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1. INTRODUCTION. It is a lovely fact that [n] = {1, 2, . . . , n}, where
n ≥ 1, has as many subsets X of even cardinality |X| as of odd cardinality,
namely, 2n−1 of both. To prove it, pair every subset X with X ± 1, where
X ± 1 is X\{1} if 1 ∈ X and X ∪ {1} if 1 6∈ X. Then X 7→ X ± 1 is an
involution that changes the parity of |X| and the result follows.

More generally, in enumerative combinatorics one often has a family Sn

of objects on [n] such that every object X has a natural size s(X) in N0.
Then in addition to the total number of objects Sn = |Sn|, one can consider

S±n =
∑

X∈Sn

(−1)s(X),

which records the surplus of the objects with an even size over those with an
odd size. For subsets X of [n] and s(X) = |X|, it is the case that S±n = 0 for
every n ≥ 1 (but S±0 = 1). In this note we present to the reader four examples
of the scenario under discussion. We investigate the corresponding numbers
S±n by means of generating functions, an analytic continuation argument,
and, again, the involution trick. Our first example is a classic, but the other
three are not as well known.

2. INTEGER PARTITIONS. Here Sn consists of the partitions X of n
into distinct parts — n = a1 + a2 + · · · + ak, where a1 > a2 > . . . > ak ≥ 1
are integers — and s(X) = k is just the number of parts.

Theorem 1 (L. Euler, 1748). For integer partitions with distinct parts,
S±n = (−1)m if n = m(3m± 1)/2 and S±n = 0 otherwise.

This is Euler’s celebrated pentagonal identity, which can be written equiva-
lently as

∞∏
n=1

(1− xn) =
∞∑

m=−∞
(−1)mxm(3m+1)/2.

Franklin’s famous 1881 proof using the involution trick is reproduced in the
books of Andrews [1] and Hardy and Wright [5].
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3. NONCROSSING SET PARTITIONS. A (set) partition of [n] is a
collection X = {B1, B2, . . . , Bk} of nonempty disjoint subsets of [n], called
blocks , whose union is [n]. It is crossing if there are four numbers 1 ≤ a <
b < c < d ≤ n and two distinct blocks A and B in X such that a and c belong
to A, while b and d belong to B. If X is not crossing, then it is noncrossing .
In this example, Sn consists of the noncrossing partitions of [n] and s(X) = k

is the number of blocks. Kreweras [6] proved that Sn = |Sn| = 1
n+1

(
2n
n

)
, the

nth Catalan number. The survey [11] of Simion contains much information
on the combinatorics of noncrossing partitions.

Theorem 2. For noncrossing set partitions, S±n = (−1)m+1 1
m+1

(
2m
m

)
if n =

2m + 1 and S±n = 0 if n = 2m.

Proof. Let

F = F (x, y) =
∑
n≥0

∑
X∈Sn

xnys(X) = 1 + xy + x2(y + y2) + · · · .

We are interested in
G = G(x) =

∑
n≥0

S±n xn.

Clearly, G(x) = F (x,−1). We show that

F = 1 + xyF + xF (F − 1). (1)

The empty partition X of [0] = ∅ is represented by the term x0y0 = 1. Now
let X be a noncrossing partition of [n], where n ≥ 1, and let A be the block
of X containing 1. Either |A| = 1 or |A| > 1. In the former case, A = {1},
and the removal of A (the remaining vertices are relabelled as 1, 2, . . . , n−1)
constitutes a bijection between the noncrossing partitions X of [n] with |A| =
1 and s(X) = k and all noncrossing partitions Y of [n−1] with s(Y ) = k−1.
Thus the case |A| = 1 is accounted for by the middle term xyF . In the case
|A| > 1, we let a denote the second element of A and decompose X into two
partitions X1 and X2, where X1 is induced by X on the interval [2, a − 1]
and X2 is induced on [a, n]. Both Xi are noncrossing. The collection X1 may
be empty, but X2 is nonempty. Since no block intersects both intervals (X
is noncrossing), s(X1) + s(X2) = s(X). The mapping X 7→ (X1, X2) (the
vertices in X1 and X2 are relabelled appropriately) constitutes a bijection
between the noncrossing partitions X of [n] with |A| > 1 and s(X) = k and
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the pairs (X1, X2) such that Xi is a noncrossing partition of [ni], n1 ≥ 0,
n2 ≥ 1, n1 + n2 = n − 1, and s(X1) + s(X2) = k. Thus the case |A| > 1 is
captured by the last term xF (F − 1).

Setting y = −1 in (1) and rearranging, we get the equation

xG2 − (1 + 2x)G + 1 = 0.

Because G(0) = 1, we solve to obtain

G(x) = 1 +
1

2x

(
1−

√
1 + 4x2

)
.

We think of G(x) as a formal power series and therefore x = 0 causes no
problem. Binomial expansion yields the stated formula for S±n . Note that,
by setting y = 1 in (1), we recover the result of Kreweras. 2

One may ask about a proof using involutions. Such a proof, based on the
representation of noncrossing partitions by parallelogram polyominoes, was
provided by the referee. See Deutsch [3, pp. 198–199] for a bijection between
noncrossing partitions and parallelogram polyominoes.

4. ALL SET PARTITIONS. Now Sn consists of all partitions of [n] and
s(X) = k is again the number of blocks. The total numbers Sn are the Bell
numbers

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, . . .

that constitute sequence A000110 of [12]. They grow superexponentially:

log Sn = n(log n− log log n + O(1)).

See de Bruijn [2, p. 108] or Lovász [7, Problem 1.9b] for more precise asymp-
totics. We show that S±n remains superexponential.

Theorem 3. For all set partitions, if c > 0 is any constant, then |S±n | > cn

for some (in fact, infinitely many) n in N.

Proof. We begin with the classical expansion (see, for example, Stanley [13,
p. 34])

Gk(x) =
∑
n≥0

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
,
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where S(n, k), the Stirling number of the second kind, is in our language
simply the number of X in Sn with s(X) = k blocks. Thus

F (x) =
∑
n≥0

S±n xn =
∑
k≥0

(−1)kGk(x) =
∑
k≥0

(−x)k

(1− x)(1− 2x) · · · (1− kx)
.

Considering the action of the substitution x 7→ x/(1− x) on this expansion,
we obtain the equation

F (x) = 1− x

1− x
F
(

x

1− x

)
. (2)

Substituting x/(1 + x) for x and solving the resulting equation for F (x), we
arrive at a second expression for F (x):

F (x) =
1

x

(
1− F

(
x

1 + x

))
. (3)

If |S±n | ≤ cn for all n in N and some constant c > 0, then the power
series representing F (x) has radius of convergence r ≥ 1/c > 0 and therefore
defines in the disc |z| < r an analytic function F (z). However, we show that
r > 0 is contradicted by the equations (2) and (3). Thus for no c > 0 is it
true that |S±n | ≤ cn for all n, and Theorem 3 follows.

Suppose, to the contrary, that r > 0. We can assume that r ≤ 1 (formulas
(2) or (3) show that F (x) is not a polynomial, so |S±n | ≥ 1 infinitely often).
Let α be a singularity of F (z) on the circle of convergence |z| = r. If |α/(1−
α)| < r, we can use (2) to continue F (z) analytically to a neighborhood
of α, which contradicts the definition of α. Clearly, |α/(1 − α)| < r is
equivalent to Re(α) < r2/2, and therefore when Re(α) < r2/2 we have
derived a contradiction. Similarly, if |α/(1 + α)| < r, which is equivalent to
Re(α) > −r2/2, we use (3) to obtain the same contradiction. (Since α 6= 1
in the former case, α 6= −1 in the latter case, and α 6= 0 in every case, the
“bad” arguments z = −1, 0, and 1 cause no problem.) For every location of
α, either (2) or (3) leads to a contradiction. Hence r = 0. 2

The numbers S±n that arise in this example,

−1, 0, 1, 1,−2,−9,−9, 50, 267, 413,−2180,−17731,−50533, 110176, . . . ,

comprise sequence A000587 of [12]. Recently the asymptotics of this sequence
were investigated by Subbarao and Verma [15] and Yang [17] (see [12] for
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more references to these numbers). Subbarao and Verma proved, using the
exponential generating function of S±n , that in fact

lim sup
n→∞

log |S±n |
n log n

= 1.

Is S±n zero infinitely often? In [17], this question is atributed to H. S. Wilf.
Is S±n ever zero except when n = 2?

5. MATCHINGS AND CROSSINGS. Perhaps the lack of cancellation
in the previous example was caused by the rapid growth of Sn? Our last
example shows that S±n can be small even if the Sn are superexponential. For
it we take Sn to be all partitions X of [2n] into n two-element blocks. We
call such X matchings and their blocks edges . The size s(X) is the number
of unordered crossing pairs {A, B} among the edges of X (we have defined
crossing in the second example). It is easy to see that Sn = (2n − 1)!! =
1 · 3 · 5 · . . . · (2n − 1). Indeed, Sn = (2n − 1)Sn−1 because there are 2n − 1
ways to place the end of the new first edge in the spaces of an X from Sn−1.
So log Sn = n(log n + O(1)). But the S±n are very small.

Theorem 4. For matchings whose size is measured by the number of cross-
ings, S±n = 1 for every n in N.

Proof. For a matching X in Sn the crucial pair is the pair of edges A and
B in X such that min A + 1 = min B and min A is as small as possible.
Notice that the crucial pair is unique and that every X has one except X∗ =
{{1, 2}, {3, 4}, . . . , {2n − 1, 2n}}. Switching min A and min B in X (if X =
X∗, we do nothing) produces the matching X ′ (see Figure 1). It is clear that
A and B remain the crucial pair of X ′ and that s(X)− s(X ′) = ±1 because
the sets of crossing pairs of X and of X ′ differ exactly in the pair A, B. So
Φ : X 7→ X ′ is an involution that changes the parity of s(X). It pairs even
and odd matchings with the exception of X∗ and s(X∗) = 0 is even. 2

A remarkable formula for the generating polynomial counting matchings
by crossings was derived by Touchard and Riordan [16], [10] and was later
proved purely combinatorially (using bijections between words, trees, and
polyominoes) by Penaud [9]:

∑
X∈Sn

xs(X) =
1

(1− x)n

n∑
k=−n

(−1)k

(
2n

n− k

)
xk(k−1)/2.
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Figure 1: The involution Φ.

The reader is invited to do an exercise: recover the formulas for Sn and S±n
from the polynomial by setting x = 1 and x = −1.

6. CONCLUDING REMARKS. Theorem 2 follows from equation (1),
which is proved in [11, p. 373]. Our derivation is more condensed. The
analytic argument establishing Theorem 3 seems to be new. The same is
perhaps true of the involution proof of Theorem 4, but the result itself,
that S±n = 1, was found by Riordan [10, p. 219]. We conclude by stating
a problem on connected matchings. These are matchings X with the fol-
lowing property: for each pair of distinct edges A and B of X there is a
chain of edges A0, A1, . . . , Ak of X such that A0 = A, Ak = B, and Ai and
Ai+1 are a crossing pair for i = 0, 1, . . . , k − 1. For example, both X and
X ′ in Figure 1 are disconnected, having two and three components, respec-
tively. Let Sn be the set of all connected matchings on [2n], and let s(X)
again be the number of crossings. It is known and not too difficult to prove
(see the articles of Stein [14] and Nijenhuis and Wilf [8]) that the sequence
(Sn)n≥1 = (1, 1, 4, 27, 248, 2830, . . .) (this is A000699 of [12]) satisfies the re-
currence relation Sn = (n−1)

∑n−1
i=1 SiSn−i. (For further results on matchings

and crossings see Flajolet and Noy [4].) Now, as for S±n , do we have nice can-
cellation in the style of Theorems 1, 2, and 4, or do we have rather erratic
behavior as in Theorem 3?
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