Counting Even and Odd Partitions

Martin Klazar

1. INTRODUCTION. It is a lovely fact that $[n] = \{1, 2, ..., n\}$, where $n \ge 1$, has as many subsets X of even cardinality |X| as of odd cardinality, namely, 2^{n-1} of both. To prove it, pair every subset X with $X \pm 1$, where $X \pm 1$ is $X \setminus \{1\}$ if $1 \in X$ and $X \cup \{1\}$ if $1 \notin X$. Then $X \mapsto X \pm 1$ is an involution that changes the parity of |X| and the result follows.

More generally, in enumerative combinatorics one often has a family S_n of objects on [n] such that every object X has a natural size s(X) in \mathbf{N}_0 . Then in addition to the total number of objects $S_n = |S_n|$, one can consider

$$S_n^{\pm} = \sum_{X \in \mathcal{S}_n} (-1)^{s(X)},$$

which records the surplus of the objects with an even size over those with an odd size. For subsets X of [n] and s(X) = |X|, it is the case that $S_n^{\pm} = 0$ for every $n \ge 1$ (but $S_0^{\pm} = 1$). In this note we present to the reader four examples of the scenario under discussion. We investigate the corresponding numbers S_n^{\pm} by means of generating functions, an analytic continuation argument, and, again, the involution trick. Our first example is a classic, but the other three are not as well known.

2. INTEGER PARTITIONS. Here S_n consists of the partitions X of n into distinct parts $-n = a_1 + a_2 + \cdots + a_k$, where $a_1 > a_2 > \ldots > a_k \ge 1$ are integers - and s(X) = k is just the number of parts.

Theorem 1 (L. Euler, 1748). For integer partitions with distinct parts, $S_n^{\pm} = (-1)^m$ if $n = m(3m \pm 1)/2$ and $S_n^{\pm} = 0$ otherwise.

This is Euler's celebrated pentagonal identity, which can be written equivalently as

$$\prod_{n=1}^{\infty} (1-x^n) = \sum_{m=-\infty}^{\infty} (-1)^m x^{m(3m+1)/2}.$$

Franklin's famous 1881 proof using the involution trick is reproduced in the books of Andrews [1] and Hardy and Wright [5].

3. NONCROSSING SET PARTITIONS. A (set) partition of [n] is a collection $X = \{B_1, B_2, \ldots, B_k\}$ of nonempty disjoint subsets of [n], called blocks, whose union is [n]. It is crossing if there are four numbers $1 \le a < b < c < d \le n$ and two distinct blocks A and B in X such that a and c belong to A, while b and d belong to B. If X is not crossing, then it is noncrossing. In this example, S_n consists of the noncrossing partitions of [n] and s(X) = k is the number of blocks. Kreweras [6] proved that $S_n = |S_n| = \frac{1}{n+1} {2n \choose n}$, the *n*th Catalan number. The survey [11] of Simion contains much information on the combinatorics of noncrossing partitions.

Theorem 2. For noncrossing set partitions, $S_n^{\pm} = (-1)^{m+1} \frac{1}{m+1} {2m \choose m}$ if n = 2m + 1 and $S_n^{\pm} = 0$ if n = 2m.

Proof. Let

$$F = F(x, y) = \sum_{n \ge 0} \sum_{X \in \mathcal{S}_n} x^n y^{s(X)} = 1 + xy + x^2(y + y^2) + \cdots$$

We are interested in

$$G = G(x) = \sum_{n \ge 0} S_n^{\pm} x^n.$$

Clearly, G(x) = F(x, -1). We show that

$$F = 1 + xyF + xF(F - 1).$$
 (1)

The empty partition X of $[0] = \emptyset$ is represented by the term $x^0y^0 = 1$. Now let X be a noncrossing partition of [n], where $n \ge 1$, and let A be the block of X containing 1. Either |A| = 1 or |A| > 1. In the former case, $A = \{1\}$, and the removal of A (the remaining vertices are relabelled as $1, 2, \ldots, n-1$) constitutes a bijection between the noncrossing partitions X of [n] with |A| =1 and s(X) = k and all noncrossing partitions Y of [n-1] with s(Y) = k-1. Thus the case |A| = 1 is accounted for by the middle term xyF. In the case |A| > 1, we let a denote the second element of A and decompose X into two partitions X_1 and X_2 , where X_1 is induced by X on the interval [2, a - 1]and X_2 is induced on [a, n]. Both X_i are noncrossing. The collection X_1 may be empty, but X_2 is nonempty. Since no block intersects both intervals (X is noncrossing), $s(X_1) + s(X_2) = s(X)$. The mapping $X \mapsto (X_1, X_2)$ (the vertices in X_1 and X_2 are relabelled appropriately) constitutes a bijection between the noncrossing partitions X of [n] with |A| > 1 and s(X) = k and the pairs (X_1, X_2) such that X_i is a noncrossing partition of $[n_i]$, $n_1 \ge 0$, $n_2 \ge 1$, $n_1 + n_2 = n - 1$, and $s(X_1) + s(X_2) = k$. Thus the case |A| > 1 is captured by the last term xF(F-1).

Setting y = -1 in (1) and rearranging, we get the equation

$$xG^2 - (1+2x)G + 1 = 0.$$

Because G(0) = 1, we solve to obtain

$$G(x) = 1 + \frac{1}{2x} \left(1 - \sqrt{1 + 4x^2} \right).$$

We think of G(x) as a formal power series and therefore x = 0 causes no problem. Binomial expansion yields the stated formula for S_n^{\pm} . Note that, by setting y = 1 in (1), we recover the result of Kreweras.

One may ask about a proof using involutions. Such a proof, based on the representation of noncrossing partitions by parallelogram polyominoes, was provided by the referee. See Deutsch [3, pp. 198–199] for a bijection between noncrossing partitions and parallelogram polyominoes.

4. ALL SET PARTITIONS. Now S_n consists of all partitions of [n] and s(X) = k is again the number of blocks. The total numbers S_n are the *Bell numbers*

 $1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, \ldots$

that constitute sequence A000110 of [12]. They grow superexponentially:

$$\log S_n = n(\log n - \log \log n + O(1)).$$

See de Bruijn [2, p. 108] or Lovász [7, Problem 1.9b] for more precise asymptotics. We show that S_n^{\pm} remains superexponential.

Theorem 3. For all set partitions, if c > 0 is any constant, then $|S_n^{\pm}| > c^n$ for some (in fact, infinitely many) n in \mathbf{N} .

Proof. We begin with the classical expansion (see, for example, Stanley [13, p. 34])

$$G_k(x) = \sum_{n \ge 0} S(n,k) x^n = \frac{x^n}{(1-x)(1-2x)\cdots(1-kx)},$$

where S(n, k), the Stirling number of the second kind, is in our language simply the number of X in S_n with s(X) = k blocks. Thus

$$F(x) = \sum_{n \ge 0} S_n^{\pm} x^n = \sum_{k \ge 0} (-1)^k G_k(x) = \sum_{k \ge 0} \frac{(-x)^k}{(1-x)(1-2x)\cdots(1-kx)}$$

Considering the action of the substitution $x \mapsto x/(1-x)$ on this expansion, we obtain the equation

$$F(x) = 1 - \frac{x}{1-x} F\left(\frac{x}{1-x}\right).$$
 (2)

Substituting x/(1+x) for x and solving the resulting equation for F(x), we arrive at a second expression for F(x):

$$F(x) = \frac{1}{x} \left(1 - F\left(\frac{x}{1+x}\right) \right). \tag{3}$$

If $|S_n^{\pm}| \leq c^n$ for all n in **N** and some constant c > 0, then the power series representing F(x) has radius of convergence $r \geq 1/c > 0$ and therefore defines in the disc |z| < r an analytic function F(z). However, we show that r > 0 is contradicted by the equations (2) and (3). Thus for no c > 0 is it true that $|S_n^{\pm}| \leq c^n$ for all n, and Theorem 3 follows.

Suppose, to the contrary, that r > 0. We can assume that $r \le 1$ (formulas (2) or (3) show that F(x) is not a polynomial, so $|S_n^{\pm}| \ge 1$ infinitely often). Let α be a singularity of F(z) on the circle of convergence |z| = r. If $|\alpha/(1 - \alpha)| < r$, we can use (2) to continue F(z) analytically to a neighborhood of α , which contradicts the definition of α . Clearly, $|\alpha/(1 - \alpha)| < r$ is equivalent to $\operatorname{Re}(\alpha) < r^2/2$, and therefore when $\operatorname{Re}(\alpha) < r^2/2$ we have derived a contradiction. Similarly, if $|\alpha/(1 + \alpha)| < r$, which is equivalent to $\operatorname{Re}(\alpha) > -r^2/2$, we use (3) to obtain the same contradiction. (Since $\alpha \neq 1$ in the former case, $\alpha \neq -1$ in the latter case, and $\alpha \neq 0$ in every case, the "bad" arguments z = -1, 0, and 1 cause no problem.) For every location of α , either (2) or (3) leads to a contradiction. Hence r = 0.

The numbers S_n^{\pm} that arise in this example,

 $-1, 0, 1, 1, -2, -9, -9, 50, 267, 413, -2180, -17731, -50533, 110176, \ldots,$

comprise sequence A000587 of [12]. Recently the asymptotics of this sequence were investigated by Subbarao and Verma [15] and Yang [17] (see [12] for

more references to these numbers). Subbarao and Verma proved, using the exponential generating function of S_n^{\pm} , that in fact

$$\limsup_{n \to \infty} \frac{\log |S_n^{\pm}|}{n \log n} = 1.$$

Is S_n^{\pm} zero infinitely often? In [17], this question is a tributed to H. S. Wilf. Is S_n^{\pm} ever zero except when n = 2?

5. MATCHINGS AND CROSSINGS. Perhaps the lack of cancellation in the previous example was caused by the rapid growth of S_n ? Our last example shows that S_n^{\pm} can be small even if the S_n are superexponential. For it we take S_n to be all partitions X of [2n] into n two-element blocks. We call such X matchings and their blocks edges. The size s(X) is the number of unordered crossing pairs $\{A, B\}$ among the edges of X (we have defined crossing in the second example). It is easy to see that $S_n = (2n - 1)!! =$ $1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n - 1)$. Indeed, $S_n = (2n - 1)S_{n-1}$ because there are 2n - 1ways to place the end of the new first edge in the spaces of an X from S_{n-1} . So $\log S_n = n(\log n + O(1))$. But the S_n^{\pm} are very small.

Theorem 4. For matchings whose size is measured by the number of crossings, $S_n^{\pm} = 1$ for every n in **N**.

Proof. For a matching X in S_n the crucial pair is the pair of edges A and B in X such that min $A + 1 = \min B$ and min A is as small as possible. Notice that the crucial pair is unique and that every X has one except $X^* = \{\{1,2\},\{3,4\},\ldots,\{2n-1,2n\}\}$. Switching min A and min B in X (if $X = X^*$, we do nothing) produces the matching X' (see Figure 1). It is clear that A and B remain the crucial pair of X' and that $s(X) - s(X') = \pm 1$ because the sets of crossing pairs of X and of X' differ exactly in the pair A, B. So $\Phi: X \mapsto X'$ is an involution that changes the parity of s(X). It pairs even and odd matchings with the exception of X^* and $s(X^*) = 0$ is even. \Box

A remarkable formula for the generating polynomial counting matchings by crossings was derived by Touchard and Riordan [16], [10] and was later proved purely combinatorially (using bijections between words, trees, and polynominoes) by Penaud [9]:

$$\sum_{X \in \mathcal{S}_n} x^{s(X)} = \frac{1}{(1-x)^n} \sum_{k=-n}^n (-1)^k \binom{2n}{n-k} x^{k(k-1)/2}.$$

Figure 1: The involution Φ .

The reader is invited to do an exercise: recover the formulas for S_n and S_n^{\pm} from the polynomial by setting x = 1 and x = -1.

6. CONCLUDING REMARKS. Theorem 2 follows from equation (1), which is proved in [11, p. 373]. Our derivation is more condensed. The analytic argument establishing Theorem 3 seems to be new. The same is perhaps true of the involution proof of Theorem 4, but the result itself, that $S_n^{\pm} = 1$, was found by Riordan [10, p. 219]. We conclude by stating a problem on *connected* matchings. These are matchings X with the following property: for each pair of distinct edges A and B of X there is a chain of edges A_0, A_1, \ldots, A_k of X such that $A_0 = A, A_k = B$, and A_i and A_{i+1} are a crossing pair for $i = 0, 1, \ldots, k-1$. For example, both X and X' in Figure 1 are disconnected, having two and three components, respectively. Let \mathcal{S}_n be the set of all connected matchings on [2n], and let s(X)again be the number of crossings. It is known and not too difficult to prove (see the articles of Stein [14] and Nijenhuis and Wilf [8]) that the sequence $(S_n)_{n>1} = (1, 1, 4, 27, 248, 2830, \ldots)$ (this is A000699 of [12]) satisfies the recurrence relation $S_n = (n-1) \sum_{i=1}^{n-1} S_i S_{n-i}$. (For further results on matchings and crossings see Flajolet and Noy [4].) Now, as for S_n^{\pm} , do we have nice cancellation in the style of Theorems 1, 2, and 4, or do we have rather erratic behavior as in Theorem 3?

ACKNOWLEDGMENTS. I was supported by the project LN00A056 of the Ministry of Education of the Czech Republic. I am grateful to M. Noy for his comments. I would like to thank an anonymous referee for interesting and useful comments.

References

- G. Andrews, *The Theory of Partitions*, Addison-Wesley, Reading, MA, 1976.
- [2] N. G. de Bruijn, Asymptotic Methods in Analysis, Dover, New York, 1981.
- [3] E. Deutsch, Dyck path enumeration, *Discrete Math.* 204 (1999) 167– 202.
- [4] P. Flajolet and M. Noy, Analytic combinatorics of chord diagrams, in Proceedings of FPSAC'00, Moscow 2000, D. Krob, A. A. Mikhalev and A. V. Mikhalev, eds., Springer-Verlag, Berlin, 2000, pp. 191–201.
- [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, UK, 1979.
- [6] G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 (1972) 333–350.
- [7] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest, 1993.
- [8] A. Nijenhuis and H. S. Wilf, The enumeration of connected graphs and linked diagrams, J. Comb. Theory, Ser. A 27 (1979) 356–359.
- [9] J.-G. Penaud, Une preuve bijective d'une formule de Touchard-Riordan, *Discrete Math.* **139** (1995) 347–360.
- [10] J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. of Computation 29 (1975) 215–222.
- [11] R. Simion, Noncrossing partitions, Discrete Math. 217 (2000) 367–409.
- [12] N. J. A. Sloane (2001), The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/~njas/sequences/
- [13] R. P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth & Brooks/Cole, Monterey, CA, 1986.

- [14] P. R. Stein, On a class of linked diagrams, I. Enumeration, J. Comb. Theory, Ser. A 24 (1978) 357–366.
- [15] M. V. Subbarao and A. Verma, Some remarks on a product expansion. An unexplored partition function, in *Symbolic Computations, Number Theory, Special Functions, Physics and Combinatorics*, F. G. Garvan and M. E. H. Ismail, eds., Kluwer, Dordrecht, 2001, pp. 267–283.
- [16] J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math. 4 (1952) 2–25.
- [17] Y. Yang, On a multiplicative partition function, *Electr. J. of Comb.* 8 (2001) R 19, 14 pages.

Department of Applied Mathematics (KAM), Charles University, and Institute for Theoretical Computer Science (ITI), Malostranské náměstí 25, 118 00 Praha, Czech Republic klazar@kam.mff.cuni.cz