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Abstract

Davenport-Schinzel sequences DS(s) are finite sequences of some symbols with no immediate

repetition and with no alternating subsequence (i.e. of the type ababab . . .) of the length s. This

concept based on a geometrical motivation is due to Davenport and Schinzel in the middle of sixties.

In the late eighties strong lower and upper (superlinear) bounds on the maximum length of the DS(s)

sequences on n symbols were found. DS(s) sequences are well known to computer geometrists because

of their application to the estimates of the complexity of the lower envelopes.

Here we summarize some properties of the generalization of this concept and prove that the ex-

tremal functions of aa . . . abb . . . baa . . . abb . . . b grow linearly.

1 Introduction, motivation and notation

We will consider finite sequences u, v, w . . . consisting of arbitrary symbols a, b, c, . . . and we will

consider Extremal Theory of such sequences defined as follows. If u = a0a1 . . . am is a sequence then

S(u) :=
⋃i=m

i=0 {ai} is the set of all symbols appearing in u, ‖u‖ := |S(u)| is the number of symbols

and |u| := m + 1 is the length of u. Thus ‖u‖ ≤ |u| for any u.

If v = b0b1 . . . br is another such a sequence then u ≺ v (v contains u) if there is an increasing injec-

tion f : {0, 1, . . . ,m} → {0, 1, . . . , r} and an injection g : S(u) → S(v) such that

g(ai) = bf(i) for any i = 0, 1, . . . ,m. We say that u = a0a1 . . . am is a chain if ai 6= aj for any i

and j. The sequence u = aa . . . a, |u| = i ≥ 1 will be in sequel denoted by ai.

The extremal function, for a given sequence u with ‖u‖ = k, is defined by

Ex(u, n) = max
(1)−(3)

|v|

1



where v satisfies

(1) ‖v‖ ≤ n

(2) u 6≺ v

(3) If v = b0b1 . . . br and bi = bj , i > j then i− j ≥ k.

The condition (3) forbidding local repetitions ensures that Ex(u, n) is defined for any n ≥ 1. Moreover

(3) generalizes naturally the situation for k = 2 for Davenport-Schinzel sequences. Sequences satisfying

(3) for given k will be called k-regular. Thus sequences with no immediate repetition are 2-regular.

Examples: Ex(u, n) is constant iff u is a chain. If u is not a chain then Ex(u, n) ≥ n. One sees

immediately that Ex(ai, n) = (i− 1)n. It is also easy to prove (see [5]) that Ex(abab, n) = 2n− 1. It

is not difficult to prove

Lemma 1.1 ([1]) If u, v, u ≺ v are two sequences then Ex(u, n) = O(Ex(v, n)).

An instance of this function was investigated at first by Davenport and Schinzel [5], they considered

the case u = abab, ababa, . . ., our generalization was introduced in [1].

Why extremal functions for sequences? Turán Theory concerns graphs and hypergraphs and it is

rich on deep theorems and difficult problems, see [6] and [4]. We think that combinatorial structures

different from set systems also deserve interest and that a lot of work might be done in this respect.

Actually for the alternating sequences u = ababa . . . of the length s, we shall denote them by al(s),

this work has been done and today we know that

1. Ex(a, n) = 0, Ex(ab, n) = 1, Ex(aba, n) = n (trivial) and Ex(abab, n) = 2n− 1 (easy, see above)

2. [7] Ex(ababa, n) = Θ(n.α(n))

3. [3] Ex(ababab, n) = Θ(n.2α(n))

4. [3] Ω(n.2Ks.α(n)
s−4
2 +Qs(n)) = Ex(al(s), n) ≤ n.2α(n)

s−4
2 +Cs(n) for s ≥ 6 even

5. [3] Ω(n.2Ks−1.α(n)
s−5
2 +Qs−1(n)) = Ex(al(s), n) ≤ n.2α(n)

s−5
2 . log2(n)+Cs(n) for s ≥ 5 odd

where Qs(n) and Cs(n) are asymptotically smaller than the main terms, Ks = 1/( s−4
2 )! and α(n),

the functional inverse to the Ackermann function, grows to infinity extremally slowly. Davenport and

Schinzel [5] gave for Ex(al(s), n) the estimate O(n. exp
√

log n) which was subsequently improved by
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Szemerédi [13] to O(n. log∗ n). The estimate 2. due to Hart and Sharir was a great breakhrough in

the field, it shows that the growth rate of Ex(al(s), n) is linear from the practical point of view but

that it is superlinear in theory. The primar motivation of Davenport and Schinzel lay in geometry

and Davenport-Schinzel sequences found many applications in computational geometry ([2]).

The above deep results concern however only the restricted case of alternating sequences over two

symbols. One may ask for instance whether there are other interesting sequences u different from

ai, abab such that Ex(u, n) = O(n), in particular whether Ex(aibiaibi, n) = O(n). We give a proof of

this fact in the third section. In the second section we present some problems and other interesting

properties of Ex(u, n).

2 Properties of Ex(u,n)

Growth rate of Ex(u, n)

An easy pigeon hole argumentation implies that Ex(u, n) ≤ ‖u‖.((|u| − 1)
( n
‖u‖

)
+ 1) [1]. A relatively

easy argument [8] shows that Ex(u, n) = O(n2) for any fixed u. A slight generalization of the Sharir’s

method [12] gives

Theorem 2.1 ([8]) Ex(u, n) ≤ n.2O(α(n)|u|−4) for any fixed sequence u.

Hence Ex(u, n) is almost almost linear for any fixed u.

Class Lin

It is natural to introduce [1] the set

Lin = {u : Ex(u, n) = O(n) }.

For instance ai, abab ∈ Lin and ababa 6∈ Lin. In the third section we prove that aibiaibi ∈ Lin. We

call the elements of Lin linear sequences, the nonelements will be called nonlinear sequences.

Problem 2.2 Chracterize the set Lin. (?)

Operations

Theorem 2.3
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1. boundary expansion [1] Suppose that u1 = au, u2 = aiu are sequences and a is a symbol. Then

Ex(u1, n) ≤ Ex(u2, n) ≤ Ex(u1, n) + O(n).

Similarily for u1 = ua.

2. restricted middle expansion [1] Let similarily u1 = uaav, u2 = uaiv, i ≥ 2. Then

Ex(u1, n) ≤ Ex(u2, n) ≤ c.Ex(u1, n).

3. middle insert [11] Suppose that u1 = uaav, w, S(u1) ∩ S(w) = ∅ are sequences with no common

symbol where w is not a chain and let uw = uawav. Then

d.Ex(u1, n) ≤ Ex(uw, n) ≤ c.Ex(w, 2.Ex(u1, n)).

4. b-insert [11] Suppose u1 = uaava is a sequence, b 6∈ S(u1) is a new symbol not appearing in u1

and ub = uabbavab. Then

d.Ex(u1, n) ≤ Ex(ub, n) ≤ c.Ex(u1, n).

Note that in the four operations above the lower bound is simply implied by Lemma 1.1 and the

positive constants c, d and in O depend only on the sequences in question. We can summarize all

those operations by saying that the expansions and b-insert preserve the growth rate of Ex(u1, n) and

that middle insert can be bounded from above by the convolution of both corresponding extremal

functions.

Problem 2.4 Does general expansion work? That is, is it true that if u1 = uav, u2 = uaav (?)

and u1 is not a chain then

Ex(u2, n) ≤ c.Ex(u1, n)?

The following statement is an easy consequence of the previous theorem.

Consequence 2.5 All the four previous operations preserve Lin.

Thus, starting by ai and applying operations, one can derive many members of Lin. This is a

partial answer to the Problem 2.2.
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Minimum nonlinear sequences

Lemma 1.1 and Lin suggest to introduce the set

B = {u : u 6∈ Lin but u′ ∈ Lin whenever u′ ≺ u, |u′| < |u| }.

Then u ∈ Lin iff v 6≺ u for any v ∈ B. One observes immediately that ababa ∈ B because of the Hart

and Sharir’s result and because of the easy fact that all the sequences baba, aaba, abba and abaa are

linear. In [1] it was proven

Theorem 2.6 Let u be a sequence over two symbols. Then u ∈ Lin iff ababa 6≺ u.

Proof: Obviously (Lemma 1.1) ababa ≺ u implies u 6∈ Lin. On the other hand ababa 6≺ u implies

u = xiyjxkyl for some two symbols x, y and four nonnegative integres i, j, k and l. Due to Lemma 1.1

it suffices to prove that xiyixiyi ∈ Lin for any i. But x2i ∈ Lin trivially and the b-insert yields that

xiyyxiy ∈ Lin. Thus xiyixiyi ∈ Lin via expansions. 2

One could be tempted by the above theorem to the conjecture that in general B = {ababa}. But

this is not the case.

Theorem 2.7 ([10]) abcbadadbcd 6∈ Lin.

Hence

Consequence 2.8 |B| ≥ 2.

Proof: Clearly ababa 6≺ abcbadadbcd thus there must be an element in B different from ababa. 2

Problem 2.9 Is B finite? (?)

Problem 2.10 1 Is it true that acababcb ∈ Lin? (?)

1This problem was presented by the author in the poster problem section on the Conference in Keszthely 1993.
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3 Linearity of aibiaibi

The result aibiaibi ∈ Lin implying that ababa is the only nonlinear pattern on two symbols is of

independent interest. It was proved first in [1], other two proofs are implicitely contained in [9] and

in [11]. In Theorem 2.6. we sketched the third proof. Here we adapt [9] and we obtain a proof which

is simpler than the other two proofs and which gives better constants.

The proof splits in two parts. First we prove the statements concerning expansion operations (i.e.

we prove Theorem 2.3.1. and 2.3.2). It would be enough to prove only the instance ‖u1‖ = 2 but we

prefer to give the proof in full generality. This reduces the problem aibiaibi ∈ Lin to abbaab ∈ Lin

which is proved in the second part in Theorem 3.5.

We say that a term ai can be c-deleted from a k-regular sequence u = a1a2...am if it is possible

to delete ai with at most c − 1 other occurrences in such a way that the remaining sequence is still

k-regular.

For a sequence u the symbol F (u) stands for the set of all first occurrences of the symbols in u.

Clearly |F (u)| = ‖u‖. Similarily L(u) stands for the set of all last occurrences. The set Fi(u) is

defined by induction as Fi(u) = F (ui) where u1 = u and ui arises from ui−1 by deleting the elements

of F (ui−1).

It can be easily seen that any term can be 2-deleted from any 2-regular sequence. It is not the

case for three- and more regular sequences: in the sequence

...xyzxyzxyzayxzyxzyxz...

which is 3-regular it is impossible to delete the single a-occurrence and to preserve 3-regularity without

deleting many x, y, z-occurrences. We shall see below that under the condition of not containing a

forbidden sequence c-deleting is possible for general k-regularity.

Lemma 3.1 Suppose v is k-regular, u 6≺ v and k = ‖u‖. Then any letter may be c = c(k, u)-deleted

from v.

Proof: One can assume |v| ≥ 2k − 1 + Ex(u, 3k − 3). Consider the partition v = v1v2v3v4v5

where |v2| = ‖v2‖ = |v4| = ‖v4‖ = k − 1, the occurrence ai choosen to be deleted appears in

v3 and |v3| = Ex(u, 3k − 3) + 1. Hence ‖v3‖ ≥ 3k − 2 and there are k − 1 symbols S ⊂ S(v3)

such that S ∩ ({ai} ∪ S(v2) ∪ S(v4)) = ∅. We choose such k − 1 occurrences b1, b2, ..., bk−1 in v3 that

6



{b1, b2, ..., bk−1} = S and delete from v3 all other occurrences (i.e. we delete exactly Ex(u, 3k−3)+2−k

occurrences). What remains is still a k-regular sequence. 2

Lemma 3.2 (Theorem 2.3.1) Ex(aiu, n) ≤ Ex(au, n) + O(n) for any sequence au and any i ≥ 1.

Proof: Suppose v is k = ‖au‖-regular and does not contain aiu. We c-delete all elements of the

set
⋃i−1

j=1 Fj(v) and obtain a k-regular subsequence v′ not containing au and of the length |v′| ≥

|v| − c.‖v‖.(i− 1). The lemma follows. 2

Lemma 3.3 Let k, l ≥ 2 be integers and let u be a k-regular sequence. Then there exists a subsequence

v of u such that

1. v is k-regular

2. between any two x-occurrences in v there are at least l − 1 x-occurrences in u

3. |v| ≥ |u| 1
k2l(l−1)+kl

Proof: Let ax
1 , ax

2 , ... be all x-occurrences in u numerated from left to right for all x ∈ S(u). The

sequence u∗ is defined as consisting of those ax
i that i ≡ 1(mod l). To establish the k-regularity we

use the following greedy procedure.

We take the elements from u∗ from the left and we add an element to what is already choosen iff

the resulting sequence is k-regular. If it is not then we try to add the next element of u∗.

The obtained sequence v possesses obviously properties 1) and 2). It remains to prove that v is

sufficiently long.

We define S as the set of all intervals in u∗ into which v divides u∗. Let I ∈ S. We decompose

I = JIKI = I1I2...IpKI , |Ii| = k, |KI | ≤ k − 1. The construction of v implies ‖I‖ ≤ k − 1. Thus in

any Ii some symbol repeats. The construction of u∗ implies that there are another l − 1 occurrences

of that symbol between those two occurrences in u. But u is k-regular so together there are at least

p(kl − 1− (k − 2)) = p(k(l − 1) + 1) occurrences in u\u∗ between the first and the last term of JI . If

we denote the set of those occurrences as RI ⊂ (u\u∗) then

|JI | = pk ≤ |RI |
k

k(l − 1) + 1
.
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The union L of all JI and the union M of all KI , I ∈ S form a partition u∗ = v∪L∪M . Obviously

|u∗| ≥ 1
l |u| and |u\u∗| ≤ l−1

l |u|. Thus

|L| ≤ k

k(l − 1) + 1

∑
I∈S

|RI | ≤
k

k(l − 1) + 1
|u\u∗| ≤ k

k(l − 1) + 1
l − 1

l
|u|.

Further

|M ∪ v| = |u∗| − |L| ≥ 1
l
|u| − k

k(l − 1) + 1
l − 1

l
|u| = 1

kl(l − 1) + l
|u|.

The mapping that maps KI on the predecessor (in u∗) of the first letter of I is an injection from

{KI | I ∈ S} to v and |KI | ≤ k − 1 for all I. Therefore k|v| ≥ |M ∪ v| and

|v| ≥ |u| 1
k2l(l − 1) + kl

.

2

Lemma 3.4 (Theorem 2.3.2) Ex(uaiv, n) ≤ c.Ex(uaav, n) for any sequence uaav, any i ≥ 2 and

a constant c = c(uaav).

Proof: Suppose w is an m = ‖uaav‖ regular sequence not containing uaiv. We put k := m, l := i

and apply the previous lemma. The obtained subsequence w′ is m-regular, does not contain uaav and

satisfies |w′| ≥ |w|
c for a constant c > 0. The lemma follows. 2

Due to Lemma 3.2 and Lemma 3.4 our problem is reduced and it suffices to prove that abbaab ∈ Lin.

Theorem 3.5 7n− 9 ≤ Ex(abbaab, n) ≤ 8n− 7

The lower bound is witnessed by the sequence u, S(u) = {1, 2, . . . , n},

u = 121 2323231 3434341 4545451 . . . (n− 1)n(n− 1)n(n− 1)n1 n1

consisting of n− 2 blocks of the length seven and of five additional terms.

The upper bound will be proved by means of two lemmas. Suppose u is a sequence and a ∈ S(u)

is a symbol. By I(a) we denote the interval in u spanned by the first a-occurrence (= min I(a)) and

by the last a-occurrence (= max I(a)). We say that a sequence u is separated if for any two distinct

symbols a, b ∈ S(u) either a appears at most once in I(b) or b appears at most once in I(a).
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Lemma 3.6 For any 2-regular sequence u not containing abbaab there is a subsequence u∗ such that

• u∗ is 2-regular and |u| ≤ |u∗|+ 2‖u‖ − 2

• u∗ is separated.

Proof: The sequence u∗ is obtained from u by 2-deleting all elements of F (u) (the first two terms of

u are just 1-deleted). Then u∗ has clearly the first property. It suffices to prove that u∗ is separated.

If not then there would be two symbols x, y ∈ S(u∗) such that I(x) contains two y-occurrences,

I(y) contains two x-occurrences and min I(x) precedes min I(y). Denote by J the subinterval of I(x)

spanned by all y-occurrences in I(x). It is easy to see that J must contain at least one x-occurrence

(u∗ 6� abbaab).

Thus J contains exactly one x-occurrence or at least two of them. In the former case at least one

y-occurrence must appear after max I(x) and we conclude that xyxyxy is a subsequence of u∗. In the

latter case clearly xyxxyx is a subsequence of u∗.

Now consider the situation in u. In u there are additional first x-occurrence and y-occurrence. It

is easy to check that this forces xyyxxy or yxxyyx to be a subsequence of u which is a contradiction.

Thus u∗ is separated. 2

Lemma 3.7 Any separated and 2-regular u∗ satisfies |u∗| ≤ 6‖u∗‖ − 5.

Proof: We consider the decomposition u∗ = v1v2 . . . vrw where |vi| = 2 and |w| ≤ 1. All occurrences

of any two distinct symbols of u∗, say a and b, are arranged in u∗, due the separateness, in one of the

five configurations:

a) a...ab...b b) a...ab...ba...a c) a...ab...bab...ba...a d) a...ab...bab...b and e) a...aba...ab...b.

Here the first a-occurrence is supposed to precede the first b-occurrence. The configuration c) is

denoted as a > b and the middle a-letter in it as a(b). The sequence u∗ is 2-regular and thus vi = ab

for some two distinct symbols. We conclude, checking a)—e), that any vi must contain an element of

the set F (u∗) ∪ L(u∗) ∪M where M = {a(b) : a > b, a, b ∈ S(u∗)}.

It remains to estimate |M |. For this purpose we define a mapping Z : M → L(u∗) by

Z(a0) := max{max I(b) : a0 = a(b), a > b, b ∈ S(u∗)}.
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We show that Z is injective. Suppose on the contrary that Z(a0) = Z(c0) = b0 where b0 =

max I(b), a0 = a(b), c0 = c(b), a > b, c > b and a, b, c are three distinct symbols. It is not diffi-

cult to check that the mutual configuration of a and c then must be c) so a > c, say, and that then

a0 = a(b) = a(c). But b0 = max I(b) precedes max I(c) and we get a contradiction with the definition

of Z on a0.

Thus Z is injective and |M | ≤ |L(u∗)| = ‖u∗‖, even |M | ≤ ‖u∗‖ − 1 because the last term of u∗

can’t be in the image of Z. It is useful to realize also that v1 consists of two elements of F (u∗) and

vr, if w is empty, of two elements of L(u∗). If |w| = 1 then w is one element of L(u∗). Thus

|u∗| = |v1|+ . . . + |vr|+ |w| = 2r + |w| ≤ 2(‖u∗‖ − 1 + ‖u∗‖+ ‖u∗‖ − 1)− 1 = 6‖u∗‖ − 5.

2

The previous two lemmas prove the upper bound in Theorem 3.5. and thus that aibiaibi is a linear

sequence. The substitution of all estimates yields Ex(aibiaibi, n) ≤ (1 + o(1))32i2n.

Problem 3.8 Find better bounds for Ex(aibiaibi, n) and for Ex(abbaab, n). (?)
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