers x1 and y1 are coprime by bx1 − ay1 = 1.
We know that 0 < y1 ≤ n. Thus, by bx1 − ay1 = 1 and 0 < a < b, we have
0 < x1 < y1.) It follows that x1/y1 ≥ c/d. We show that x1/y1 > c/d leads
to a contradiction.

Let x1/y1 > c/d. Adding the trivial inequalities

x1

y1

− c

d
≥ 1

dy1

and
c

d
− a

b
≥ 1

bd

we get (
1

by1

=

)
x1

y1

− a

b
≥ 1

dy1

+
1

bd
=

b + y1

bdy1

where the equality in brackets follows from the above expression for x1/y1.
Multiplying by bdy1, we get the inequality d ≥ b + y1. But b + y1 > n by the
above bound on y1. So d > n, which contradicts c/d ∈ Fn.

Therefore x1/y1 = c/d. Since these are fractions in lowest terms, x1 = c
and y1 = d. We have proved that c, d is a solution of bx− ay = 1. 2

In chapter 3 we give a geometric proof. This theorem leads to another proof
of part 2 of Dirichlet’s theorem. Suppose α ∈ (0, 1) is irrational. We squeeze
α between two consecutive elements of Fn: a/b < α < c/d. Let b ≤ d (for
b > d we proceed similarly). Then

0 < α− a

b
<

c

d
− a

b
=

1

bd
≤ 1

b2

where the equality is provided by the Farey–Cauchy theorem. To ob-
tain another approximation, we use the fact that the distance between
two consecutive members of Fm is at most 1/m. Let m be so big that
1/m < min(α−a/b, c/d−α). Then if we squeeze α between two consecutive
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elements of Fm, e/f < α < g/h, we have e/f 6= a/b, g/h 6= c/d and e/f or
g/h is a new close approximation. Continuing this way, we obtain infinitely
many fractions p/q satisfying |α− p/q| < 1/q2.

We are coming to a result of Adolf Hurwitz (1859–1919) that characterizes
the best Dirichlet-type inequality.

Theorem (Hurwitz, 1891). 1. For every irrational α ∈ R the inequality∣∣∣∣∣α− p

q

∣∣∣∣∣ < 1√
5q2

has infinitely many rational solutions p/q.
2. For every real A >

√
5 the inequality∣∣∣∣∣
√

5− 1

2
− p

q

∣∣∣∣∣ < 1

Aq2

has only finitely many rational solutions p/q.

Proof. 1. We may suppose that α ∈ (0, 1). We show that if a/b < α < c/d
for two consecutive Farey fractions from Fn, then one of the three fractions

a

b
,

c

d
,

e

f
=

a + c

b + d

satisfies the inequality. Squeezing α between two consecutive members of Fn

for larger and larger n, we obtain (as for for Dirichlet’s inequality) infinitely
many fractions satisfying |α− p/q| < 1/

√
5q2.

Let us assume for the contradiction that neither of the three fractions
satisfies the inequality. We may suppose that α > e/f , for α < e/f we
proceed similarly. Thus

α− a

b
≥ 1√

5b2
, α− e

f
≥ 1√

5f 2
,

c

d
− α ≥ 1√

5d2
.

Note that equalities may occur. Adding the first and the third inequality,
and the second and the third inequality, we get

1

bd
=

c

d
− a

b
≥ 1√

5

(
1

b2
+

1

d2

)
and

1

df
=

c

d
− e

f
≥ 1√

5

(
1

f 2
+

1

d2

)
,
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where the equalities follow from the theorem on Farey fractions. Multiplying
the first inequality by

√
5b2d2, the second one by

√
5d2f 2, and adding the

results, we obtain

d
√

5(b + f) = d
√

5(2b + d) ≥ b2 + 2d2 + f 2 = 2b2 + 3d2 + 2bd,

which is equivalent with

0 ≥ 1
2
((
√

5− 1)d− 2b)2.

This implies (
√

5 − 1)d − 2b = 0 and
√

5 = 1 + 2b/d ∈ Q, which is a
contradiction.

2. We denote β = (
√

5 − 1)/2. We fix A >
√

5 and suppose that
|β− p/q| < 1/Aq2 for infinitely many fractions p/q. Hence q may be as large
as we wish. In other words,

β =
p

q
+

δ

q2

has infinitely many solution p/q, δ where p/q ∈ Q and δ ∈ R, |δ| < 1/A. We
rewrite this as

δ

q
− q

√
5

2
= qβ − p− q

√
5

2
= −q

2
− p.

Squaring and subtracting 5q2/4, we get the identity

δ2

q2
− δ

√
5 = p2 + pq − q2.

For sufficiently big q the left side is in absolute value smaller than 1 because
δ2/q2 → 0 as q →∞ and |δ

√
5| <

√
5/A < 1. This means that p2 +pq−q2 =

0 has a solution p, q ∈ Z (|z| < 1 for z ∈ Z means that z = 0). But
the last equation is equivalent with (2p + q)2 = 5q2, which gives again the
contradiction

√
5 = 1 + 2p/q ∈ Q. 2

1.3 Continued fractions

We have seen two approaches to Dirichlet-type approximations of irrational
numbers, the pigeonhole principle and Farey fractions. Now we demonstrate
the third and most important approach, that of continued fractions.

To approximate a real number α ∈ R by fractions we approximate it
first by a0 = bαc ∈ Z. If ζ0 = α − a0 = {α} ∈ [0, 1) is zero, we finish the
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procedure. If ζ0 6= 0, we write 1/ζ0 = a1 + ζ1 where a1 = b1/ζ0c ∈ N and
ζ1 = {1/ζ0} ∈ [0, 1). If ζ1 = 0, we finish the procedure. If ζ1 6= 0, we express
again 1/ζ1 = a2 + ζ2 with a2 ∈ N and ζ2 ∈ [0, 1). Continuing, in the n-th
step we get the expression

α = a0 + ζ0 = a0 +
1

a1 + ζ1

= a0 +
1

a1 +
1

a2 + ζ2

= · · ·

= a0 +
1

a1 +
1

a2 +
1

an−1 +

...
1

an + ζn

where a0 ∈ Z, ai ∈ N for i > 0, and ζi ∈ [0, 1). We may hope to get a good
rational approximation of α by replacing ζn with zero. We show shortly that
this hope is justified.

Sequence [a0, a1, a2, . . .] is the continued fraction (expansion) of α. Num-
bers ai are the terms of the continued fraction and the fractions obtained
by replacing the ζi’s with 0 are called convergents of α. Let us look at two
examples of continued fractions.

−119

27
= −5 +

16

27
= −5 +

1

1 +
11

16

= −5 +
1

1 +
1

1 +
5

11

= −5 +
1

1 +
1

1 +
1

2 +
1

5

= [−5, 1, 1, 2, 5].

Convergents of −119/27 are −5
1
,−4

1
,−9

2
,−22

5
, and −119

27
. The golden ratio

φ = (1 +
√

5)/2 = 1.61803 . . . has a simple continued fraction. Since

1 +
√

5

2
= 1 +

√
5− 1

2
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with (
√

5 − 1)/2 ∈ [0, 1), we have a0 = 1, ζ0 = (
√

5 − 1)/2. In the second
step,

1

ζ0

=
2√

5− 1
=

1 +
√

5

2

and we are back at the beginning. Thus

1 +
√

5

2
= [1, 1, 1, 1, . . .].

It is convenient to view convergents more generally as rational functions:

[x0, x1, . . . , xn] =
pn

qn

=
pn(x0, x1, . . . , xn)

qn(x0, x1, . . . , xn)

= x0 +
1

x1 +
1

x2 +
1

xn−1 +

...
1

xn

where xi are variables and pn, qn are coprime polynomials. If p′n/q
′
n ∈ Q

is the n-th convergent of α ∈ R with continued fraction [a0, a1, . . .], then
p′n = pn(a0, . . . , an) and q′n = qn(a0, . . . , an).

Numerators and denominators of convergents can be calculated by sim-
ple recurrences. In fact, it is a single recurrence, only with different initial
conditions for denominators and for numerators.

Lemma. We have the recurrence p0 = x0, p1 = x0x1 + 1, q0 = 1, q1 = x1,
and, for n ≥ 2,

pn = xnpn−1 + pn−2 and qn = xnqn−1 + qn−2.

Proof. By induction on n. For n = 0, 1 the lemma holds. Suppose it holds
for the n-th convergent. For the (n + 1)-th one we have

pn+1

qn+1

= [x0, . . . , xn−1, xn, xn+1] = [x0, . . . , xn−1, xn + 1/xn+1]

9



=
(xn + 1/xn+1)pn−1 + pn−2

(xn + 1/xn+1)qn−1 + qn−2

=
xn+1(xnpn−1 + pn−2) + pn−1

xn+1(xnqn−1 + qn−2) + qn−1

=
xn+1pn + pn−1

xn+1qn + qn−1

where on the second and fourth line we used the inductive assumption. 2

Strictly speaking, we have shown that the recurrence calculates convergents
but it may not be clear that it produces convergents in lowest terms. How-
ever, if pn and qn are calculated by the recurrence, we have

pnqn−1 − qnpn−1 = (xnpn−1 + pn−2)qn−1 − (xnqn−1 + qn−2)pn−1

= −(pn−1qn−2 − qn−1qn−2)
...

= (−1)n−1(p1q0 − q1p0)

= (−1)n−1,

which shows that pn, qn are indeed coprime. By the same argument this is
true also for numbers—the convergents pn/qn ∈ Q of α ∈ R calculated by the
recurrence from the continued fraction [a0, a1, . . .] of α are in lowest terms.
Using the recurrence and the last identity we get

pnqn−2 − qnpn−2 = (xnpn−1 + pn−2)qn−2 − (xnqn−1 + qn−2)pn−2

= xn(pn−1qn−2 − qn−1pn−2)

= (−1)nxn.

We rewrite both identities as follows.

Lemma. For every n, for which the convergents are defined, we have

pn

qn

− pn−1

qn−1

=
(−1)n−1

qn−1qn

and
pn

qn

− pn−2

qn−2

=
(−1)nxn

qn−2qn

.

In the next theorem we summarize basic properties of continued fractions.
In particular, we give yet another proof of the second part of Dirichlet’s
theorem.
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Theorem. Let pn/qn ∈ Q be the n-th convergent of the continued fraction
expansion [a0, a1, . . .] of α ∈ R.

1. For every n ≥ 0,
p2n

q2n

≤ α ≤ p2n+1

q2n+1

.

2. The continued fraction [a0, a1, . . .] is finite iff α is rational.

3. Rational α equals to its last convergent, α = pn/qn = [a0, a1, . . . , an].

4. For irrational α we have the inequalities

p0

q0

<
p2

q2

<
p4

q4

< · · · < α < · · · < p5

q5

<
p3

q3

<
p1

q1

and pn/qn → α as n →∞.

5. For every n ∈ N, ∣∣∣∣∣α− pn

qn

∣∣∣∣∣ < 1

q2
n

.

Proof. 1. This follows from the expression of α in terms of ai and ζi we
started with. If ζn 6= 0 is replaced with 0, the compounded fraction decreases
for even n and increases for odd n. 2. Since for irrational α never ζn = 0,
the procedure never terminates and [a0, a1, . . .] is an infinite sequence. For
rational α = p/q it is not hard to see that the procedure generating [a0, a1, . . .]
is in fact a reformulation of Euclid’s algorithm determining the gcd of p, q
and therefore must terminate. 3. Clear because ζn = 0 in the last step. 4.
This follows from the previous lemma and from part 1. 5. This follows from
part 4, the first identity of the previous lemma, and from qn < qn+1 (which
follows from the recurrence for the qn’s). 2

In 1737, L. Euler discovered that the continued fraction of “his” number
e = 2.71828 . . . follows a nice simple rule:

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, . . .].

In contrast, the continued fraction of π = 3.14159 . . . does not follow any
apparent rule (and no such rule is known):

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, . . .].
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We say that an infinite sequence a0, a1, . . . is eventually periodic if there
exist integers r ≥ 0, s ≥ 1 such that ai = ai+s for every i ≥ r. We shall
not prove the result of Joseph-Louis Lagrange (1736–1813) characterizing
eventually periodic continued fractions.

Theorem (Lagrange, 1770). Let α ∈ R be irrational. The continued
fraction of α is eventually periodic if and only if aα2 + bα + c = 0 for some
integers a, b, c, not all zero.

Using continued fractions, one can characterize the “most irrational”
numbers α ∈ R. Let α = [a0, a1, . . .] be irrational. If ai = 1 for all i ≥ i0,
then for every A >

√
5 the inequality∣∣∣∣∣α− p

q

∣∣∣∣∣ < 1

Aq2

has only finitely many solutions p/q ∈ Q. If ai ≥ 2 for infinitely many i,
then the inequality ∣∣∣∣∣α− p

q

∣∣∣∣∣ < 1√
8q2

has infinitely many solutions p/q ∈ Q. This was proved by Hurwitz.

1.4 Transcendental numbers

Recall that α ∈ R is algebraic if it is a root of a nonzero integral polynomial,
that is,

anα
n + an−1α

n−1 + · · ·+ a1α + a0 = 0

for some ai ∈ Z, not all of them zero. The smallest degree n of such a polyno-
mial is the degree of α. Rational numbers are exactly the algebraic numbers
with degree 1. Numbers, which are not algebraic, are called transcendental.
Joseph Liouville (1809–1882) proved that algebraic numbers do not have too
close rational approximations.

Theorem (Liouville, 1844). Let α ∈ R be an algebraic number with degree
n ≥ 2 (i.e., α is irrational). There exists a constant c = c(α) > 0 depending
only on α such that ∣∣∣∣∣α− p

q

∣∣∣∣∣ ≥ c

qn

12



for every p/q ∈ Q.

Proof. Let P (x) = anx
n + · · · + a1x + a0 be nonzero integral polynomial

with root α and with the lowest degree. We set I = [α− 1, α + 1] and

c = min(1, (max
x∈I

|P ′(x)|)−1).

If p/q 6∈ I, the inequality holds trivially:∣∣∣∣∣α− p

q

∣∣∣∣∣ ≥ 1 ≥ 1

qn
≥ c

qn
.

If p/q ∈ I, Lagrange’s mean value theorem asserts that

P (α)− P (p/q)

α− p/q
= P ′(z)

for some real number z lying between α and p/q and hence in I. Since
P (α) = 0, we obtain ∣∣∣∣∣α− p

q

∣∣∣∣∣ = |P (p/q)|
|P ′(z)|

.

By the definition of c, 1/|P ′(z)| ≥ c. Also, P (p/q) 6= 0 because otherwise
P (x)/(x−p/q) would be a rational polynomial with root α and degree n−1,
contradicting the minimality of n. But then

|P (p/q)| = |anp
n + · · ·+ a1pq

n−1 + a0q
n|

qn
≥ 1

qn

because the numerator is a nonzero integer. Thus∣∣∣∣∣α− p

q

∣∣∣∣∣ ≥ c

qn
.

2

Liouville’s theorem provides a method for producing transcendental num-
bers.

Corollary. Let α ∈ R be an irrational number with the property that for
every n ∈ N there is a fraction p/q satisfying q ≥ 2 and∣∣∣∣∣α− p

q

∣∣∣∣∣ < 1

qn
.

13



Then α is a transcendental number.

Proof. Suppose, for the contradiction, that α is algebraic and has degree
m ≥ 2. Let c = c(α) be the constant from Liouville’s theorem. We select
n ∈ N big enough so that n > m and 2m−n < c. By the property of α, there
exists a fraction p/q that has q ≥ 2 and is closer to α than 1/qn. But then∣∣∣∣∣α− p

q

∣∣∣∣∣ < 1

qn
≤ 1

qm
· 1

2n−m
<

c

qm
,

which contradicts Liouville’s theorem. 2

Real numbers with the property stated in the corollary are called Liouville
numbers. Corollary says that every Liouville number is transcendental. Liou-
ville numbers can be constructed as sums of rapidly converging infinite series;
the required close rational approximations are provided by partial sums. In
this way one easily shows that

∞∑
n=1

1

10i!
= 0.110001000000000000000001000000000000000000000000000 . . .

is Liouville number and hence it is transcendental.
Norwegian mathematician Axel Thue (1863-1922) obtained an important

strengthening of Liouville’s theorem.

Theorem (Thue, 1909). Let α ∈ R be an algebraic number with degree
n ≥ 2 and let ε > 0. There exists a constant c = c(α, ε) > 0 such that∣∣∣∣∣α− p

q

∣∣∣∣∣ ≥ c

q1+ε+n/2

holds for every p/q ∈ Q.

For n = 2 the lower bound is in fact weaker (i.e., it is asymptotically smaller)
than in Liouville’s theorem but for n ≥ 3 it is much stronger. Thue’s theorem
has important consequences in the theory of diophantine equations, as we will
see in the next chapter. It inspired further strengthenings which replaced
exponent 1 + ε + n/2 by smaller functions of n. I will not mention these
intermediate improvements obtained by Siegel, Gelfond, and Dyson and I
state only the last ultimate result due to Klaus Roth (1925), for which he
was in 1958 awarded the Fields medal.

14



Theorem (Roth, 1955). Let α ∈ R be an algebraic number with degree
n ≥ 2 and let ε > 0. There exists a constant c = c(α, ε) > 0 such that∣∣∣∣∣α− p

q

∣∣∣∣∣ ≥ c

q2+ε

for every p/q ∈ Q.

An equivalent formulation of Roth’s theorem (and similarly for Thue’s the-
orem) is: For every irrational algebraic number α and every ε > 0 the in-
equality |α− p/q| < 1/q2+ε has only finitely many rational solutions p/q.

Let us recall the proof of the irrationality of Euler’s number e. For the
contradiction, suppose that e = p/q ∈ Q. Multiplying

p

q
= e =

1

0!
+

1

1!
+ · · ·+ 1

q!
+

1

(q + 1)!
+ · · ·

by q!, we obtain equality

p · (q − 1)! =

(
q!

0!
+

q!

1!
+ · · ·+ q!

q!

)
+

∑
n≥q+1

q!

n!
= a + b

where a ∈ N and, by simple estimates using geometric series, 0 < b < 1/q ≤
1. Thus a + b 6∈ N, which contradicts the fact that the left side p · (q− 1)! is
a positive integer.

The transcendence of e was proved first by Charles Hermite (1822–1901).
The ingenious simple proof presented here belongs to David Hilbert (1862–
1943). While the irrationality proof uses infinite series for e, Hilbert’s proof of
transcendence rests on the key property of exponential function: (ex)′ = ex.

Theorem (Hermite, 1873). The number e = 2.71828 . . . is transcenden-
tal.

Proof (Hilbert, 1893). Suppose for the contradiction that Euler’s number
is algebraic:

anen + · · ·+ a1e + a0 = 0

for n ∈ N and some integers ai, not all of them zero. Dividing by a power of
e, we may assume that a0 6= 0. Multiplying this equation by the number∫ ∞

0
xr((x− 1)(x− 2) . . . (x− n))r+1e−x dx

15



that depends on the parameter r ∈ N (which we choose appropriately later),
we get

anen
∫ ∞

0
+an−1e

n−1
∫ ∞

0
+ · · · + a1e

∫ ∞

0
+ a0

∫ ∞

0
= 0.

Splitting the interval of integration [0,∞) in two, [0, i] and [i,∞), we rear-
range the last equation as

P1(r) + P2(r) =

(
n∑

i=0

aie
i
∫ i

0

)
+

(
n∑

i=0

aie
i
∫ ∞

i

)
= 0.

We shall prove that
|P1(r)| < cr for all r ∈ N

with a constant c > 1 not depending on r and that

|P2(r)| ≥ r! for infinitely many r ∈ N.

Then P1(r) + P2(r) = 0 cannot hold for every r ∈ N because |P1(r)|/r! →
0 as r → ∞ but |P2(r)|/r! ≥ 1 for infinitely many r, and we obtain a
contradiction.

We bound P1(r). On the interval [0, n],

|xr((x− 1)(x− 2) . . . (x− n))r+1| ≤ nr(nn)r+1 and |e−x| ≤ 1.

Therefore, for i = 0, 1, . . . , n,∣∣∣∣∫ i

0
xr((x− 1)(x− 2) . . . (x− n))r+1e−x dx

∣∣∣∣ ≤ inr(nn)r+1 ≤ (nn+1)r+1

and

|P1(r)| =

∣∣∣∣∣
n∑

i=0

aie
i
∫ i

0

∣∣∣∣∣ ≤ |a0|+ |a1|e
∣∣∣∣∫ 1

0

∣∣∣∣+ · · ·+ |an|en

∣∣∣∣∫ n

0

∣∣∣∣
≤ (|a0|+ |a1|e + · · ·+ |an|en)(nn+1)r+1

which is bound of the type cr.
To bound P2(r), we evaluate first the integral

∫∞
0 xke−x dx for k ∈ N0.

Integration by parts gives∫ ∞

0
xke−x dx = [−xke−x]∞0 + k

∫ ∞

0
xk−1e−x dx

= k
∫ ∞

0
xk−1e−x dx = · · · = k!

∫ ∞

0
e−x dx

= k!.
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(Integral
∫∞
0 xs−1e−x dx defines the gamma function Γ(s).) More generally,

if p(x) = bnx
n + · · ·+ b1x + b0 is a polynomial, then

∫ ∞

0
p(x)e−x dx =

n∑
k=0

bkk!.

In particular, if p(x) is an integral polynomial, then we have the congruence∫ ∞

0
xkp(x)e−x dx ≡ b0k! (mod (k + 1)!).

Substituting y = x− i we get

ei
∫ ∞

i
=

∫ ∞

i
xr((x− 1)(x− 2) . . . (x− n))r+1e−(x−i) dx

=
∫ ∞

0
(y + i)r((y + i− 1)(y + i− 2) . . . (y + i− n))r+1e−y dy.

For i = 0 the polynomial in the integrand is (−1)n(r+1)(n!)r+1yr +ayr+1 + · · ·
and for 1 ≤ i ≤ n the smallest power of y with nonzero coefficient in it is
yr+1. By the above calculations and the congruence, P2(r) ∈ Z and

P2(r) =
n∑

i=0

aie
i
∫ ∞

i
≡ a0(−1)n(r+1)(n!)r+1r! (mod (r + 1)!).

Thus P2(r) is an integral multiple of r! and, moreover, we claim that if
r + 1 is coprime with a0 · n! then P2(r) 6= 0. Indeed, if P2(r) = 0 then by
dividing the last congruence by r! we get

0 ≡ ±a0(n!)r+1 (mod r + 1),

which is impossible when r+1 ≥ 2 and r+1 is coprime with a0 ·n!. It is easy
to find infinitely many r ∈ N for which this is true (recall that a0 6= 0). We
may take, for example, all numbers r = p−1 where p runs through the prime
numbers not dividing a0 ·n!. Hence P2(r) is a nonzero integral multiple of r!
for infinitely many r and thus |P2(r)| ≥ r! for infinitely many r. 2

Using similar arguments, Hilbert gave a simple proof for the transcendence
of π as well (it was proved first by Ferdinand von Lindemann (1852-1939) in
1882).
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1.5 Remarks

Much of the material is taken from Schmidt’s excellent monograph [18]. The
reader will find in it a proof of Roth’s theorem and discussion of further refine-
ments of Hurwitz’s results. For the history of Farey fractions see Bruckheimer
and Arcavi [6].
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Chapter 2

Diophantine equations

We begin with a brief description of three great achievements of diophantine
analysis in the 20th century: Hilbert’s Tenth Problem, Fermat’s Last Theo-
rem and Catalan’s conjecture. In section 2.2 we develop the theory of dio-
phantine equation x2− dy2 = 1 called Pell equation. Then we describe Thue
equation, a large class of bivariate diophantine equations with only finitely
many solutions (this fact we will not prove in entirety). In section 2.3 we
discuss special cases of Fermat’s Last Theorem for exponents 2 and 4 and
formulate the analogue of FLT for polynomials. We present the surprising
elementary and short proof of this variant of FLT based on Stothers-Mason
theorem. The ABC conjecture is mentioned.

2.1 Three famous exproblems

Typical problem in diophantine equations is to decide, for a given integral
polynomial P (x1, . . . , xn), if there are numbers a1, . . . , an ∈ Z such that
P (a1, . . . , an) = 0, that is, if P = 0 has solution in integers. Besides this
qualitative problem, one is also interested in the number of solutions, their
size and properties. Many other problems arise when coefficients and/or
solutions are taken from Q or other rings of numbers. Systems of equations
and non-polynomial equations are investigated as well.

Note that a procedure deciding solvability of a single polynomial equation
can be used to decide solvability of any system of polynomial equations:
System of equations

P1 = 0 & P2 = 0 & . . . & Pr = 0
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(Pi ∈ Z[x1, . . . , xn]) is solvable in Z if and only if the single equation

P 2
1 + P 2

2 + · · ·+ P 2
r = 0

is solvable in Z. It is even possible, and we leave this as an exercise for the
reader, to construct an algorithm A such that for every input polynomial
P ∈ Z[x1, . . . , xn] the output Q := A(P ) is a polynomial Q ∈ Z[x1, . . . , xr]
with the properties that (i) P = 0 has solution in Z if and only if Q = 0 has
solution in Z and (ii) deg(Q) ≤ 4.

Hilbert’s Tenth Problem. A natural question is if there is an algorithm
that would decide, for any input polynomial P ∈ Z[x1, . . . , xn], if P = 0
has a solution in Z. To provide such an algorithm was required in the tenth
problem from the famous list of 23 mathematical problems presented by
David Hilbert on the International Congress of Mathematicians in Paris in
1900. In 1970 Yuri Vladimirovich Matiyasevich (1946) 1 proved that no such
algorithm exists.

Theorem (Matiyasevich, 1970). The problem of solvability of integral
polynomial equations in integers is algorithmically undecidable.

The most famous problem in diophantine equations, and perhaps in all
mathematics, was Fermat’s Last Theorem (FLT). Fermat claimed that he
could prove that equation xn + yn = zn has for n ≥ 3 no solution in positive
integers x, y, z. (For n = 2 there are infinitely many solutions, for example
3, 4, 5 or 5, 12, 13.) FLT was proved by Andrew Wiles (1953), with the help
of Richard Taylor.

Theorem (Wiles, 1995). For n ≥ 3 the diophantine equation xn +yn = zn

has no solution x, y, z ∈ N.

Considerably less known in the public than FLT was Catalan’s Conjecture.
In 1844, Eugène Catalan (1814–1894) conjectured that the only solution of
xu − yv = 1 in integers bigger than 1 is 32 − 23 = 1. That is, if we mark in
the sequence of natural numbers all pure powers ab, a, b ≥ 2,

1, 2, 3,4, 5, 6, 7,8,9, 10, 11, 12, 13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26,27, 28, 29, 30, 31,32, 33, 34, 35,36, 37, 38, . . . ,

1Jurij Vladimirovič Matijasevič, �ri� Vladimiroviq Mati�seviq.
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then 8, 9 is the only pair of consecutive marked numbers. Many partial results
towards the conjecture were found. Recently it was fully resolved by Preda
Mihăilescu (1955).

Theorem (Mihăilescu, 2004). If xu − yv = 1 for x, y, u, v ∈ N with
x, y, u, v > 1 then x = 3, y = 2, u = 2, v = 3.

What about the equation xu − yv = 2? Is 25, 27 the only pair of marked
numbers differing by 2? At the time of writing, this is an open question. It
is not even known if xu − yv = 2 has only finitely many solutions in natural
numbers.

2.2 Pell equation

The first topic we shall discuss is Pell equation. This is diophantine equation

x2 − dy2 = 1

where x, y ∈ Z are unknowns and d ∈ N is a fixed parameter that is not
a square. We have always solution (x, y) = (±1, 0) which is called trivial
solution. (If d = e2 ∈ N is a square, factorization x2−dy2 = (x− ey)(x+ ey)
shows that there is only trivial solution. The same holds if d ∈ Z with d < 0.
If d = 0, all solutions are (±1, z), z ∈ Z.) For small d one can find nontrivial
solutions by trial and error: (3, 2) for x2 − 2y2 = 1, (2, 1) for x2 − 3y2 = 1,
(9, 4) for x2 − 5y2 = 1, (5, 2) for x2 − 6y2 = 1 and so on.

We show that if there is a nontrivial solution, then there must be infinitely
many of them. We claim that for any two solutions (a, b), (e, f) ∈ Z2 of
x2 − dy2 = 1, the pair (g, h) ∈ Z2 defined by

g + h
√

d = (a + b
√

d)(e + f
√

d)

is a solution as well. To see this, note that then also g−h
√

d = (a−b
√

d)(e−
f
√

d) and therefore

g2 − dh2 = (g + h
√

d)(g − h
√

d)

= (a + b
√

d)(e + f
√

d)(a− b
√

d)(e− f
√

d)

= (a2 − db2)(e2 − df2)

= 1 · 1 = 1.
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Thus if we have a nontrivial solution (a, b) ∈ N2 then for k = 1, 2, . . .

ak + bk

√
d = (a + b

√
d)k

give infinitely many solutions (ak, bk) ∈ N2. For example, the solution
(a, b) = (3, 2) of x2 − 2y2 = 1 generates solutions (a2, b2) = (17, 12),
(a3, b3) = (99, 70) and so on. Later we shall prove that the smallest non-
trivial natural solution (a, b) generates all natural solutions. All nontrivial
integral solutions are obtained simply by adding signs to the natural solu-
tions.

Theorem (Lagrange, 1770). Every Pell equation x2 − dy2 = 1 has a
nontrivial solution (and hence infinitely many solutions).

Proof. Because d is not a square,
√

d is irrational and by part 2 of Dirichlet’s
theorem in chapter 1 there are infinitely many distinct fractions p/q such that∣∣∣∣∣√d− p

q

∣∣∣∣∣ < 1

q2
.

These fractions satisfy

|p2 − dq2| = q|
√

d− p/q| · |p + q
√

d| < |p + q
√

d|
q

≤ p/q +
√

d

≤ 2
√

d + 1.

Thus (by the pigeonhole principle used for infinitely many pigeons and finitely
many holes) there is a c ∈ Z such that p2 − dq2 = c for infinitely many
p/q ∈ Q. Irrationality of

√
d implies that c 6= 0. There are only finitely

many, c2, possibilities for the residues of the pairs p, q modulo |c|. Thus we
can select two distinct fractions p1/q1, p2/q2 such that p2

1−dq2
1 = p2

2−dq2
2 = c

and p1 ≡ p2, q1 ≡ q2 modulo |c| (in fact, there are infinitely many such
fractions). Consider the numbers a, b defined by

a + b
√

d =
p1 + q1

√
d

p2 + q2

√
d

=
(p1 + q1

√
d)(p2 − q2

√
d)

(p2 + q2

√
d)(p2 − q2

√
d)

=
p1p2 − dq1q2

c
+

p2q1 − p1q2

c

√
d.

We claim that (a, b) is a nontrivial solution of x2 − dy2 = 1.
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The numerators are integral multiples of c because, using the congruences
p1 ≡ p2 and q1 ≡ q2, modulo |c| we have p1p2− dq1q2 ≡ p2

1− dq2
1 = c ≡ 0 and

p2q1 − p1q2 ≡ p1q2 − p1q2 = 0. Thus a, b ∈ Z. We cannot have b = 0 because
p1/q1 6= p2/q2. Thus b 6= 0. Finally,

a2 − db2 = (a + b
√

d)(a− b
√

d) =
p1 + q1

√
d

p2 + q2

√
d
· p1 − q1

√
d

p2 − q2

√
d

=
p2

1 − dq2
1

p2
2 − dq2

2

=
c

c
= 1.

2

It is convenient to view solutions of x2 − dy2 = 1 as real numbers and
collect them in the set

R = {a + b
√

d : a, b ∈ Z, a2 − db2 = 1}.

For α = a + b
√

d ∈ R we denote α = a − b
√

d and have αα = 1. Thus R
is closed to division. We have seen above that R is closed to multiplication.
Hence (R, ·) is a multiplicative abelian group with the neutral element 1 =
1+0

√
d. By Lagrange’s theorem there exists α ∈ R with α > 1 and therefore

R is infinite (αk are distinct for k = 1, 2, . . . and lie in R).
For α ∈ R the numbers α and α have the same sign and are separated

(if they are different from ±1) either by −1 or by 1. The four possibilities
for the signs of a, b in α = a + b

√
d, α 6= ±1, therefore determine whether

α lies in R ∩ (−∞,−1) (signs are −,−), in R ∩ (−1, 0) (signs are −, +),
in R ∩ (0, 1) (signs are +,−) or in R ∩ (1,∞) (signs are +, +). Thus the
subgroup of positive solutions

U = {α ∈ R : α > 0}

is formed by the a + b
√

d ∈ R with a ∈ N, and the natural solutions α =
a + b

√
d ∈ R with a, b ∈ N are exactly the solutions R ∩ (1,∞).

If α = a1 + b1

√
d, β = a2 + b2

√
d are two natural solutions then a1 <

a2 ⇐⇒ b1 < b2 ⇐⇒ α < β. Now it is clear that there exists the smallest
natural solution

ε = ε(d) = min{α ∈ U : α > 1}.

We claim that U = {εk : k ∈ Z}, that is, (U, ·) is a cyclic group generated
by ε. Let α ∈ U . If α > 1, there is a k ∈ N such that εk ≤ α < εk+1. If
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εk < α, dividing by εk we get 1 < αε−k < ε and αε−k ∈ U ∩ (1,∞), which
contradicts the minimality of ε. Thus α = εk. If 0 < α ≤ 1, we have α−1 ≥ 1
and α = ε−k for some k ∈ N0. We summarize our findings.

Theorem. The set of positive solutions of Pell equation x2 − dy2 = 1 is an
infinite cyclic group (U, ·) that is generated by the smallest natural solution
ε. The mapping εk 7→ k is a group isomorphism between (U, ·) and (Z, +).
The group of all solutions (R, ·) is isomorphic to (Z, +)× (Z2, +). 2

The generalized Pell equation is the diophantine equation

x2 − dy2 = m

where x, y ∈ Z are unknowns and d ∈ N, m ∈ Z are parameters and d is not
a square.

Theorem. If the generalized Pell equation x2 − dy2 = m has an integral
solution, then it has infinitely many integral solutions.

Proof. Suppose a, b ∈ Z is a solution of x2 − dy2 = m and e, f ∈ Z is a
solution of x2 − dy2 = 1. Then

g + h
√

d = (a + b
√

d)(e + f
√

d)

is a solution of x2 − dy2 = m as well because

g2 − dh2 = (g + h
√

d)(g − h
√

d)

= (a + b
√

d)(e + f
√

d)(a− b
√

d)(e− f
√

d)

= (a2 − db2)(e2 − df2)

= m · 1 = m.

Multiplying one solution of x2 − dy2 = m by infinitely many solutions of
x2 − dy2 = 1 we get infinitely many solutions of x2 − dy2 = m. 2

2.3 Thue equation

We proceed to other classical family of diophantine equations. Thue equation
is a diophantine equation

F (x, y) = m
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where x, y are unknowns, m ∈ Z is a parameter, m 6= 0, and F ∈ Z[x, y] is
a nonzero homogeneous integral polynomial that is irreducible over Z[x, y]
and has degree n ≥ 3.

We will not be able to give a complete proof of the following breakthrough
result of Axel Thue. We only show how it follows from Thue’s theorem on
algebraic numbers (chapter 1).

Theorem (Thue, 1909). Every Thue equation F (x, y) = m has only
finitely many integral solutions x, y ∈ Z.

We have

F (x, y) = anx
n + an−1x

n−1y + · · ·+ a1xyn−1 + a0y
n = ynF (x/y)

where
F (z) = anz

n + an−1z
n−1 + · · ·+ a0.

Since a0, an 6= 0 (F (x, y) is irreducible), deg(F (z)) = deg(F (x, y)) = n ≥ 3.
The irreducibility of F (x, y) is equivalent with the irreducibility of F (z). The
irreducibility of F (z) over Z[x] is equivalent with the irreducibility over Q[x]
(Gauss’ lemma). The irreducibility over Q[x] implies that in the factorization

F (z) = an

n∏
i=1

(z − αi)

all algebraic numbers αi ∈ C are distinct and have degree n ≥ 3.

Proof. Suppose that F (p, q) = m for infinitely many pairs (p, q) ∈ Z2. For
each q only at most n numbers p ∈ Z satisfy F (p, q) = m. Thus there are
infinitely many pairs (p, q) ∈ Z2 satisfying F (p, q) = m in which the q’s are
mutually distinct and nonzero. Using the factorization of F (z) and dividing
by qn, we get

n∏
i=1

(
p

q
− αi

)
=

m

anqn
.

Changing signs of the p’s we can assume that q ∈ N. We let q →∞.
Let v = min |αi − αj| > 0 for i 6= j (here we use that all αi are distinct).

For big enough q the right side in the last equation is in absolute value smaller
than (v/2)n, which forces ∣∣∣∣∣αi −

p

q

∣∣∣∣∣ < v/2
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for some i. By the pigeonhole principle, there is an i0 for which this happens
infinitely many times; let it be i0 = 1. By the triangle inequality, for j ≥ 2
we have ∣∣∣∣∣αj −

p

q

∣∣∣∣∣ ≥ |αj − α1| −
∣∣∣∣∣α1 −

p

q

∣∣∣∣∣ > v − v

2
= v/2.

Thus ∣∣∣∣∣α1 −
p

q

∣∣∣∣∣ =
n∏

j=2

∣∣∣∣∣αj −
p

q

∣∣∣∣∣
−1 ∣∣∣∣∣ m

anqn

∣∣∣∣∣ < c

qn

where c = |m/an|·(2/v)n−1 > 0 is a constant. Since α1 is an algebraic number
with degree n ≥ 3 and this inequality holds for infinitely many fractions p/q,
for big enough q we get a contradiction with Thue’s inequality stated in
chapter 1. 2

It is easy to see that F (x, y) = x3 − 2y3 is irreducible and therefore, by the
last theorem, every equation x3 − 2y3 = m, m ∈ Z, has only finitely many
integral solutions. This contrasts with Pell equation x2 − 2y2 = 1 that has
infinitely many solutions.

2.4 FLT for n = 2, 4 and for polynomials

Our last topic in the second chapter is FLT for exponents n = 2 and n = 4
and FLT for polynomials. For exponent 2 we have the diophantine equation

x2 + y2 = z2

and consider its nontrivial solutions x, y, z ∈ Z, xyz 6= 0. Common factor
can be canceled out and signs can be changed so that x, y, z are pairwise
coprime natural numbers. Numbers x, y cannot be both even and they cannot
be both odd either (consider squares modulo 4). We may assume that x
is even and y is odd. We call triples of numbers with these properties—
(a, b, c) ∈ N3 such that a2 + b2 = c2, a, b, c are coprime, a is even and b
is odd—primitive Pythagorean triples. Every nontrivial integral solution of
x2 + y2 = z2 is obtained from a primitive Pythagorean triple by a change of
signs, multiplication by a common integral factor, and switching x and y.

Theorem. A triple (x, y, z) ∈ N3 is a primitive Pythagorean triple if and
only if x = 2ab, y = a2 − b2, and z = a2 + b2 for some integers a > b ≥ 1
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that are coprime and have different parity. In particular, there exist infinitely
many primitive Pythagorean triples.

Proof. It is easy to verify that the numbers given by the formulae form a
primitive Pythagorean triple. Note that (2ab)2 + (a2 − b2)2 = (a2 + b2)2 is in
fact a polynomial identity. On the other hand, if (x, y, z) ∈ N3 is a primitive
Pythagorean triple, we rewrite x2 + y2 = z2 as(

x

2

)2

=
z − y

2
· z + y

2

and deduce that both factors on the right, which are natural numbers (z, y
are odd), are squares. Indeed, they are coprime (because their sum is z
and their difference y and (z, y) = 1) and their product is a square. Thus
(z − y)/2 = b2 and (z + y)/2 = a2 for some natural numbers a > b. Adding
and subtracting we get z = a2 + b2 and y = a2 − b2. Also, x = 2ab and it
follows that (a, b) = 1 and a, b have different parity. 2

Theorem (de Fermat, 17-th century). The diophantine equation

x4 + y4 = z2

has no solution x, y, z ∈ N.

Proof. Suppose (x, y, z) ∈ N3 is a solution. We may assume that x, y, z are
coprime. (The common factor can be divided out so that a solution with
coprime components is obtained.) Again, x, y have different parity and we
assume that x is odd and y is even. We rewrite the equation as

y4 = (z − x2)(z + x2).

Since z, x are odd, (z, x) = 1, and the sum and the difference of the factors
is 2z and 2x2, we see that (z − x2, z + x2) = 2. This implies that

z − x2 = 2a4 and z + x2 = 8b4,

or the right sides are switched, and a, b are coprime and a is odd. Subtracting
the equations we get x2 = 4b4 − a4, which is impossible modulo 4. Thus the
right sides must be switched:

z − x2 = 8b4 and z + x2 = 2a4
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and x2 = a4 − 4b4, z = a4 + 4b4. We rewrite the former equation as

4b4 = (a2 − x)(a2 + x).

It follows again that (a2 − x, a2 + x) = 2. Now we have only one possibility
that each factor is twice a biquadrate: a2 − x = 2c4, a2 + x = 2d4 with
c, d ∈ N. Adding both equations we get a2 = c4 + d4. Starting from the
solution (x, y, z) ∈ N3, we have constructed another solution (c, d, a) ∈ N3

of the same equation. But a < z (because z = a4 + 4b4). Repeating the
argument, we could obtain infinitely many natural solutions whose third
components would form an infinite strictly descending sequence. This is in
the set N impossible and we arrive at a contradiction. Thus there is no
solution in natural numbers. 2

The concluding argument, which shows nonexistence of a solution by con-
structing an infinite strictly descending sequence of natural numbers, is called
the infinite descend argument and was invented by Fermat.

What about FLT for polynomials? It holds for them and it can be proved
by an ingenious argument that is much shorter than the 100+ pages argument
of Wiles for numbers. To state the key result, we need a definition. If p(t)
is a complex polynomial then r(p) denotes the number of its distinct roots.
For example, r(t4 − 2t2 + 1) = 2. Obviously, r(p) ≤ deg(p) and r(pn) = r(p)
for every n ∈ N.

Theorem (Stothers, 1981; Mason, 1984). If

a(t) + b(t) = c(t)

for coprime polynomials a, b, c ∈ C[t] which are not all constant, then

max(deg(a), deg(b), deg(c)) ≤ r(abc)− 1.

First we show how the polynomial FLT follows from this.

Theorem. If
x(t)n + y(t)n = z(t)n

for n ∈ N and coprime polynomials x, y, z ∈ C[t] which are not all constant,
then n ≤ 2.
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Proof. Using the Stothers–Mason theorem and simple properties of degrees
of polynomials, we get

n deg(x) = deg(xn) ≤ r(xnynzn)− 1 = r(xyz)− 1 ≤ deg(xyz)− 1

= deg(x) + deg(y) + deg(z)− 1

and the same upper bound on n deg(y) and n deg(z). Adding the three
bounds, we obtain

n(deg(x) + deg(y) + deg(z)) ≤ 3(deg(x) + deg(y) + deg(z))− 3,

which implies that n ≤ 2. 2

For n = 2, many solutions can be obtained from the polynomial identity
(2ab)2 + (a2 − b2)2 = (a2 + b2)2, for example (2t)2 + (t2 − 1)2 = (t2 + 1)2.

Proof of the Stothers-Mason theorem. Dividing a + b = c by c (c 6= 0
by coprimality), setting f = a/c, g = b/c and differentiating, we get the
equations

f + g = 1 and f ′ + g′ = f · f ′

f
+ g · g′

g
= 0.

The last equation can be rearranged as

−f ′/f

g′/g
=

g

f
=

b

a
.

Splitting a, b, c in the linear factors, we write

f =
a

c
=

α
∏

(t− αi)
mi

γ
∏

(t− γi)oi
and g =

b

c
=

β
∏

(t− βi)
ni

γ
∏

(t− γi)oi
.

Taking the logarithmic derivatives f ′/f = (log f)′, g′/g = (log g)′ of these
factorizations and substituting them in the above equation we get

b

a
= −

∑
mi/(t− αi)−

∑
oi/(t− γi)∑

ni/(t− βi)−
∑

oi/(t− γi)
.

We multiply the denominator and the numerator of the right side by

N =
∏

(t− αi) ·
∏

(t− βi) ·
∏

(t− γi)
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and get
b

a
= −N (

∑
mi/(t− αi)−

∑
oi/(t− γi))

N (
∑

ni/(t− βi)−
∑

oi/(t− γi))
=

Q

P

where P and Q are polynomials which have degrees at most deg(N) − 1 =
r(abc)−1. But a, b are coprime polynomials and therefore deg(a) ≤ deg(P ) ≤
r(abc)− 1 and deg(b) ≤ deg(Q) ≤ r(abc)− 1. Since a + b = c, we have also
deg(c) ≤ max(deg(a), deg(b)) ≤ r(abc)− 1. 2

An analogous statement can be made for integers but it is so far unproved;
it is the famous ABC conjecture.

The abc conjecture (Maser and Oysterlé, 1985). Let rad(m) denote
the product of all prime divisors of m ∈ Z. For every ε > 0 there is a
constant K = K(ε) > 0 such that if

a + b = c

for coprime integers a, b, c, then

max(|a|, |b|, |c|) ≤ Krad(abc)1+ε.

Corollary (asymptotic FLT ). If the abc conjecture is true then there
is an n0 ∈ N such that for n ≥ n0 the equation

xn + yn = zn

has no solution x, y, z ∈ N.

Proof. Let xn + yn = zn for some x, y, z ∈ N. Since max(xn, yn, zn) = zn

and rad(xnynzn) = rad(xyz) ≤ xyz ≤ z3, using the abc conjecture with
ε = 1 we get

zn ≤ Krad(xnynzn)2 ≤ Kz6

with a constant K which can be taken bigger than 1. Taking logarithms we
have

n ≤ log K

log z
+ 6 ≤ log K

log 2
+ 6

because log K > 0 and z ≥ 2. Thus we may set n0 = dlog K/ log 2e+ 7. 2

Of course, Wiles proved the FLT unconditionally for all n ≥ 3 but the
simplicity of the derivation shows the strength of the abc conjecture. Many
other consequences were derived from it.
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2.5 Remarks

Thorough presentation of Matiyasevich’s achievement was given by Davis
[8], see also Jones and Matijasevič [13] and Matijasevič [15]. The proof of
Fermat’s Last Theorem due to Wiles was published in [19] and [21]. For the
solution of Catalan’s conjecture see Mihăilescu [16] and expositions [4] and
[5] by Bilu. In the part on Pell equation we follow Hlawka, Schoißengeier
and Taschner [10] and in that on FLT for polynomials Lang [14]. For more
information on the abc conjecture see [22].
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Chapter 3

Geometry of numbers

In this chapter we present some arguments based on geometry and show
their applications in number theory. We prove Minkowski’s theorem, which
says that centrally symmetric convex body with large volume must contain
many lattice points, and deduce from it Lagrange’s theorem asserting that
every natural number is a sum of at most four squares. We present also
an arithmetic proof of Lagrange’s theorem. A geometric proof of the main
property of Farey fractions (it says that two consecutive Farey fractions have,
in an appropriate sense, smallest possible distance) is given. In conclusion
we discuss the asymptotic behaviors of the number of lattice points lying in a
circle and of the number of lattice points lying under a branch of hyperbola.

3.1 Lattices, Farey fractions and convex bod-

ies

A lattice Λ = Λ(B) in Rn with the base B = {v1, v2, . . . , vn}, where vi

are n linearly independent vectors in Rn, is the set of all integral linear
combinations of the vectors in the base:

Λ = {∑n
1 aivi : ai ∈ Z}.

The fundamental parallelepiped T = T (B) of Λ(B) is the set

T = {∑n
1 αivi : αi ∈ [0, 1)}.

Every u ∈ Rn has a unique expression as u =
∑

bivi with bi ∈ R and hence
a unique expression as u =

∑
aivi +

∑
αivi with ai ∈ Z and αi ∈ [0, 1) (write

32



bi = bbic+ {bi}). Thus the system

{z + T : z ∈ Λ}

of translated copies of T (here z + T = {z + t : t ∈ T}) is a set partition of
Rn, which means that each vector u ∈ Rn lies in exactly one set z + T .

Recall that the volume Vol(T ) of T = T (B) can be calculated as the
absolute value of the determinant of the matrix M(B) whose rows are the
vectors in B:

Vol(T ) = | det(M(B))|.

One lattice Λ has many bases and many fundamental parallelepipeds. We
show that their volumes are all equal and define a constant Vol(Λ), the volume
of the lattice Λ.

Proposition. If B1, B2 are two bases of a lattice Λ and T1, T2 are the cor-
responding fundamental parallelepipeds then

Vol(T1) = Vol(T2).

Proof. Let B1 = {v1, v2, . . . , vn}, B2 = {w1, w2, . . . , wn} and V = M(B1)
and W = M(B2) be the matrices of the bases (vectors of the bases are in the
rows). We express vectors of one base as integral linear combinations of the
vectors in the other base: vi =

∑
j aijwj and wi =

∑
j bijvj where aij and bij

are integers. In matrix notation,

V = AW and W = BV

where A = (aij) and B = (bij). Matrices V, W are regular. We write A =
V W−1, B = WV −1 and obtain that AB = BA = E, that is, A and B are
inverses of one another. Multiplication of determinants gives

det(A) det(B) = det(AB) = det(E) = 1.

But det(A), det(B) ∈ Z because A, B are integral matrices. Thus det(A) =
det(B) = ±1 and

Vol(T1) = | det(V )| = | det(A)| · | det(W )| = | det(W )| = Vol(T2).

2
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One of the simplest and most important examples of a lattice is Z2 =
{(a, b) : a, b ∈ Z}, the lattice of the lattice points in the plane R2. One
of its bases is the canonical base {(1, 0), (0, 1)} and so Vol(Z2) = 1. Using
properties of lattices we give a geometric proof of Cauchy’s theorem on Farey
fractions from chapter 1. We show that any two consecutive Farey fractions
a/b < c/d form a basis {(a, b), (c, d)} of Z2.

Another proof of Farey–Cauchy theorem. We prove that if a/b < c/d
are two fractions from the interval [0, 1] which are in lowest terms, have
denominators b, d ≤ n, and a/b < e/f < c/d holds for no other fraction e/f
with f ≤ n, then

bc− ad = 1.

Consider the plane vectors u = (a, b) and v = (c, d). We claim that the
triangle ∆ with the vertices (0, 0), u, and v contains no lattice points besides
its vertices. To show it, we write

∆ = {w ∈ R2 : w = αu + βv, 0 ≤ α, β ≤ 1, α + β ≤ 1}.

Let (e, f) ∈ ∆ ∩ Z2 and (e, f) 6= (0, 0). Then a/b ≤ e/f ≤ c/d. If e/f = a/b
then (e, f) = (a, b) because a, b are coprime. If the other equality occurs we
have similarly (e, f) = (c, d). If a/b < e/f < c/d then we have a contradiction
with the properties of a/b and c/d because f = αb + βd ≤ (α + β)n ≤ n.

We complete ∆ to the parallelogram

P = {αu + βv : α, β ∈ [0, 1]} = ∆ ∪∆′ where ∆′ = u + v −∆.

From ∆ ∩ Z2 = {(0, 0), u, v} it follows that ∆′ ∩ Z2 = {u, v, u + v} and
P ∩ Z2 = {(0, 0), u, v, u + v}. Hence for the fundamental parallelogram

T = {αu + βv : α, β ∈ [0, 1)}

of the lattice
Λ = Λ({u, v})

we have T ∩ Z2 = {(0, 0)}. It follows that the translates of T by the vectors
z ∈ Λ partition R2 and that Λ = Z2. Thus Vol(Λ) = Vol(Z2) = 1,

| det(M({u, v}))| = |ad− bc| = 1,

and bc− ad=1. 2
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A convex set B ⊂ Rn, usually called a convex body, contains with every
two of its points also the segment connecting them. B is centrally symmetric
if x ∈ B implies −x ∈ B and B is bounded if it lies in a ball. We shall consider
only measurable sets which have defined volume. The next basic result in
the geometry of numbers was obtained by Hermann Minkowski (1864–1909).

Theorem (Minkowski, 1891). If B ⊂ Rn is a convex body that is bounded
and centrally symmetric and Λ ⊂ Rn is a lattice satisfying 2nVol(Λ) <
Vol(B), then

B ∩ Λ 6= {(0, 0, . . . , 0)},

that is, B contains a point of the lattice different from the origin .

Proof. Let T be the fundamental parallelepiped of Λ, Bz = T ∩ (1
2
B + z),

and Cz = (T − z) ∩ 1
2
B. Clearly, Vol(Bz) = Vol(Cz) because Cz = Bz − z

and volume is shift-invariant. We have∑
z∈Λ

Vol(Bz) =
∑
z∈Λ

Vol(Cz) = Vol(1
2
B) = 2−nVol(B) > Vol(Λ) = Vol(T )

where the second equality follows from the fact that the sets Cz partition 1
2
B.

Both sums have only finitely many nonzero summands because 1
2
B intersects

only finitely many translates T − z, z ∈ Λ.
(If T = T ({v1, v2, . . . , vn}) then T certainly lies in the origin-centered

ball K(r) with the radius r = |v1| + |v2| + · · · + |vn|. Since B is bounded,
K(R) ⊃ 1

2
B for some R > 0. Thus every T − z, z ∈ Λ, intersecting 1

2
B must

lie in the ball K(R + r) and there are at most Vol(K(R + r))/Vol(T ) such
translates because they partition Rn.)

Since Bz ⊂ T for every z and the sum of the volumes Vol(Bz) exceeds
Vol(T ), the sets Bz, z ∈ Λ, cannot be pairwise disjoint. This means that
for two different points z1, z2 ∈ Λ we have (1

2
B + z1) ∩ (1

2
B + z2) 6= ∅. Thus

1
2
x1 + z1 = 1

2
x2 + z2 for two points x1, x2 ∈ B. This gives a point of Λ that

differs from the origin and lies in B:

B 3 1
2
(x1 − x2) = z2 − z1 ∈ Λ.

(The point 1
2
(x1−x2) is in B because it is the center of the segment connecting

the points x1 and −x2 lying in B, and it differs from the origin because
z1 6= z2.) 2
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3.2 Four-squares theorem

We shall use Minkowski’s theorem to prove a famous result belonging to
diophantine equations (and to additive number theory), Lagrange’s Four
Squares Theorem.

Theorem (Lagrange, 1770). For every number n ∈ N0 the equation

n = x2
1 + x2

2 + x2
3 + x2

4

has a solution x1, x2, x3, x4 ∈ Z.

Lemma. For every prime p the congruence

a2 + b2 + 1 ≡ 0 (mod p)

has a solution a, b ∈ Z.

Proof. For p = 2 we have solution 1, 0 and we may therefore assume that
p > 2. For a = 0, 1, . . . , (p− 1)/2, the numbers a2 are mutually incongruent
modulo p (a2

1 ≡ a2
2 is equivalent with (a1−a2)(a1+a2) ≡ 0 which is equivalent

with a1 ≡ ±a2) and the same holds for the numbers −a2 − 1. Together we
have

(p + 1)/2 + (p + 1)/2 = p + 1 > p

residues modulo p and a residue must be represented in both ways: a2 ≡
−b2 − 1 for some a, b ∈ {0, 1, . . . , (p− 1)/2}. 2

Corollary. For every squarefree number n = p1p2 . . . pr the congruence

a2 + b2 + 1 ≡ 0 (mod n)

has a solution a, b ∈ Z.

Proof. Recall the Chinese remainder theorem (CHRT): If m1, . . . ,mr ∈ N
are pairwise coprime moduli and M = m1m2 . . . mr, then for every r-tuple
of integers a1, . . . , ar the system of congruences x ≡ ai (mod mi), 1 ≤ i ≤ r,
has exactly one solution in the set 1, 2, . . . ,M . By the lemma there are
ai and bi satisfying the congruence modulo pi. By the CHRT there are
integers a and b which are modulo pi equal ai and bi, respectively, and thus
a2 + b2 + 1 ≡ 0 (mod pi) for every i = 1, . . . , r. But this implies (pi are
distinct) that a2 + b2 + 1 ≡ 0 (mod p1p2 . . . pr). 2
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Numbers of the form 8n+7 are not sums of three squares because modulo
8 squares produce only residues 0, 1, 4. It can be shown that, more generally,
numbers of the form 4r(8n + 7) are not sums of three squares either. Gauss
proved that every other number is a sum of three squares.

Geometric proof of the four squares theorem. It suffices to prove
it only for squarefree numbers n = p1p2 . . . pr (every n ∈ N has a unique
expression as n = s2m with squarefree m and then m =

∑4
1 x2

i gives n =∑4
1(sxi)

2). Let n be a squarefree number. Using the Corollary we take
a, b ∈ N such that a2 + b2 + 1 is a multiple of n. We shall work in R4 with
the lattice

Λ = Λ({u1, u2, u3, u4})

where

u1 = (n, 0, 0, 0), u2 = (0, n, 0, 0), u3 = (a, b, 1, 0), u4 = (b,−a, 0, 1).

It is clear that ui are linearly independent and that Vol(Λ) = n2 because the
matrix of the base is lower triangular.

The second thing we need for Minkowski’s theorem is a convex body
B. We set B = K(r), the origin-centered four-dimensional ball with radius
r > 0. Since

Vol(K(1)) = π2/2

(we take this formula for granted and shall not prove it by integration),
Vol(K(r)) = π2r4/2. The condition of Minkowski’s theorem on volumes
requires

π2r4

2
> 24n2,

which is the same as

r2 >
4
√

2

π
n = (1.80063 . . .)n.

We take an r defined by the equation

r2 = 1.9n.

The condition on volumes is then satisfied and other conditions on B =
K(r) (convexity and central symmetry) are satisfied as well. By Minkowski’s
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theorem there exists a z =
∑4

1 aiui ∈ Λ, with not all ai ∈ Z equal to zero,
that lies in K(r). In terms of coordinates,

0 < |z|2 = (a1n + a3a + a4b)
2 + (a2n + a3b− a4a)2 + a2

3 + a2
4 ≤ r2 < 2n.

Thus the integer |z|2 is a sum of four squares and lies in the interval [1, 2n−1].
But

|z|2 = a2
3(a

2 + b2 + 1) + a2
4(a

2 + b2 + 1) + 2a3a4ab− 2a3a4ab + n(· · ·)

shows that |z|2 is a multiple of n (because of the selection of a and b). The
only possibility is |z|2 = n and n is a sum of four squares. 2

For the second proof of Lagrange’s theorem we need a remarkable identity
due to Euler:

Lemma (Euler’s four squares identity).

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4)

= (x1y1 + x2y2 + x3y3 + x4y4)
2 + (x1y2 − x2y1 + x3y4 − x4y3)

2

+ (x1y3 − x3y1 + x2y4 − x4y2)
2 + (x1y4 − x4y1 + x2y3 − x3y2)

2.

Proof. Direct verification. 2

The identity shows that if each of two numbers a, b ∈ N0 is a sum of four
squares then so is their product ab.

Arithmetic proof of the four squares theorem. By the identity it
suffices to prove the theorem only for primes n = p. Since 2 = 12+12+02+02,
we may assume that p > 2. The argument of the above lemma (applied to
numbers a2 and −a2) shows that there are a, b ∈ {0, 1, . . . , (p − 1)/2} and
m ∈ N such that

mp = a2 + b2 = a2 + b2 + 02 + 02 = x2
1 + x2

2 + x2
3 + x2

4.

Clearly, 1 ≤ m < p/4 + p/4 = p/2. If m = 1, we are done. Let us assume
that 1 < m < p/2. We shall find a smaller nonzero multiple of p that is a
sum of four squares. Repeating this reduction, in the end we express p as a
sum of four squares.
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There are unique four integers yi such that

yi ≡ xi (mod m) and − m

2
< yi ≤

m

2
.

Since
∑4

1 y2
i ≡

∑4
1 x2

i ≡ 0 modulo m,

y2
1 + y2

2 + y2
3 + y2

4 = nm

for some n ∈ N0. We have 0 ≤ n ≤ m. We show that equalities here are
impossible. If n = 0 then all yi are zero and every xi is divisible by m. But
then

∑4
1 x2

i is a multiple of m2 and from
∑4

1 x2
i = mp we get that m divides p

which is not possible. If n = m then every yi equals m/2 and hence x2
i ≡ m2/4

modulo m2 (squaring xi = m/2+rim gives x2
i = m2/4+rim

2+r2
i m

2). Again,∑4
1 x2

i is a multiple of m2 which is not possible. Thus

0 < n < m.

Multiplying equations mp =
∑4

1 x2
i and nm =

∑4
1 y2

i we get

nm2p = (x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) = z2
1 + z2

2 + z2
3 + z2

4

where zi are expressed in terms of xi and yi in Euler’s four squares identity.
These expressions and congruences yi ≡ xi,

∑4
1 x2

i ≡ 0 modulo m imply that
every zi is a multiple of m: zi = mui, ui ∈ Z, i = 1, . . . , 4. Dividing the
displayed equality by m2 we get

np = u2
1 + u2

2 + u2
3 + u2

4.

Since 1 ≤ n < m, the promise is fulfilled. 2

Let r4(n) denote the number of solutions (x1, x2, x3, x4) ∈ Z4 of the equation

n = x2
1 + x2

2 + x2
3 + x2

4.

(Solutions differing only by signs or by order of summands are still counted
as different.) In 1829, Carl Jacobi (1804–1851) proved a miraculous identity:
If n ≥ 1 is an integer then

r4(n) = 8
∑

d|n, 4 6 |d
d.
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For example, for n = 12 we get r4(12) = 8(1 + 2 + 3 + 6) = 96 which agrees
with the representations 12 = 22 + 22 + 22 + 02 contributing 4 · 23 = 32
solutions and 12 = 32 +12 +12 +12 contributing 4 ·24 = 64 solutions. Euler’s
four squares identity is trivial to verify, once it is stated, but Jacobi’s identity
is difficult to prove. Indeed, its simple consequence is Lagrange’s theorem
saying that r4(n) > 0 for every n ∈ N: the sum in the identity always
contains summand 1 and thus in fact always r4(n) ≥ 8.

3.3 The circle problem and the divisor prob-

lem

Similarly, let r2(n) denote the number of solutions (x1, x2) ∈ Z2 of

n = x2
1 + x2

2,

that is, r2(n) counts expressions of n as a sum of two squares. What can be
said about the asymptotics of the summatory function∑

n≤x

r2(n)

when x → ∞? A geometric insight of Carl Friedrich Gauss (1777-1855)
provided an answer.

Theorem (Gauss, cca 1800). For x →∞,∑
n≤x

r2(n) = πx + O(x1/2).

Proof. The summand r2(n) is the number of the lattice points lying on
the origin-centered circle with radius

√
n and therefore the sum equals the

number of the lattice points in K where K is the disc with center in the origin
and radius

√
x. Let C be the set of all unit squares [a− 1

2
, a+ 1

2
]× [b− 1

2
, b+ 1

2
]

which have center (a, b) ∈ Z2 and intersect K. Let B be those of them which
have centers in K and A be those which lie completely in K. Then

A ⊂ B ⊂ C, |B| =
∑
n≤x

r2(n), and |A| ≤ Vol(K) = πx ≤ |C|.
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From this, |A| − |B| ≤ Vol(K)−∑
n≤x r2(n) ≤ |C| − |B| and∣∣∣∣∣∣

∑
n≤x

r2(n)− πx

∣∣∣∣∣∣ ≤ |C| − |A| = |C\A|.

The set C\A consists of the squares which intersect both K and the
complement of K. These squares all lie in the annulus

L = {z ∈ R2 :
√

x−
√

2 ≤ |z| ≤
√

x +
√

2}

because they intersect the boundary circle of K and unit square has diameter√
2. Thus

|C\A| ≤ Vol(L) = π((
√

x +
√

2)2 − (
√

x−
√

2)2) = 4
√

2π
√

x

and the bound on the error follows. 2

Dirichlet derived similar asymptotics for the sum∑
n≤x

d(n)

where d(n) is the number of divisors of n, which is the number of solutions
(a, b) ∈ N2 of the equation ab = n.

Theorem (Dirichlet, 1849). For x →∞,∑
n≤x

d(n) = x log x + (2γ − 1)x + O(x1/2).

Here γ = 0.57722 . . . is the Euler–Mascheroni constant that is defined in the
following lemma.

Lemma. For x →∞,

∑
n≤x

1

n
= log x + γ + O(x−1)

where γ > 0 is a constant.

41



Proof. From (n ∈ N)∫ n+1

n

dt

t
= log(1 + 1/n) =

1

n
+ z(n),

where z(n) = −n−2/2 + n−3/3− · · · = O(n−2) and is negative for big n, we
get (N ∈ N)

N∑
n=1

1

n
=

N∑
n=1

(∫ n+1

n

dt

t
− z(n)

)
=
∫ N+1

1

dt

t
−

∞∑
n=1

z(n) +
∑
n>N

z(n)

= log N + γ + O(1/N),

because log(N + 1) = log N + O(1/N),
∑∞

n=1 z(n) converges (to a sum γ),
and

∑
n>N z(n) = O(1/N) by a simple integral estimate. The asymptotics

still holds after replacing N ∈ N by x ∈ R, x > 0. 2

It is not known whether γ is an irrational number or not.

Proof of Dirichlet’s theorem. The summand d(n) is the number of the
lattice points on the branch of the hyperbola {(a, b) ∈ R2 : ab = n, a > 0}.
The sum is therefore equal to the number of the lattice points in the plane
region

A = {(a, b) ∈ R2 : ab ≤ x, a, b > 0}.

We write
A = B ∪ C

where

B = {(a, b) ∈ A : a ≤
√

x} and C = {(a, b) ∈ A : b ≤
√

x}.

The intersection B ∩C is the plane square K = (0,
√

x ]2. Regions B and C
are reflections of one another along the line a = b and therefore contain the
same numbers of lattice points. Thus∑

n≤x

d(n) = 2|Z2 ∩B| − |Z2 ∩K|

which equals

2
∑

n≤
√

x

⌊
x

n

⌋
− b

√
xc2.
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Omitting floors in the sum causes total error O(x1/2) because each of the
b
√

xc summands contributes error at most 1. Using the lemma we have

2
∑

n≤
√

x

⌊
x

n

⌋
= 2x

∑
n≤

√
x

1

n
+ O(x1/2)

= 2x(log
√

x + γ + O(x−1/2)) + O(x1/2)

= x log x + 2γx + O(x1/2).

Subtracting b
√

xc2 = x − 2
√

x{
√

x} + {
√

x}2 = x + O(x1/2) we obtain the
asymptotics. 2

The circle problem, resp. the divisor problem, asks to find the infimum of
all exponents α > 0 such that O(xα) is a valid estimate of the error in the
asymptotics of

∑
n≤x r2(n), resp. of

∑
n≤x d(n). The previous two theorems

show that both infima are ≤ 1
2
. Godfrey Hardy (1877-1947) proved that

they are ≥ 1
4
. Martin Huxley established in 2003 the current record in the

upper bound by proving that both infima are ≤ 131
416

(= 0.3149038 . . .). It is
conjectured that they are equal to 1

4
.

3.4 Remarks

The exposition follows mostly Hlawka, Schoißengeier and Taschner [10]. Hux-
ley’s record exponent is obtained in [11].
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Chapter 4

Prime numbers

We shall discuss properties of the multiplicative “atoms” in the world of
integers, the prime numbers. We give four proofs of the infinititude of their
number and prove the classical result of Chebyshev bounding the number
of primes up to x from below and from above by constant multiples of the
function x/ log x. Then we derive the asymptotic relations for

∑
p≤x log p/p,∑

p≤x 1/p and
∏

p≤x(1−1/p) due to Mertens. We show that natural numbers
n have in average log log n prime factors, no matter if we count them with
or without multiplicity, and that in fact almost all numbers n have log log n
prime factors (the Hardy–Ramanujan theorem).

4.1 Four proofs of the infinititude of primes

Primes
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . .

are those natural numbers n bigger than 1 which have only the trivial divisors
1 and n. We shall denote them by the letters p and q. The value of the
prime counting function π(x) is for x ∈ R defined as the number of primes
not exceeding x:

π(x) = #{p : p ≤ x}.

For example, π(−3) = π(1.9) = 0 and π(18) = 7. The importance of primes
stems from the fact that every n ∈ N has a unique prime factorization

n = pa1
1 pa2

2 . . . par
r
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where p1 < p2 < . . . < pr are distinct primes and ai ∈ N — this is so called
Fundamental Theorem of Arithmetic (FTA). Already Euclid could prove that
there are infinitely many primes.

Theorem (Euclid, cca 500 B.C.). There exist infinitely many prime
numbers.

We shall present four proofs.

1. Euclid’s proof. First note that every n ∈ N bigger than 1 is divisible
by a prime (take the minimal divisor of n bigger than 1). If there were only
finitely many primes p1, p2, . . . , pr, consider a prime divisor p of the number

p1p2 . . . pr + 1.

We must have p = pi for some i. Thus pi divides also 1, which is a contra-
diction. 2

2. Goldbach’s proof. Consider the recurrent sequence (Gn)n≥0 given by
G0 = 2 and

Gn = G0G1 . . . Gn−1 + 1 for n ∈ N.

Hence G0 = 2, G1 = 3, G2 = 7, G3 = 43 and so on. Clearly, if m < n then
Gm, Gn are coprime (because Gm divides Gn − 1). Selecting an arbitrary
prime divisor of each Gn, we get infinitely many primes that must be all
distinct. 2

This proof is usually cast with a slightly more complicated recurrent sequence
(Fn)n≥0,

F0 = 3 and Fn = F0F1 . . . Fn−1 + 2 for n ∈ N.

Now
F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537, . . . .

Again, the numbers Fn are pairwise coprime and produce infinitely many
primes. The advantage of Fn over Gn is that relation Fn+1 = (Fn−2)Fn+2 =
(Fn − 1)2 + 1 and induction give

Fn = 22n

+ 1.

So Fn, unlike Gn, can be defined by an explicit formula.
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Numbers Fn are called Fermat numbers and in the case that Fn is a prime
number it is called Fermat prime. One of the most interesting properties of
Fermat primes is the following result.

Theorem (Gauss, 1797; Wantzel, 1832). Regular plane k-gon can
be constructed by ruler and compass if and only if k = 2rp1p2 . . . ps where
r ∈ N0 and pi are distinct Fermat primes.

This beautiful result is often attributed completely to Gauss but although
Gauss stated it, he proved only the implication ⇐. The implication ⇒ was
proved by Pierre Wantzel (1814–1848). 1 The only Fermat primes known to
date are the five listed above, Fn with 0 ≤ n ≤ 4. It is not known if any Fn

for n > 4 is prime.

3. Euler’s proof, 1st variant. It is based on the Euler identity

∏
p

1

1− 1/ps
=

∞∑
n=1

1

ns

that holds for every real s > 1. We will not give a rigorous proof which is
not difficult. Note that on the left the p-th factor is the sum of the geomet-
ric series 1 + 1/ps + 1/p2s + · · ·. Multiplying the factors (and disregarding
convergence matters) we get, due to the FTA, the series on the right.

Suppose that there are only finitely many primes p1, . . . , pr and see what
happens with the identity if s → 1+. The left side has the finite limit

1

(1− p−1
1 )(1− p−1

2 ) . . . (1− p−1
r )

.

However, the right side goes to +∞ because its partial sums more and more
closely approximate partial sums of the divergent harmonic series

∑
1/n. We

have a contradiction and there must be infinitely many primes. 2

2nd variant of Euler’s proof. For two infinite series A =
∑

n≥0 an

and B =
∑

n≥0 bn of nonnegative real numbers we define the product series
C = AB as

C =
∑
n≥0

cn = a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · · ,

1Such pattern of (mis)attribution of results to people is an example of so called Matthew
effect (Matthew 25:29).
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that is, cn =
∑n

k=0 akbn−k. Clearly, if A and B converge then so does C
because

n∑
k=0

ck =
n∑

k=0

k∑
i=0

aibk−i ≤
n∑

k=0

ak

n∑
l=0

bl ≤
∞∑

k=0

ak

∞∑
l=0

bl.

For a finite product of more than two series we proceed similarly (or by
induction, if you wish).

Now suppose that there are only finitely many primes, p1, p2, . . . , pk, and
for i = 1, 2, . . . , k and s > 0 consider the geometric series

Si(s) =
∞∑

k=0

1

psk
i

.

It converges for every s > 0 and, by the just proved lemma, so does the
product series

S1(s)S2(s) . . . Sk(s) =
k∏

i=1

∞∑
l=0

1

psl
i

=
∞∑

n=1

1

ns

where the last equality follows from the definition of product series and from
the FTA. However, this is a contradiction because the last series is divergent
for 0 < s ≤ 1. 2

4. Erdős’ proof. Every n ∈ N can be written as n = r2s where r, s ∈ N
and s is squarefree (the representation is unique but we will not need this).
If n ≤ N , N ∈ N, then r attains at most

√
N values (because r2 ≤ n ≤ N)

and s attains at most 2π(N) values (the possible values of s correspond to
the subsets of the π(N)-element set of the primes not exceeding N because
s = p1p2 . . . pr for distinct primes pi ≤ N). Necessarily

√
N · 2π(N) ≥ N

because else there would not be enough representations r2s for all n ≤ N .
Thus

π(N) ≥ 1
2
log2 N

and π(x) →∞ as x →∞. 2

4.2 Theorems of Chebyshev and Mertens

In the last proof, invented by Paul (Pál) Erdős (1913–1996), a lower bound
on the prime counting function π(x) was derived. It is a rather weak one,
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though, as the next estimate shows. It is due to Pafnuty Lvovich Chebyshev
(1821–1894) 2 but the proof presented here, based on the properties of the

middle binomial coefficient
(

2n
n

)
, is due to Erdős.

Theorem (Chebyshev, 1850). For every x ≥ 2,

c1x

log x
< π(x) <

c2x

log x

where 0 < c1 < c2 are constants.

Proof (Erdős, 1936). Let n ∈ N. We have the estimate

4n

2n + 1
≤
(

2n

n

)
≤ 4n

because 4n = (1 + 1)2n =
∑2n

k=0

(
2n
k

)
and

(
2n
n

)
is the largest of the 2n + 1

binomial coefficients in the sum.
Chebyshev’s bounds are obtained by combining this with another esti-

mate of the middle binomial coefficient:

∏
n<p≤2n

p ≤
(

2n

n

)
≤ (2n)π(2n).

The lower bound in this estimate follows from the fact that in(
2n

n

)
=

(2n)!

(n!)2

the numerator contributes all primes from the interval (n, 2n] and they cannot
be canceled because the primes in the denominator are all ≤ n. To prove the
upper bound, we estimate pa, the highest power of a prime p dividing

(
2n
n

)
.

We claim that

a =
∞∑
i=1

b2n/pic − 2bn/pic =
∑

i, pi≤2n

b2n/pic − 2bn/pic.

This is a corollary of the formula b =
∑

i≥1bm/pic for the highest exponent
b ∈ N such that pb divides m! = 1 · 2 · . . . · m—the i-th summand counts

2Pafnutij Lvovič Čebyšev, Pafnuti� L~voviq Qebyxev.
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multiples of pi among the numbers 1, 2, . . . ,m. But 0 ≤ b2αc − 2bαc ≤ 1 for
every α ∈ R. Hence

a ≤
∑

i, pi≤2n

1 and therefore pa ≤ 2n.

Surprisingly, the prime powers in the factorization of
(

2n
n

)
are only as big as

if we factorized 2n. Every prime in the factorization is ≤ 2n. Thus we have
≤ π(2n) prime powers of size ≤ 2n and their product is ≤ (2n)π(2n).

Combining the two estimates of
(

2n
n

)
we get

(2n)π(2n) ≥ 4n

2n + 1
.

Taking logarithms, we obtain

π(2n) ≥ 2n · log 2

log(2n)
− log(2n + 1)

log(2n)
>

2n · log 2

log(2n)
− 2

and (for n ≥ 2)

π(2n− 1) = π(2n) >
2n · log 2

log(2n)
− 2 ≥ (2n− 1) · log 2

log(2n− 1)
− 2,

which is the lower bound of Chebyshev.
Combining the two estimates of

(
2n
n

)
in the other way and taking loga-

rithms we get ∑
n<p≤2n

log p ≤ n log 4.

To get an upper bound for the sum over all p ≤ x, x ≥ 2, we take the largest
m ∈ N such that 2m ≤ x. Then 2m+1 > x and

∑
p≤x

log p ≤
m∑

k=0

( ∑
2k<p≤2k+1

log p
)
≤ (20 + 21 + · · ·+ 2m) log 4 < 2m+1 log 4

≤ (2 log 4)x.

From this we have

(2 log 4)x ≥
∑
p≤x

log p ≥
∑

√
x<p≤x

log p ≥ (π(x)− π(
√

x)) log
√

x

≥ (π(x)−
√

x) log
√

x
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and therefore

π(x) ≤ (4 log 4)x

log x
+
√

x,

which is the upper bound of Chebyshev. 2

The precise asymptotics of π(x), the Prime Number Theorem, was proved
independently by Jacques Hadamard (1865–1963) and Charles de La Valée
Poussin (1866–1962).

Theorem (Hadamard, 1896; de La Valée Poussin, 1896). For x →
∞,

π(x) = (1 + o(1))
x

log x
.

We will not give the proof here.
The von Mangoldt function Λ : N → R, named after Hans von Mangoldt

(1854-1925), is defined by

Λ(n) =

{
log p if n = pr

0 else.

Lemma. For x →∞,∑
n≤x

Λ(n)bx/nc = log(bxc!) = x log x + O(x).

Proof. We write the summand bx/nc as the number of multiples of n not
exceeding x and then change the order of summation:∑

n≤x

Λ(n)
∑

m≤x,n|m
1 =

∑
m≤x

∑
n|m

Λ(n) =
∑
m≤x

log m = log(bxc!),

because for m = pa1
1 . . . par

r the last inner sum is

a1 log p1 + a2 log p2 + · · ·+ ar log pr = log m.

We proved the first equality. The asymptotics of log(bxc!) follows from a
simple integral estimate similar to the lemma on harmonic numbers. 2
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Useful summation technique described in the following lemma is due to
Niels Abel (1802–1829).

Lemma (Abel’s summation). If (an)n≥1 is a sequence of real numbers
with summatory function A(x) =

∑
n≤x an and f(x) is a real function which

has first derivative on the interval (1− ε,∞), then for every x ≥ 1 we have
the identity ∑

n≤x

anf(n) = A(x)f(x)−
∫ x

1
A(t)f ′(t) dt.

If r ≥ 1 and f(x) has first derivative on the interval (r − ε,∞), then for
every x ≥ r we have the identity

∑
r<n≤x

anf(n) = A(x)f(x)− A(r)f(r)−
∫ x

r
A(t)f ′(t) dt.

Proof. Let N = bxc. Note that A(0) = 0 and A(x) = A(N). Using the
relation an = A(n)− A(n− 1), we transform the sum:

∑
n≤x

anf(n) =
N∑

n=1

anf(n) =
N∑

n=1

(A(n)− A(n− 1))f(n)

=
N−1∑
n=1

A(n)(f(n)− f(n + 1)) + A(N)f(N)

= A(N)f(N)−
N−1∑
n=1

A(n)
∫ n+1

n
f ′(t) dt

= A(N)f(N)−
N−1∑
n=1

∫ n+1

n
A(t)f ′(t) dt

= A(N)f(N)−
∫ N

1
A(t)f ′(t) dt.

Since

A(N)f(N) = A(x)f(x)− A(N)(f(x)− f(N)) and∫ N

1
A(t)f ′(t) dt =

∫ x

1
A(t)f ′(t) dt−

∫ x

N
A(t)f ′(t) dt

=
∫ x

1
A(t)f ′(t) dt− A(N)(f(x)− f(N)),

51



the first identity follows. To obtain the second identity, extend f(x) arbi-
trarily so that it is defined and has first derivative on (1 − ε,∞) and sub-
tract the expression given by the first identity for

∑
n≤r anf(n) from that for∑

n≤x anf(n). 2

It is difficult to find the asymptotics of the sum π(x) =
∑

p≤x 1. But if
the summand goes reasonably to zero, precise asymptotics can be obtained
by simple means. Classical result of this type is due to Franz Mertens (1840–
1927).

Theorem (Mertens, 1874). As x → ∞, we have the following three
asymptotics.

1.
∑
p≤x

log p

p
= log x + O(1),

2.
∑
p≤x

1

p
= log log x + c + O(1/ log x),

3.
∏
p≤x

(
1− 1

p

)
=

d

log x
(1 + O(1/ log x))

where c, d are constants (of course, d > 0).

Proof. 1. By the lemma on Λ(n) and the definition of Λ(n),

x log x + O(x) =
∑
n≤x

Λ(n)bx/nc

= x
∑
p≤x

(log p)/p + O(x) +
∑

pr≤x,r≥2

(log p)bx/prc

(omitting floors in the first sum over primes not exceeding x creates an error
of size at most (log x)O(x/ log x) = O(x) because |Λ(n)| = log p ≤ log x and
by Chebyshev’s theorem the sum has O(x/ log x) summands). The second
sum is at most

x
∑

n,r≥2

log n

nr
≤ x(1 + 1/2 + 1/4 + 1/8 + · · ·)

∞∑
n=2

log n

n2
= O(x).

Dividing by x we obtain the first formula of Mertens.
2. To prove the second formula we set f(x) = 1/ log x and

an =


log p

p
if n = p

0 else.
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Note that the summatory function A(x) is the sum in the first Mertens’
formula. We have∑

p≤x

1

p
=
∑
p≤x

log p

p
· 1

log p
=

∑
1.5<n≤x

anf(n).

Using Abel’s summation and the asymptotics in 1 (we denote the error term
in it as z(x)), we get∑

p≤x

1

p
= A(x)f(x)− A(1.5)f(1.5)−

∫ x

1.5
A(t)f ′(t) dt

= 1 + O(1/ log x) +
∫ x

1.5

log t + z(t)

t log2 t
dt

= 1 + O(1/ log x) +
∫ x

1.5

dt

t log t
+
∫ ∞

1.5

z(t) dt

t log2 t
−
∫ ∞

x

z(t) dt

t log2 t
.

Because (log log t)′ = 1/(t log t), (−1/ log t)′ = 1/(t log2 t) and z(t) = O(1),
the first integral evaluates as log log x − log log 1.5, the second integral con-
verges to a constant c, and the third integral is O(1/ log x). Thus∑

p≤x

1

p
= log log x + 1− log log 1.5 + c + O(1/ log x)

and the second formula of Mertens follows.
3. Taking logarithm of the product and using expansion log(1 − x) =

−∑n≥1 xn/n we get

∑
p≤x

log(1− 1/p) = −
∑
p≤x

∑
k≥1

1/(kpk) = −
∑
p≤x

1

p
−

∑
p≤x,k>1

1

kpk

= −
∑
p≤x

1

p
−

∞∑
k=2

∑
p

1

kpk
+

∞∑
k=2

∑
p>x

1

kpk
.

The first term is − log log x + c1 + O(1/ log x) by part 2. The second sum
converges to c2 > 0 (in fact, c2 ≤

∑
n−2 = π2/6). The third sum is at most

∞∑
k=2

∑
n>x

1

nk
≤

∞∑
k=2

∫ ∞

x−1

dt

tk
=

∞∑
k=2

1

(k − 1)(x− 1)k−1
= O(1/x),

which is absorbed in O(1/ log x). So∑
p≤x

log(1− 1/p) = − log log x + c1 − c2 + O(1/ log x)
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and ∏
p≤x

(
1− 1

p

)
=

ec1−c2

log x
· eO(1/ log x) =

ec1−c2

log x
(1 + O(1/ log x)),

which is the third formula of Mertens. 2

In fact, the constant in the third formula is d = eγ where γ is the Euler–
Mascheroni constant.

4.3 Estimates of the functions ω(n) and Ω(n)

The functions ω and Ω measure the complexity of the prime factorization
n = pa1

1 pa2
2 . . . par

r of n ∈ N and are defined by

ω(n) = r and Ω(n) = a1 + a2 + · · ·+ ar.

So ω(n) is the number of prime factors of n and Ω(n) is their number including
the multiplicities. For example, ω(12) = 2 and Ω(12) = 3.

Lemma. For x →∞,∑
n≤x

ω(n) = x log log x + c1x + O(x/ log x) and

∑
n≤x

Ω(n) = x log log x + c2x + O(x/ log x)

where c1, c2 are constants.

Proof. We write ω(n) =
∑

p|n 1 and change order of summation. The first
sum then equals∑

n≤x

ω(n) =
∑
p≤x

∑
n≤x, p|n

1 =
∑
p≤x

bx/pc = x
∑
p≤x

1/p + O(x/ log x)

= x log log x + c1x + O(x/ log x).

(Omitting floors we make an error E, where |E| ≤ π(x) = O(x/ log x) by the
upper bound of Chebyshev. Then we use the second formula of Mertens.)

In the second sum we write similarly Ω(n) =
∑

pm|n 1 and change order of
summation: ∑

n≤x

Ω(n) =
∑

pm≤x

bx/pmc.
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We need to estimate the surplus sum

A(x) =
∑
n≤x

(Ω(n)− ω(n)) =
∑
p

∑
m≥2

bx/pmc.

On the one hand

A(x) ≤ x
∑
p

∑
m≥2

p−m = x
∑
p

1

p(p− 1)
.

On the other hand

A(x) ≥
∑

p≤
√

x

∑
2≤m≤log x/ log p

(xp−m − 1).

The inner sum equals

x
∑
m≥2

p−m − x
∑

m>log x/ log p

p−m + O(log x) =
x

p(p− 1)
− c + O(log x)

where 0 < c ≤ 2. Thus

A(x) ≥ x
∑
p

1

p(p− 1)
− x

∑
p>
√

x

1

p(p− 1)
+ O(

√
x log x)

= x
∑
p

1

p(p− 1)
+ O(

√
x log x)

because

x
∑

p>
√

x

1

p(p− 1)
≤ 2x

∑
n>

√
x

1

n2
≤ 2x

∫ ∞

√
x−1

t−2 dt = O(
√

x).

So A(x) = cx+O(
√

x log x), where c =
∑

p
1

p(p−1)
, and the second asymptotics

follows. 2

In average the numbers n ≤ x have 1
x

∑
n≤x ω(n) ∼ log log x prime divisors

and the same holds for the average value of Ω(n). Can it be inferred that
for almost all numbers n ≤ x we have ω(n), Ω(n) ≈ log log x? Yes. This
was proved by Godfrey Harold Hardy (1877–1947) and Srinivasa Ramanujan
(1887–1920). The proof that we present here is due to Paul Turán (1910–
1976).
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Theorem (Hardy and Ramanujan, 1917). For every ε > 0 there is an
x0 = x0(ε) such that for every x > x0,

#{n ≤ x : |ω(n)− log log x| < ε log log x} > (1− ε)x.

This remains true when ω(n) is replaced by Ω(n).

Before starting with the proof we justify the last claim. Suppose that the
theorem holds with ω(n) and fix ε > 0. Clearly ω(n) ≤ Ω(n) for every n.
By the proof of the previous lemma,

∑
n≤x(Ω(n)−ω(n)) = cx + O(

√
x log x)

with a constant c > 0. Thus for any fixed k ∈ N and sufficiently large x,
the inequality Ω(n) − ω(n) > 2k may hold only for at most cx/k numbers
n ≤ x. Hence ω(n) ≤ Ω(n) ≤ ω(n) + 2k holds for at least (1 − c/k)x
numbers n ≤ x, if x > x1(k). We fix k ∈ N so that c/k < ε. Then for
every big x satisfying x > x0(ε), x > x1(k) and 2k < ε log log x we have
|Ω(n) − log log x| ≤ |Ω(n) − ω(n)| + |ω(n) − log log x| < 2ε log log x for at
least (1−2ε)x numbers n ≤ x. Similarly it is easy to see that in the theorem
we may write log log n instead of log log x.

Proof (Turán, 1937). First, we derive an asymptotics for
∑

n≤x ω(n)2 as
x →∞. We represent the summand as ω(n)2 = (

∑
p|n 1)(

∑
q|n 1) =

∑
p|n,q|n 1

(because 12 = 1). Interchanging summation order and putting apart the
pairs p, q with p = q we get∑

n≤x

ω(n)2 =
∑
p6=q

∑
p|n,q|n,n≤x

1 +
∑
p=q

∑
p|n,q|n,n≤x

1

=
∑

pq≤x, p 6=q

bx/pqc+
∑

p=q≤x

bx/pc.

The first sum has at most 2x summands and omitting floors in it creates
an error O(x). Omitting the condition p 6= q increases it by at most∑

n≥1 x/n2 = O(x). By the previous lemma and its proof, the second sum
equals

∑
n≤x ω(n) = O(x log log x). Thus∑

n≤x

ω(n)2 = x
∑
pq≤x

1/pq + O(x log log x).

It is easy to see that( ∑
p≤
√

x

1/p
)2

≤
∑
pq≤x

1/pq ≤
(∑

p≤x

1/p
)2

.
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The second formula of Mertens shows that both the first and the third sum
are equal to log log x + O(1). Thus

x
∑
pq≤x

1/pq = x(log log x + O(1))2 = x(log log x)2 + O(x log log x)

and we conclude that∑
n≤x

ω(n)2 = x(log log x)2 + O(x log log x).

As a corollary, using again the previous lemma, we obtain∑
n≤x

(ω(n)− log log x)2 =
∑
n≤x

ω(n)2 − 2(log log x)
∑
n≤x

ω(n) +
∑
n≤x

(log log x)2

= x(log log x)2(1− 2 + 1) + O(x log log x)

= O(x log log x).

Now we prove the theorem and in fact in a stronger form. Let a(x) be
any real function satisfying a(x) → ∞ for x → ∞. We show that for any
ε > 0 there is an x0 = x0(ε) such that if x > x0,

#{n ≤ x : |ω(n)− log log x| < a(x)(log log x)1/2} > (1− ε)x.

Suppose that this claim does not hold. Thus there is an ε > 0 and an infinite
and to infinity going sequence 0 < x1 < x2 < . . . such that for every i,

#{n ≤ xi : |ω(n)− log log xi| ≥ a(xi)(log log xi)
1/2} ≥ εxi.

But this implies∑
n≤xi

(ω(n)− log log xi)
2 ≥ εxi · a(xi)

2 log log xi,

which contradicts the asymptotics
∑

n≤x(ω(n) − log log x)2 = O(x log log x)
because a(xi)

2 →∞ as i →∞. 2

Dirichlet’s theorem in chapter 3 implies that the average number of divi-
sors d(n) of the numbers n ≤ x is ≈ log x. Can it be inferred that for almost
all numbers n ≤ x one has d(n) ≈ log x? (As in the previous theorem, it is
irrelevant if we write here log x or log n because log x + log ε < log n ≤ log x
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for εx < n ≤ x.) No! Surprisingly, the correct typical value of d(n) is
considerably smaller:

d(n) ≈ (log n)log 2 = (log n)0.69314....

This follows from the Hardy–Ramanujan theorem.

Corollary. For every ε > 0 there is an x0 = x0(ε) such that if x > x0,

#{n ≤ x : (log n)log 2−ε < d(n) < (log n)log 2+ε} > (1− ε)x.

Proof. Let n ∈ N and n = pa1
1 pa2

2 . . . par
r . Then

d(n) = (a1 + 1)(a2 + 1) . . . (ar + 1).

Since 21 ≤ a + 1 ≤ 2a for every a ∈ N, we have

2ω(n) ≤ d(n) ≤ 2Ω(n).

Fix ε > 0. By the theorem, for big x for more than (1 − ε/2)x values of
n ≤ x the value ω(n) lies within ε log log n to log log n, and the same holds
for Ω(n). Hence for more than (1− ε)x values of n ≤ x both ω(n) and Ω(n)
are, simultaneously, within ε log log n to log log n. Using the estimate of d(n)
in terms of ω(n) and Ω(n) we see that for these n

(log n)(1−ε) log 2 = 2(1−ε) log log n < d(n) < 2(1+ε) log log n = (log n)(1+ε) log 2.

2

The second application of Hardy–Ramanujan’s theorem — so called
Erdős’s multiplication table problem — concerns asymptotics of the counting
function

A(x) = #{ab : a, b ∈ N, a, b ≤ x}.

We make, for x ∈ N, an x × x multiplication table with rows and columns
indexed with 1, 2, . . . , x. The number of cells is x2 but what is the total
number A(x) of distinct products in the table? There are repetitions, for
example 12 appears six times because 12 = 1 · 12 = 12 · 1 = 2 · 6 = 6 · 2 =
3 · 4 = 4 · 3 but on the other hand every prime number appears only twice.
Is the multiplicity of numbers in the table in average bounded, which means
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that A(x) > cx2 for all x ≥ 1 and some constant c > 0, or is it unbounded,
which means that A(x) = o(x2)?

Corollary. For x → ∞, A(x) = o(x2). Thus the average multiplicity of
products in the multiplication table goes to infinity.

Proof. We make use of the fact that Ω(n) is additive: Ω(mn) = Ω(m)+Ω(n).
If a, b are two typical numbers n ≤ x then, by the theorem, Ω(a), Ω(b) ≈
log log x and therefore

Ω(ab) = Ω(a) + Ω(b) ≈ 2 log log x.

On the other hand, if c is a typical number n ≤ x2, then

Ω(c) ≈ log log x2 = log log x + log 2,

which is asymptotically smaller than 2 log log x. It follows that the product
ab of two typical numbers n ≤ x is not a typical number n ≤ x2 and hence
we have only negligibly many products, o(x2).

More rigorous argument (demanded in the lecture). Fix ε with
0 < ε < 1/3. Let U(x) be the set of all n ≤ x for which |Ω(n)− log log x| <
ε log log x, and V (x) be the complement of U(x) (in {1, 2, . . . , x}). For x > x0

we have |U(x)| > (1−ε)x and |V (x)| ≤ εx. Consider the pairs (a, b), a, b ≤ x,
and the products ab. The number of pairs with a or b in V (x) is

2|U(x)| · |V (x)|+ |V (x)|2 ≤ (2ε + ε2)x2

and this is an upper bound on the number of distinct products ab with a or
b in V (x). If both factors a, b are in U(x) then

Ω(ab) = Ω(a) + Ω(b) = 2 log log x + E(a, b)

where |E(a, b)| ≤ 2ε log log x. Hence, for big enough x, then ab must be in
V (x2) and not in U(x2) because U(x2) contains only numbers n ≤ x2 whose
Ω(n) lies within ε log log x2 to log log x2 = log log x+ log 2. Thus the number
of distinct products ab with both a and b in U(x) is bounded by

|V (x2)| ≤ εx2.

Altogether we have at most (3ε+ε2)x2 distinct products in the table. Taking
ε arbitrarily small, we obtain the result. 2
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In 1960, P. Erdős proved that, more precisely,

A(x) =
x2

(log x)α+o(1)

where

α = 1− log(e log 2)

log 2
= 0.08607 . . . .

4.4 Remarks

Exposition in section 4.2 follows Hlawka, Schoißengeier and Taschner [10].
In section 4.3 we follow the classics of Hardy and Wright [9] and Tenenbaum
[20].
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Chapter 5

Congruences

After introducing basic properties of quadratic residues, we prove the
quadratic reciprocity law that relates solvability of the congruences x2 ≡ p
(mod q) and x2 ≡ q (mod p) for prime moduli p and q.

5.1 Quadratic residues and the quadratic

reciprocity law

Let p > 2 be an odd prime and a ∈ Z. If the congruence x2 ≡ a (mod p) has a
solution x ∈ Z, we say that a is a quadratic residue (modulo p). If it does not
have solution, a is a quadratic nonresidue (modulo p). For example, among
the nonzero residue classes 1, 2, . . . , 10 modulo 11, quadratic residues are
1, 3, 4, 5, and 9 because 12 ≡ 1, 22 ≡ 4, 32 ≡ 9, 42 ≡ 5, and 52 ≡ 3 (62, 72, . . .
give nothing new because 62 ≡ (−5)2 ≡ 52 and so on), and 2, 6, 7, 8, and 10
are quadratic nonresidues.

Proposition. For every prime p > 2 the set of nonzero residues Zp =
{1, 2, . . . , p− 1} contains the same number, (p− 1)/2, of quadratic residues
as quadratic nonresidues.

Proof. Consider the mapping x 7→ x2 (mod p) from Zp to itself. Every
y ∈ Zp has either no preimage or exactly two because x2

1 ≡ x2
2 modulo p

is equivalent with (x1 − x2)(x1 + x2) ≡ 0 and hence (p is a prime) with
x1 ≡ ±x2, and 1 6≡ −1 (p > 2). Thus there are (p− 1)/2 quadratic residues
and (p− 1)− (p− 1)/2 = (p− 1)/2 quadratic nonresidues. 2
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Legendre’s symbol
(

a
p

)
, named after Adrien-Marie Legendre (1752–1833),

is for a prime p > 2 and a ∈ Z not divisible by p defined by(
a

p

)
=

{
+1 . . . a is a quadratic residue
−1 . . . a is a quadratic nonresidue.

For a divisible by p we set
(

a
p

)
= 0. We prove basic properties of Legendre’s

symbol.

Proposition. Let p > 2 be a prime number and a, b be two integers.

1. If a ≡ b (mod p) then
(

a
p

)
=
(

b
p

)
.

2. (Euler’s criterion)
(

a
p

)
≡ a(p−1)/2 (mod p).

3.
(

ab
p

)
=
(

a
p

)
·
(

b
p

)
.

Proof. 1. This is trivial.
2. We may assume that a is not divisible by p, for else the congruence

holds trivially. We have ap−1 ≡ 1 (mod p) by Fermat’s little theorem, which
gives

(a(p−1)/2 − 1)(a(p−1)/2 + 1) ≡ 0 (mod p).

Thus a(p−1)/2 ≡ ±1 (mod p). If a is a quadratic residue modulo p, a ≡ c2, we
have a(p−1)/2 ≡ cp−1 ≡ 1, again by Fermat’s little theorem. The congruence
a(p−1)/2 ≡ 1 has no other solution besides the (p − 1)/2 quadratic residues
because the solutions are in fact roots of the polynomial x(p−1)/2− 1 over the
field Zp and a well-known theorem in algebra says that the number of roots
of a polynomial over a field is bounded by its degree. Thus no quadratic
nonresidue b is a solution of the congruence and necessarily b(p−1)/2 ≡ −1.

3. By part 2 we have, modulo p,(
ab

p

)
≡ (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 ≡

(
a

p

)(
b

p

)
.

Since the values of Legendre’s symbol are −1, 0, and 1 (and p > 2), we must
have equality. 2

Let p > 2 be a prime. We consider two systems of representatives of
nonzero residues modulo p:

M = {−p−1
2

,−p−1
2

+ 1, . . . ,−1, 1, 2, . . . , p−1
2
} and N = {1, 2, . . . , p− 1}.
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For a ∈ Z not divisible by p we define two sequences of elements from M
and N , respectively, both with length (p− 1)/2:

M(a) = (mk ∈ M : 1 ≤ k ≤ (p− 1)/2, mk ≡ ka (mod p)),

N(a) = (nk ∈ N : 1 ≤ k ≤ (p− 1)/2, nk ≡ ka (mod p)).

We set

m(a) = #(k : mk < 0) and n(a) = #(k : nk > p−1
2

).

It holds that m(a) = n(a) because if mk < 0 then nk = mk + p > (p− 1)/2
and if mk > 0 then nk = mk ≤ (p− 1)/2.

Changing signs of the negative terms in M(a), we obtain sequence M(a)+.
Similarly, N(a)′ is obtained from N(a) by replacing every term z bigger than
(p−1)/2 by p−z. Both sequences have terms in the set {1, 2, . . . , (p−1)/2}.
We claim that both M(a)+ and N(a)′ are in fact permutations of the numbers
1, 2, . . . , (p− 1)/2. Suppose that M(a)+ is not, which means that a number
appears in it twice and therefore mk ≡ ±ml modulo p for 1 ≤ k 6= l ≤
(p− 1)/2. But then ka ≡ ±la and (k ± l)a ≡ 0, which is impossible because
both factors are nonzero modulo p. The same argument works for N(a)′.

Proposition (Gauss’ lemma). If p > 2 is a prime and a ∈ Z is not
divisible by p, then (

a

p

)
= (−1)m(a) = (−1)n(a).

Proof. Since m(n) = n(n), it suffices to prove only the first equality. By
the definition of M(a) and M(a)+ and the property of M(a)+, modulo p we
have

((p− 1)/2)! =
∏

m∈M(a)+

m ≡ (−1)m(a)
(p−1)/2∏

k=1

ka

= (−1)m(a)((p− 1)/2)! · a(p−1)/2.

Since ((p− 1)/2)! is nonzero modulo p, we can cancel it on both sides. Using
Euler’s criterion (part 2 of the previous Proposition), we get

1 ≡ (−1)m(a)a(p−1)/2 ≡ (−1)m(a)
(

a

p

)
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and the equality follows. 2

For example, if p = 17 and a = 6 then

M(6) = (6,−5, 1, 7,−4, 2, 8,−3) and N(6) = (6, 12, 1, 7, 13, 2, 8, 14).

Thus m(6) = n(6) = 3 and
(

6
17

)
= (−1)3 = −1.

Proposition (supplements to the reciprocity law). Let p > 2 be a
prime. Then (−1

p

)
= (−1)(p−1)/2 =

{
+1 . . . p = 4n + 1
−1 . . . p = 4n + 3

and (
2

p

)
= (−1)(p2−1)/8 =

{
+1 . . . p = 8n + 1, 8n + 7
−1 . . . p = 8n + 3, 8n + 5.

Proof. The first supplement follows immediately from Euler’s criterion.
The second supplement follows from Gauss’ lemma because

n(2) =
p− 1

2
−#(1 ≤ k ≤ (p− 1)/2 : 2k ≤ (p− 1)/2) =

p− 1

2
−
⌊
p− 1

4

⌋
and therefore n(2) = 4n−2n = 2n if p = 8n+1, n(2) = 4n+1−2n = 2n+1
if p = 8n + 3, n(2) = 4n + 2 − (2n + 1) = 2n + 1 if p = 8n + 5, and
n(2) = 4n + 3− (2n + 1) = 2n + 2 if p = 8n + 7. 2

The following quadratic reciprocity law was known already to Euler and
Legendre but the first complete proof was found by the 19 years old C. F.
Gauss.

Theorem (Gauss, 1796). Let p, q > 2 be two distinct odd primes. Then

(
p

q

)
= (−1)(p−1)(q−1)/4

(
q

p

)
=


+
(

q
p

)
. . . p = 4m + 1 or q = 4n + 1

−
(

q
p

)
. . . p = 4m + 3 and q = 4n + 3.

For the proof we need two more lemmas.
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Lemma. Let a, b > 1 be two distinct, odd and coprime integers. Denote

S(a, b) =
(a−1)/2∑

i=1

⌊
ib

a

⌋
.

Then

S(a, b) + S(b, a) =
(a−1)/2∑

i=1

⌊
ib

a

⌋
+

(b−1)/2∑
i=1

⌊
ia

b

⌋
=

(a− 1)(b− 1)

4
.

Proof. Let a > b, α = (a− 1)/2, and β = (b− 1)/2. Consider this picture:

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

s s

s s ss

(0, 0)

(α, 0)

(0, β) C
B

A

y = bx/a

x

y

S(a, b) is the number of the lattice points in the triangle with the vertices
(0, 0), (α, 0), A = (α, αb/a), not counting lattice points on the x-axis. Sim-
ilarly, S(b, a) is the number of the lattice points in the triangle with the
vertices (0, 0), (0, β), B = (β, βb/a), not counting lattice points on the y-
axis. There are no lattice points on the segment joining (0, 0) and A besides
(0, 0) (which is not counted) because a and b are coprime. Also, there are
no lattice points inside the small triangle with the vertices B, A, C = (α, β)
because the y-coordinate of A, αb/a = (b − b/a)/2, lies between (b − 1)/2
and b/2. Thus S(a, b) + S(b, a) equals the number of the lattice points in
the rectangle with the vertices (0, 0), (α, 0), (α, β), (0, β), without the lattice
points on the axes, which is (a− 1)(b− 1)/4. 2

Lemma. Let p > 2 be a prime and a ∈ N be odd and not divisible by p.
Then (

a

p

)
= (−1)S(p,a)

65



where S(p, a) is the aforementioned sum.

Proof. Recall, for given p and a, the definition of the sequences N(a) and
N(a)′. We denote the sum of terms in N(a) which are ≤ (p− 1)/2 as r and
the sum of the remaining n(a) terms (bigger than (p− 1)/2) as s. Summing
all terms of N(a)′ we get the first equation

p2 − 1

8
= 1 + 2 + · · ·+ p− 1

2
= r + n(a)p− s

(N(a)′ is a permutation of 1, 2, . . . , (p− 1)/2). The k-th term nk of N(a) is
defined by the formula

ka = p

⌊
ka

p

⌋
+ nk.

Summing these equations for k = 1, 2, . . . , (p−1)/2, we get the second equa-
tion

a(p2 − 1)

8
= pS(p, a) + r + s.

Subtracting the first equation from the second equation we obtain

(a− 1)(p2 − 1)

8
= p(S(p, a)− n(a)) + 2s.

Since a and p are odd and (p2−1)/8 ∈ N, modulo 2 this shows that S(p, a) ≡
n(a). Using Gauss’ lemma we conclude that

(
a
p

)
= (−1)n(a) = (−1)S(p,a). 2

The proof of the quadratic reciprocity law is now immediate. By the second
lemma, (

q

p

)
= (−1)S(p,q) and

(
p

q

)
= (−1)S(q,p).

Taking product of these equalities and using the first lemma, we get(
q

p

)(
p

q

)
= (−1)S(p,q)+S(q,p) = (−1)(p−1)(q−1)/4,

or (because the values of the Legendre’s symbol are ±1)(
p

q

)
= (−1)(p−1)(q−1)/4

(
q

p

)
.

2
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5.2 Remarks

A great number of proofs of the quadratic reciprocity law was found. We
took one from Hardy and Wright [9]. For other proofs and other reciprocity
laws see the book [12] by Ireland and Rosen.
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Chapter 6

Integer partitions

Last chapter is devoted to the classical theory of integer partitions, which
originated in the works of L. Euler in the 18th century. After introducing
compositions (ordered decompositions of a number into sums of smaller num-
bers) and partitions (unordered decompositions), we turn our attention to
partitions. We recall Ferrers diagrams and give two proofs of Euler’s parti-
tion identity relating partitions with distinct parts and partitions with odd
parts. Then we present a rather general identity, due to Cohen and Rem-
mel, that subsumes Euler’s identity as a very special case. This identity is
proved by the inclusion-exclusion principle; in many other proofs we show
the strength of generating functions. We conclude with discussion of the
pentagonal identity. Its corollaries are surprising recurrences satisfied by the
sequences (p(n))n≥1 and (σ(n))n≥1 where p(n) counts partitions of n and σ(n)
is the sum of divisors of n.

6.1 Compositions and partitions

In how many ways can one express a natural number n as a sum of k natural
numbers, regarding expressions differing by order of summands as different?
In other words, what is the number of solutions (a1, a2, . . . , ak) ∈ Nk of the
equation n = a1 + a2 + · · · + ak? The number, we denote it c(n, k), is the
same as the coefficient of xn in the expansion of

(x + x2 + x3 + · · ·)k =
(

x

1− x

)k

= xk(1− x)−k.
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By the binomial formula this equals

xk
∑
m≥0

(
−k

m

)
(−x)m = xk

∑
m≥0

(−k)(−k − 1) . . . (−k −m + 1)

m!
(−x)m

=
∑
m≥0

(
k + m− 1

m

)
xk+m

=
∑
r≥k

(
r − 1

k − 1

)
xr

and thus

c(n, k) =

(
n− 1

k − 1

)
.

In total, for all k we have

c(n) = 2n−1 =
∑
k

(
n− 1

k − 1

)

expressions of n as a sum of natural summands. These expressions, in which
order of summands matters, are called compositions of n.

Expressions of n as a sum of natural numbers, in which order of summands
is irrelevant, are called (integer) partitions of n. We denote their number
p(n) and by p(n, k) we denote the number of partitions of n in k parts. For
example, 5 has c(5) = 16 compositions but only p(5) = 7 partitions:

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1.

We record partitions by weakly decreasing lists of numbers, with repetitions
indicated by exponents. So the partitions of 5 are (5), (4, 1), (3, 2), (3, 12),
(22, 1), (2, 13), and (15). The fact that λ is a partition of n is denoted as
λ ` n.
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In contrast with c(n) there is no simple formula for p(n). Euler noticed
the identity

∞∑
n=0

p(n)xn =
∞∏

n=1

1

1− xn

(we set p(0) = 1). To see it, note that the infinite product equals

(x1·1 + x2·1 + x3·1 + · · ·)(x1·2 + x2·2 + x3·2 + · · ·)(x1·3 + x2·3 + x3·3 + · · ·) . . .

and therefore, after multiplying through, the coefficient of xn is the number
of solutions (a1, . . . , an) ∈ Nn

0 of the equation

n = a1 + 2a2 + 3a3 + · · ·+ nan.

But this is exactly the number of ways how to express n as a sum of several
(maybe none) 1’s, several (maybe none) 2’s, . . . , several (well, one or none)
n’s, which by definition is p(n).

More generally, for a set A ⊂ N and n ∈ N we define p(n, A) to be the
number of partitions of n with parts in A. Then, similarly,

∞∑
n=0

p(n, A)xn =
∏
n∈A

1

1− xn
.

Even more general situation is when we are given a function f : N → N0

which tells us that the number n comes in f(n) colors and we define p(n, f)
as the number of colored partitions of n: p(n, f) is the number of solutions
ai,ji

∈ N0, 1 ≤ i ≤ n, 1 ≤ ji ≤ f(i) of the equation

n = a1,1 +a1,2 + · · ·+a1,f(1) +2(a2,1 + · · ·+a2,f(2))+ · · ·+n(an,1 + · · ·+an,f(n)).

Thus p(n,A) = p(n, χA) where χA is the characteristic function of the set A.
Now we get

∞∑
n=0

p(n, f)xn =
∞∏

n=1

1

(1− xn)f(n)
.

A simple but powerful tool for proving results on partitions is Ferrers
diagrams (named after Norman MacLeod Ferrers (1829-1903) ). A partition
of n is visualized by a left-intended array of n dots, where the dots are
grouped in rows according to the parts so that the lengths of rows weakly
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decrease from top to bottom. For example, the partitions 6 = 2 + 2 + 1 + 1,
6 = 3 + 2 + 1, and 17 = 5 + 5 + 5 + 2 have, respectively, Ferrers diagrams

• •
• •
•
•

• • •
• •
•

• • • • •
• • • • •
• • • • •
• •

Reading the diagram by columns instead of rows, we get the conjugate
partition of the same number. The partitions from our example have, re-
spectively, conjugates 6 = 4 + 2, 6 = 3 + 2 + 1 (the middle partition is
self-conjugate), and 17 = 4 + 4 + 3 + 3 + 3. Conjugation is an involutive
operation: conjugate of a conjugate is the original partition. If κ and λ are
conjugated partitions, then the size of the biggest part in κ is equal to the
number of parts in λ. Hence conjugation is a bijection between the set of
partitions of n in parts from the set {1, 2, . . . ,m} and the set of partitions
of n in at most m parts. Denoting the number of the latter partitions by
p≤m(n), we therefore have

p≤m(n) = p(n, {1, 2, . . . ,m}).

Thus ∑
n≥0

p≤m(n)xn =
1

(1− x)(1− x2) . . . (1− xm)
.

Let pm(n) be the number of partitions of n in exactly m parts. Since pm(n) =
p≤m(n)− p≤m−1(n),

∑
n≥0

pm(n)xn =
1

(1− x)(1− x2) . . . (1− xm)
− 1

(1− x)(1− x2) . . . (1− xm−1)

=
xm

(1− x)(1− x2) . . . (1− xm)
.

6.2 Euler’s identity and a metaidentity of Co-

hen and Remmel

There is a tremendous number of identities between numbers of various kinds
of partitions. We can present only few.
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Theorem (Euler, 1748). For every n ∈ N, the number r(n) of partitions
of n in mutually distinct parts equals the number l(n) of partitions of n in
odd parts (which may be repeated).

For example, 7 has 15 partitions, of which five have odd parts and five have
distinct parts:

7 = 7 (odd & distinct parts)

= 6 + 1 (distinct parts)

= 5 + 2 (distinct parts)

= 5 + 1 + 1 (odd parts)

= 4 + 3 (distinct parts)

= 4 + 2 + 1 (distinct parts)

= 4 + 1 + 1 + 1

= 3 + 3 + 1 (odd parts)

= 3 + 2 + 2

= 3 + 2 + 1 + 1

= 3 + 1 + 1 + 1 + 1 (odd parts)

= 2 + 2 + 2 + 1

= 2 + 2 + 1 + 1 + 1

= 2 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 + 1 (odd parts).

We give two proofs of Euler’s theorem. The third proof, by inclusion and
exclusion, will be subsumed in a much more general result.

1st proof by generating functions. Since l(n) = p(n, {1, 3, 5, . . .}), we
have ∑

n≥0

l(n)xn =
1

(1− x)(1− x3)(1− x5) . . .
.

This is equal to

(1− x2)(1− x4)(1− x6)(1− x8)(1− x10) . . .

(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6) . . .

72



which simplifies to

(1 + x)(1 + x2)(1 + x3)(1 + x4) . . .

because (1− x2k)/(1− xk) = 1 + xk. But it is clear that∑
n≥0

r(n)xn = (1 + x)(1 + x2)(1 + x3) . . .

and therefore
∑

n≥0 l(n)xn =
∑

n≥0 r(n)xn, l(n) = r(n) for every n. 2

2nd proof by bijection. We construct a bijection matching the partitions
of n having distinct parts with those having only odd parts. This will show
that they are the same in number. Let κ be a partition of n in distinct parts
and a be a part of κ. We write a = 2bc where b ∈ N0 and c ∈ N is odd
(this expression of a is unique) and replace a with 2b parts c. Doing this
with every part of κ, we obtain a partition λ of n with only odd parts. In
the other direction, if λ is a partition of n in odd parts and a is a part of λ,
we collect all a’s, let λ have m of them. The number m can be expressed (in
a unique way) as a sum of distinct powers of 2: m = 2u1 + 2u2 + · · · + 2ur

for some integers u1 > u2 > . . . > ur ≥ 0 (this is the binary expansion
of m). We replace the a’s in λ, a + a + · · · + a (m times), by the parts
2u1a + 2u2a + · · ·+ 2ura. Doing this with every part of λ, we get a partition
κ of n in distinct parts (the parts are distinct because the expression “power
of two × odd number” is unique). The two mappings that we defined are
inverses of one another and determine the desired bijection. 2

For example, for n = 7 the described bijection matches 7 with 7, 6 + 1 with
3 + 3 + 1, 5 + 2 with 5 + 1 + 1, 4 + 3 with 3 + 1 + 1 + 1 + 1, and 4 + 2 + 1
with 1 + 1 + 1 + 1 + 1 + 1 + 1.

Suppose X1, X2, . . . , Xk are finite sets, all contained in a finite superset
U . Then the principle of inclusion and exclusion (PIE) says that

|U\(X1 ∪ . . . ∪Xk)| =
∑

I⊂[k]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Xi

∣∣∣∣∣
= |U | − |X1| − · · · − |Xk|+ |X1 ∩X2|+ · · ·

([k] = {1, 2, . . . , k} and we define the intersection over the empty index set
I = ∅ as U). From the PIE formula we immediately obtain the following
identity.
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Corollary. Let X1, X2, . . . , Xk and Y1, Y2, . . . , Yk be two k-tuples of finite
subsets of a finite set U which for every I ⊂ [k] satisfy the condition∣∣∣∣∣⋂

i∈I

Xi

∣∣∣∣∣ =
∣∣∣∣∣⋂
i∈I

Yi

∣∣∣∣∣ .
Then

|U\(X1 ∪ . . . ∪Xk)| = |U\(Y1 ∪ . . . ∪ Yk)|.

This corollary can be used to give a third proof of Euler’s identity. However,
this would be a far cry from using the full potential of PIE. We demonstrate it
in the next general result which contains Euler’s identity as a very particular
case. First we need some definitions.

A multiset is a pairA = (A, f) where A ⊂ N is a finite set and f : A → N
is the multiplicity mapping that tells us how many times a ∈ A appears in
A. We define its norm by

‖A‖ =
∑
a∈A

af(a).

In fact, A is a partition of its norm. We write

A = (A, f) ⊃ B = (B, g)

(A contains B) if A ⊃ B and f(a) ≥ g(a) for every a ∈ B. If A ⊃ B, we
define

A− B = (C, h)

by C = {a ∈ A : f(a) > g(a)} and h(a) = f(a)− g(a) (for a ∈ A\B we set
g(a) = 0). For several multisets Ai = (Ai, fi), i = 1, 2, . . . , k, we define their
union and sum by

A1 ∪ . . . ∪ Ak = (A1 ∪ . . . ∪ Ak, max fi)

A1 + . . . +Ak = (A1 ∪ . . . ∪ Ak,
∑

fi)

where (max fi)(a) = max(f1(a), . . . , fk(a)) and (
∑

fi)(a) = f1(a)+· · ·+fk(a)
(again, the undefined values fi(a) are set to 0). Observe that

A ⊃ Ai for every i ∈ [k] ⇐⇒ A ⊃ A1 ∪ . . . ∪ Ak.
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Now we can formulate a remarkable general identity, obtained by Daniel
Cohen and Jeffrey Remmel.

Theorem (Cohen, 1981; Remmel, 1982). Let A = (A1,A2, . . .) and
B = (B1,B2, . . .) be two infinite sequences of multisets (partitions) which for
every finite I ⊂ N satisfy the condition∥∥∥∥∥⋃

i∈I

Ai

∥∥∥∥∥ =

∥∥∥∥∥⋃
i∈I

Bi

∥∥∥∥∥ .

Then for every n ∈ N,

#{λ ` n : λ 6⊃ Ai for i = 1, 2, . . .} = #{λ ` n : λ 6⊃ Bi for i = 1, 2, . . .},

that is, the number of the partitions of n containing no partition from the
sequence A equals the number of the partitions of n containing no partition
from the sequence B.

Proof. Let n ∈ N be fixed and U be the set of all partitions λ of n,
Xi = {λ ∈ U : λ ⊃ Ai}, and Yi = {λ ∈ U : λ ⊃ Bi}. For a finite set of
indices 1 ≤ i1 < i2 < . . . < ik we consider the sets

R = Xi1 ∩Xi2 ∩ . . . ∩Xik and S = Yi1 ∩ Yi2 ∩ . . . ∩ Yik .

By the above observation,

R = {λ ∈ U : λ ⊃ Ai1 ∪ . . . ∪ Aik} and S = {λ ∈ U : λ ⊃ Bi1 ∪ . . . ∪ Bik}.

For every λ ∈ R, the partition

λ′ = (λ−Ai1 ∪ . . . ∪ Aik) + Bi1 ∪ . . . ∪ Bik

lies in S. Similarly, for every κ ∈ S, the partition

κ′ = (κ− Bi1 ∪ . . . ∪ Bik) +Ai1 ∪ . . . ∪ Aik

lies in R. (The condition on the sequences A and B ensures that the norm of
the partition (multiset) is not changed when we subtract Ais and then add
the corresponding Bis). These mappings λ 7→ λ′ and κ 7→ κ′ are inverses of
one another and they establish a bijection between R and S. Thus, for every
finite set of indices 1 ≤ i1 < i2 < . . . < ik, |R| = |S|. By the above corollary
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of PIE we have |U\(X1 ∪ X2 ∪ . . .)| = |U\(Y1 ∪ Y2 ∪ . . .)| (both unions are
effectively finite) which we wanted to prove. 2

There is a simple method to construct nontrivial pairs of sequences A and
B satisfying the condition in the theorem. Note that for mutually disjoint
multisets A1, . . . ,Ak (this means that Ai ∩ Aj = ∅ for i 6= j) the union is
equal to the sum and the norm of the union is the sum of the norms. So
if A and B are sequences of pairwise disjoint multisets then the condition
is satisfied if and only if ‖Ai‖ = ‖Bi‖ for every i ∈ N. We call this the
disjoint satisfaction of the condition. Thus to obtain a nontrivial pair A and
B satisfying the condition, we simply take a sequence A = (A1,A2, . . .) of
pairwise disjoint multisets and obtain B by splitting some of the parts in
some Ais so that disjointness is preserved. Of course, the condition may be
satisfied in some more complicated, not necessarily disjoint, ways.

We give four instances of the metaidentity. In the first three examples
the condition on A and B is satisfied disjointly and in the last example it is
satisfied in a more complicated way.

• (Glaisher’s identity1 ) For d ∈ N, d ≥ 2, consider

A = ({d}, {2d}, {3d}, . . .)
B = ({1, 1, . . . , 1}, {2, 2, . . . , 2}, {3, 3, . . . , 3}, . . .)

where in B all multiplicities are d. Every n has as many partitions in
parts not divisible by d as partitions in which no part appears more than
d− 1 times. For d = 2 this is precisely Euler’s identity.

• Consider

A = ({1}, {4}, {9}, {16}, . . .)
B = ({1}, {2, 2}, {3, 3, 3}, {4, 4, 4, 4}, . . .).

Every n has as many partitions in which no part is a square as parti-
tions in which every part m appears at most m− 1 times.

• (Schur’s identity2 ) Consider

A = ({2}, {3}, {4}, {6}, {8}, {9}, {10}, {12}, {14}, . . .)
B = ({1, 1}, {3}, {2, 2}, {6}, {4, 4}, {9}, {5, 5}, {12}, {7, 7}, . . .).

1Named after John Glaisher (1848-1928).
2Named after Issai Schur (1875-1941).
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Every n has as many partitions in parts ≡ ±1 (mod 6) as partitions in
distinct parts ≡ ±1 (mod 3).

• Consider

A = ({1, 1, 1, 1}, {1, 1, 2, 2}, {2, 2, 2, 2}, {2, 2, 3, 3, }, {3, 3, 3, 3}, . . .)
B = ({2, 2}, {2, 4}, {4, 4}, {4, 6}, {6, 6}, . . .).

Every n has as many partitions in which parts are repeated at most
thrice and in which in every two consecutive parts one of them is not
repeated, as partitions in which even parts differ at least by 4 (and are
not repeated, odd parts are not restricted).

6.3 The pentagonal identity

The last topic in the course is Euler’s pentagonal identity. Pentagonal num-
bers are numbers

1, 2, 5, 7, 12, 15, 22, 26, . . .

which are obtained as initial sums of two arithmetic progressions with differ-
ence 3: 5 = 1 + 4, 12 = 1 + 4 + 7, 22 = 1 + 4 + 7 + 10, etc. and 7 = 2 + 5,
15 = 2 + 5 + 8, 26 = 2 + 5 + 8 + 11 etc. Explicitly, pentagonal numbers are
given by the formulae

3m2 + m

2
for m ∈ Z\{0} or

3m2 ±m

2
for m ∈ N.

They count dots in diagrams of nested pentagons (which I am unable to
draw) and hence their name. If one should remember only one partition
identity, then it must be the following celebrated Euler’s pentagonal identity.

Theorem (Euler, 1750). Let ω(m) = (3m2 + m)/2. The following three
statements hold (and express the same fact in different formulations).

1.

∞∏
n=1

(1− xn) = 1 +
∞∑

m=1

(−1)m(xω(m) + xω(−m)) =
∞∑

m=−∞
(−1)mxω(m).
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2. Nonpentagonal n ∈ N has as many partitions in an even number of
distinct parts as partitions in an odd number of distinct parts. For
pentagonal n = ω(±m) the number of the former partitions exceeds the
number of the latter partitions by (−1)m.

3. For every n ∈ N we have the recurrence (p(n) is the number of parti-
tions of n)

p(n) = p(n−1)+p(n−2)−p(n−5)−p(n−7)+p(n−12)+p(n−15)−· · ·

where we set p(m) = 0 for m < 0 and p(0) = 1.

First, let us show that parts 1, 2, and 3 are saying the same thing in different
words. Multiplying through the infinite product in 1, we get (as in the 1st
proof of Euler’s identity) that

∞∏
n=1

(1− xn) = 1 +
∑
n≥1

r±(n)xn

where r±(n) is the number of partitions of n in an even number of distinct
parts minus the number of partitions of n in an odd number of distinct parts.
Now it is clear that parts 1 and 2 are saying the same thing.

To see that 2 ⇐⇒ 3, recall that

1 +
∞∑

n=1

p(n)xn =
1

(1− x)(1− x2)(1− x3) . . .
.

Moving the denominator on the other side, we get(
1 +

∑
n≥1

r±(n)xn
)(

1 +
∞∑

n=1

p(n)xn
)

= 1

which is the same as

p(n) + r±(1)p(n− 1) + r±(2)p(n− 2) + · · ·+ r±(n)p(0) = 0

for n ≥ 1 (and p(0) = 1). If part 2 holds then we know that r±(n) = 0 for
n 6= ω(±m) and r±(n) = (−1)m for n = ω(±m) and get recurrence in part
3. If part 3 holds, we restate the recurrence in the language of power series
as (

1 +
∞∑

m=1

(−1)m(xω(m) + xω(−m))
)(

1 +
∞∑

n=1

p(n)xn
)

= 1.
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Thus

1 +
∑
n≥1

r±(n)xn and 1 +
∞∑

m=1

(−1)m(xω(m) + xω(−m))

are both multiplicative inverses of 1 +
∑

n≥1 p(n)xn and hence must be equal
as power series, coefficient by coefficient. This gives part 2.

It remains to prove one of the claims in 1, 2, or 3. Euler proved the
identity in 1 by manipulating power series. A beautiful combinatorial proof
of the identity in part 2 was found by Fabian Franklin (1853-1939).

Proof of part 2 (Franklin, 1881). Let U be the set of partitions λ of
n with distinct parts. We shall define a pairing P of the elements in U in
pairs with these properties: (i) the pairs (κ, λ) are mutually disjoint; (ii)
they cover the whole U if n is not pentagonal, for n = ω(±m) exactly one
partition is left out by P and its number of parts has the same parity as m;
and (iii) the numbers of parts of the two partitions in each pair (κ, λ) have
different parities. Existence of such pairing P proves 2.

We define P by means of the base and the slope of the Ferrers diagram
of a partition λ ∈ U . The base b of λ is the lowest row of dots and its size
|b|, the number of dots in it, is the smallest part of λ. The slope s of λ is the
longest south-west going straight segment of dots that starts in the rightmost
dot in the top row. Thus if m is the biggest part of λ, the size |s| of the slope
is the maximum t ∈ N such that m, m− 1, m− 2, . . . m− t + 1 are parts of
λ.

We define two partial (i.e., not always defined) mappings A, B : U → U .
If λ ∈ U and |s| < |b|, we obtain A(λ) by moving the slope of λ to the bottom
to form the new base. If |s| ≥ |b|, we obtain B(λ) by moving the base of λ
to the upper right to form the new slope. For example,

• • • • • • •
• • • • • •
• • • •
• • •

is sent by A to

• • • • • •
• • • • •
• • • •
• • •
• •

and
• • •
• •
•

is sent by B to
• • • •
• •

79



Mappings A and B are defined correctly if the base and the slope of λ are
disjoint. However, there may be a problem if they intersect. If |s| = |b|−1 and
s∩ b 6= ∅, by applying A we get Ferrers diagram with repeated smallest part,
which is not an element of U and we must leave A undefined. If |s| < |b| − 1
and s ∩ b 6= ∅, there is no problem with A. If |s| > |b| and s ∩ b 6= ∅,
as in our example, there is no problem with B. However, if |s| = |b| and
s ∩ b 6= ∅, application of B does not even produce Ferrers diagram and we
leave B undefined. The former bad case occurs for the partition (we denote
|b| = m + 1) (m + 1) + (m + 2) + · · · + 2m = ω(m) and the latter one for
(|b| = m) m + (m + 1) + · · ·+ (2m− 1) = ω(−m).

If n is not pentagonal, for every λ ∈ U exactly one of the mappings A
and B is defined and applying A (B) to λ, we get κ ∈ U on which B (A)
is defined. Moreover, B(A(λ)) = λ and A(B(λ)) = λ. A increases and B
decreases the number of parts by one. Thus the pairing P on U consisting
of the pairs (λ, A(λ)) and (λ, B(λ)) (depending on which one of A and B
is defined on λ) has the required properties (i)–(iii). If n is pentagonal,
n = ω(m) (n = ω(−m)) for m ∈ N, we have the same situation with
the difference that on the single partition (m + 1) + (m + 2) + · · · + 2m
(m + (m + 1) + · · ·+ (2m− 1)) neither A nor B is defined. This partition is
left out by the pairing and again (i)–(iii) are satisfied. 2

We conclude these lecture notes with a remarkable identity for the func-
tion σ(n) of sum of divisors of n,

σ(n) =
∑
d|n

d,

discovered again by Euler. Surprisingly, σ(n) satisfies the same recurrence
as p(n)! Well, not completely the same since it is a rather different function.

Theorem (Euler, 1750). For every n ∈ N we have the recurrence

σ(n) = σ(n−1)+σ(n−2)−σ(n−5)−σ(n−7)+σ(n−12)+σ(n−15)−· · ·
where σ(m) = 0 for m < 0 and if the term σ(0) appears in the right side
(i.e., if n is pentagonal), we define it as σ(0) = σ(n− n) = n.

For example, we have σ(15) = 1 + 3 + 5 + 15 = 24 and

σ(15) = σ(14) + σ(13)− σ(10)− σ(8) + σ(3) + σ(0)

= 24 + 14− 18− 15 + 4 + 15

= 24.
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Proof. We take the logarithmic derivative of Euler’s pentagonal identity in
the form 1,

∞∏
n=1

(1− xn) = 1 +
∞∑

m=1

(−1)m(xω(m) + xω(−m)),

more precisely we apply the operator −x · d
dx

log on both sides and get

∞∑
n=1

nxn

1− xn
=
( ∞∑

m=1

(−1)m+1(ω(m)xω(m) + ω(−m)xω(−m))
)
/D

where D = 1 +
∑

m≥1(−1)m(xω(m) + xω(−m)). The power series on the left
side (called Lambert series3 ) equals

∞∑
n=1

∞∑
m=1

nxmn =
∞∑

n=1

σ(n)xn.

Moving the denominator D on the other side we get(
1 +

∑
m≥1

(−1)m(xω(m) + xω(−m))
) ∞∑

n=1

σ(n)xn

=
∞∑

m=1

(−1)m+1(ω(m)xω(m) + ω(−m)xω(−m)).

Comparing the coefficients of xn on both sides we get equation

σ(n)− σ(n− 1)− σ(n− 2) + σ(n− 5) + σ(n− 7)− · · · = 0

for n 6= ω(±m) and

σ(n)− σ(n− 1)− σ(n− 2) + σ(n− 5) + σ(n− 7)− · · · = (−1)m+1n

for n = ω(±m). 2

6.4 Remarks

The Cohen–Remmel identity was derived in [7] and [17]. By Bell [3], Euler’s
pentagonal identity is mentioned first time in a letter from D. Bernoulli to

3Named after Johann Lambert (1728–1777).
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Euler dated January 28, 1741 (the letters from Euler to D. Bernouli in this
correspondence are not extant). It took several years before Euler could
produce a proof, which he did in 1750 in a letter to Ch. Goldbach. Euler’s
recurrence for the sum of divisors function was mentioned by him first in 1747
in a letter to Ch. Goldbach. More information on the theory of partitions
can be found in the books by Andrews [1] and by Andrews and Eriksson [2].
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